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Abstract. We propose a new approach to determine the shortest path in a vague
network(VN), a network in which vertices and edges remain crisp but each edge (i, i+1)
has an associated weight, which is a vague number of the form [Rit, Rif ] for each i. For
each VN, we associate two vague networks called true and false limit fuzzy networks
having the same set of vertices and edges but each edge (i, i + 1) is attached with a
vague weight Rit and Rif respectively. We exhibit that the shortest path of weight
w = [wt, wf ] an vague number in VN, the path for which the shortest path of weight
wt in the true fuzzy network coincides with the shortest path of weight wt in the true
limit vague network. The concept is illustrated with the help of a simple situation and
the validation of mathematical verification is provided.
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1. Introduction

Graph theory has found its importance in many real time problems. Recent ap-
plications in graph theory is quite interesting analysing any complex situations
and moreover in engineering applications. It has got numerous applications on
operations research, system analysis, network routing, transportation and many
more. In 1975, Rosenfeld [22] discussed the concept of fuzzy graphs whose ideas
are implemented by Kauffman [16] in 1973. The fuzzy relation between fuzzy
sets were also considered by Rosenfeld who developed the structure of fuzzy
graphs, obtaining various analagous results of several graph theoretical con-
cepts. Bhattacharya [4] gave some remarks of fuzzy graphs. The complement of
fuzzy graphs was introduced by Mordeson [17]. Atanassov introduced the con-
cept of intuitionistic fuzzy relation and intuitionistic fuzzy graphs [2, 3, 28, 29].
Talebi and Rashmanlou [41] studied the properties of isomorphism and com-
plement of interval-valued fuzzy graphs. They defined isomorphism and some
new operations on vague graphs [42, 43]. Borzooei and Rashmalou analysed
new concepts of vague graphs [5], degree of vertices in vague graphs [6], more
results on vague graphs [7], semi global domination sets in vague graphs with
application [8] and degree and total degree of edges in bipolar fuzzy graphs with
application [9]. Rashmanlou et.al. defined the complete interval-valued fuzzy
graphs [23]. Rashmanlou and Pal studied intuitionistic fuzzy graphs with cate-
gorical properties [28], some properties of highly irregular interval-valued fuzzy
graphs [27], more results on highly irregular bipolar fuzzy graphs [29], balanced
interval-valued fuzzy graphs [25] and antipodal interval-valued fuzzy graphs [24].
Samanta and Pal investigated fuzzy k-competition and p-competition graphs,
and concept of fuzzy planar graphs in [20, 21, 30]. Also they introduced fuzzy
tolerance graph [39], bipolar fuzzy hypergraphs [40] and given several properties
on it. Pal and Rashmanlou [19] defined many properties of irregular interval-
valued fuzzy graphs. Ganesh et al. [12, 13] analysed the properties of Regular
product vague graphs and product vague line graphs.

In graph theory the shortest path problem is the problem of finding a path
between two vertices such that sum of the weight of its constituent edges is
minimized. An example is finding the shortest way to get from one location
to another on a road map. The vertices(or nodes) represents the locations and
are weighted by the time needed to travel that segment and the edges(or links)
represents the roads leading to various places connected through out the des-
tination point. The shortest path problem has transportation, communication
routing and scheduling. Now, in any network path the arc length may represent
time or cost. Therefore in the real world, it can be considered to be a fuzzy
set.To analyse any complete information we make intensive use of graphs and
its properties. For working on partial information or incomplete information
or to handle the systems containing the elements of uncertainty we understand
that fuzzy logic and its involvement in graph theory is applied.
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We analyse the shortest path of any source to destination using vague net-
works(VN). We consider the directed network consisting of a finite set of vertices
and finite set of edges. It is assumed that there is only one edge between any two
vertices. The fuzzy shortest problem was first analysed by Dubois and Prade [11]
. They used Floyd’s algorithm and Ford’s algorithm to treat the fuzzy shortest
path problem. Although in their method of shortest length could be obtained
but sometimes the corresponding path in the network does not exist. [15]Klein
proposed a dynamical programming recursion based fuzzy algorithm [10] and
later developed by many researchers. Recently, the concept of Interval valued
fuzzy matrices(IVFM) as a generalization of fuzzy matrix was introduced by
Shyamal and Pal [38], by extending the max-min operations on Fuzzy algebra
F = [0, 1] for elements a, b ∈ F, a+ b = max{a, b} and a.b = min{a, b}. Let Fmn

be the set of all m×n fuzzy matrices over the fuzzy algebra with support [0, 1],
ie., the matrices whose entries are intervals and all the intervals are subintervals
of the interval [0, 1], then max{ai, bi} = [max{aiL, biL},max{aiU , biU}]. In ear-
lier works, represented Interval Valued Fuzzy Matrices A = (aij) = ([aijL, aijU ])
where each aij is a subinterval of the interval [0, 1] as the interval matrix
A = [AL, AU ] whose ijth entry is the interval [aijL, aijU ], where the lower limit
AL = (aijL) and the upper limit AU = (aijU ) are fuzzy matrices such that the
AL ≤ AU that is aijL ≤ aijU under the usual ordering of real numbers. In this
paper, we adopt a similar technique to determine the shortest path for an vague
network (VN), that is the path in which the sum of the weight of its constituent
edges is minimized, by way of constructing two vague networks corresponding
to the true and false limits for an VN as a generalisation of fuzzy shortest path
technique presented in [15].Meenakshi et al. [18] determined the shortest path
in interval-valued fuzzy networks. Sahoo et al. [31, 32, 33, 34, 35] analysed
about different types of product on intuitionistic fuzzy graphs, intuitionistic
fuzzy competition graph, intuitionistic fuzzy tolerance graph with application,
product on intuitionistic fuzzy graphs and degree, covered and paired domina-
tion in intuitionistic fuzzy graphs. We propose a new approach to determine the
shortest path in VN in which the edges representing the roads connecting the
cities and each edge (i, i+1) has an associated weight representing the traffic on
the road connecting the cities i and i+ 1, which is an vague number of the form
Ri = [RiT , RiF ] for each i and we apply the technique used in [15] to determine
the shortest path in true and false limits of the fuzzy networks. We have defined
the shortest path of VN as the path for which the shortest path in true limit
vague network coincides with the shortest path in false limit vague networks
and weight [wT , wF ] where wT and wF are the weights of the shortest path for
true and false networks respectively.In this work we analyse the shortest path
of vague networks using DP recursion algorithm. For further terminologies, the
readers are referred to [1-6,14,15].
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2. Preliminaries

A graph (V,E) be a set of points V and a set of pairs of these points E. The
set V refers to the vertices of the graph and the set E refers to the edges of the
graph. An edge is denoted by a pair of vertices {i, j}. If E is changed to a set of
ordered pairs of distinct elements of V , then G : (V,E) is a directed graph and
E is the set of ordered pairs (i, j) . The ordered pairs (i, j) are referred to as
arcs or edges and an arc goes from vertex i to vertex j. An arc (i, i) is referred
to as a loop. A path from a vertex s to a vertex t is a sequence of arcs of the
form (p, i1), (i1, i2)...(ik, q).

If each arc (i, j) has an associated weight or length Cij , then an (p, q) path
has an associated weight or length equal to sum of the weights of the constituent
arcs in the path. This in turn gives rise to the shortest path problem, which is
to find the path with minimal weight between two vertices p and q. There are
different ways to find one shortest path for a network. Some of the more general
methods such as the labeling algorithm follow from dynamic progamming. It is
assumed that graphs for the models to be presented or directed graphs, that is
graph without cycles.

For an acyclic directed graphs G : (V,E) with N vertices numbered from 1
to N such that ’1’ is the source and ’N’ is the sink, a dynamic programming(DP)
formulation for the shortest path problem is given as in

(2.1) fi(Si+1) = min
xi

(Ri(Xi, Si+1) + fi−1(S1)),

where fi−1(Si) denotes the optimal value of the objective function corresponding
to the last i−1 stages and Si is the input to the stage i−1, Xi denotes the vector
of decision variable at stage i, Ri(Xi, Si+1) is the return function of the stage i
and fi(Si+1) denotes the optimal value of the objective function corresponding to
the last i stages and Si+1 is the input to the stage i. Throughout the algorithm,
vertex i is labeled with f(i), and labels allow the determination of the path.

Through Belman’s principle of optimality this recursion is very flexible and
has many applications. One obvious flexibility is that the sum in can be replaced
by almost any binary operator and the recursion will hold in . for the fuzzy
optimization problems under that max-min composition, the sum in is the fuzzy
addition and is reformulated as

(2.2) fi(Si+1) = min
xi

(Ri(Xi, Si+1) + fi−1(S1)).

3. Shortest path of an VN

A vague network includes nodes and directed links. Each node represents
a city. Each directed links (i, i + 1) connects city i to i + 1 . Let Xi =
{X1, X2, X3, ..., Xi−1} denotes the vector of decision variable at stage i and
Si = {S1, S2, ..., Si+1} is the input to the stage i − 1. fi−1 denotes the fuzzy
optimal value of the objective function corresponding to the last i− 1 stages.
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If Xi : Ri → Si+1 , then it indicates that the degree of relevance from stage
i to stage i+ 1 is Ri , where Ri is a sub interval of [0, 1] . Let Ri = [RiT , RiF ].

Since Ri is an interval of [0, 1], Rit,Rif
, Ri(Xi, Si+1) is the weight of the

corresponding arc (i, i + 1). For this vague network(VN), let us construct two
networks which we call as true limit vague network (V N)T and false limit vague
network (V N)F with the same set of nodes and links, the weight of the corre-
sponding arc (i, i+ 1) in the lower limit vague network is RiT and in the upper
limit vague network in RiF .

The vague shortest path networks can also be viewed in terms of the Dynamic
programming (DP) recursion given in equation (2.1) . This recursion is very
close to Ford’s Algorithm and is easily extended to vague numbers as in equation
(2.2). Then the DP recursion for lower vague network is

(3.1) fiT (Si+1) = min
Xi

{max[RiT (Xi, Si+1), f(i−1)T (Si)]},

where f(i−1)T (Si) denotes the optimal value of the objective function corre-
sponding to the last i − 1 stages Si is the input to the stage i − 1 of lower
vague networks (V N)t , Xi denotes the vector of decision variable at stage i,
RiT (Xi, Si+1) is the return function of the stage i and fiT (Si+1) denotes the
optimal value of the objective function corresponding to the last i stages and
Si+1 is the input to the stage i of lower vague networks (V N)T . DP recursion
for upper vague network is

(3.2) fiF (Si+1 = min
Xi

{max[RiF (Xi, Si+1), f(i−1)F (Si)]}.

Let us define DP recursion for Interval valued fuzzy network as,

(3.3) fi−1(Si) = [f(i−1)T (Si), f(i−1)F (Si)].

Then by recursion

(3.4) fi(Si+1) = [f(i−1)T (Si+1), f(i−1)F (Si+1)].

By previous equations we get the equation

fi(Si+1) = [min
Xi

{max[RiT (Xi, Si+1), f(i−1)T (Si)]},

min{max[RiF (Xi, Si+1), f(i−1)F (Si)]}
= [min

Xi

{max{RiT (Xi, Si+1), RiF (Xi, Si+1)], [f(i−1)T (Si), f(i−1)F (Si)}}](3.5)

= [min
Xi

{max[RiF (Xi, Si+1), fi−1(Si)]}],

where fi(Si+1) denotes the optimal value of the objective function corresponding
to the last i stages and Si+1 is the input to the stage i of vague networks (VN)
, f(i−1)(Si) denotes the optimal value of the objective function corresponding to
the last i − 1 stages and Si is the input to the stage i − 1 of vague networks
(VN) , Xi denotes the vector of decision variable at stage i , Ri(Xi, Si+1) is the
return function of the stage i of vague networks (VN).
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Definition 3.1. Shortest path in VN = Shortest path in true limit vague network
(V N)T = Shortest path in false limit vague network (V N)F . Weight of the
shortest path of V N = [WT ,WF ] where WT and WF are weights of the fuzzy
shortest path in (V N)T and (V N)F respectively.

Algorithm.

Step 1: Identify the decision variables and specify objective function to be op-
timized for vague networks.

Step 2: Decompose the network into a number of smaller sub intervals. Iden-
tify the stage variable at each stage and write down the vague transformation
function as a function of the state variable and decision variable at the next
stage.

Step 3: Write down a general recursive relationship for completing the vague
optimal policy of VN by using the interval valued fuzzy dynamic programming
recursion in (3.4) and (3.7).

Step 4: Construct appropriate stage to show the required values of the return
function at each Stage in VN.

Step 5: Determine the overall fuzzy optimal decision or policy and its value
at each stage of an VN.

Step 6: We get the shortest path of IVFN.
Now, At

N be the vague networks, representing the weight of N during time
interval t.

(3.6) At
N = [At

NT , A
T
NF ],

where At
NT is the true limit (RiT ) of the vague network and AT

NF is false limit
(RiF ) of the vague network. Then,

(3.7) shortest path in At
N = shortest path in At

NT = shortest path in At
NF .

Weight of the shortest path of VN =

[Weight of the shortest path in At
NT ,(3.8)

Weight of the shortest path in At
NF ].

We shall illustrate the technique with a simple example and provide the
mathematical verification.

Example 3.1. We consider a network N = (V,E) consisting n nodes (cities)
and m edges (roads) connecting the cities of a country. If we measure the
crowdness that is traffic of the roads of the network for particular time duration.
It is quite tough to measure the crowdness in a duration as it is not fixed, but
varies from time to time. So, appropriate technique to grade the crowdness
deals with an interval and not a fixed point. Hence we use the concept of vague
measures true and false limits to analyse the crowdness range.
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The network N is a vague network in which the weight of each arc (i, i+ 1)
depends upon the crowdness.

Suppose that we want to select the shortest highway route(path) between
two cities. The following route network provices the possible routes between
the starting city at node 1 and the destination city at node 7. The routes
pass through intermediate cities designated by nodes 2 to 6. By using our

representation , At
N = [At

NT , A
t
NF ] Now we apply the algorithm to find a path

between city 1 to city 7 which is minimum among all the paths between city 1
to city 7.

(i) Shortest path for the true limit vague network.

First we decompose the true limit vague network into sub networks or
stages as Now S1 is the state in which the node 1 lies also, S1 has only state
value S1 = 1. State S2 has only three possible values say 2,3 and 4 cor-
responding to stage 1 and so on. Possible alternative paths from one stage
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to the other will be called decision variables by Xi the decision which takes
from Si−1 to Si. The return or the gain which obviously being the func-
tion of decision will be denoted by RiT (Xi, Si+1) . Here RiT (Xi, Si+1) can
be identified with the true limit of the corresponding arc. By equation we have
fiT (Si+1) = minXi{max[RiT (Xi, Si+1), f(i−1)T (Si)]}. Now initially for i = 0,
fi(Si+1) = f0(S1) = f0(1) = 0.

For Stage 1, (i=1), f1(S2)= minX1{max[R1T (X1, S2), f0(S1)]}
= minX1 [R1T (X1, S2)].

Now tabulating the date for f1(S2)
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S1 S2 Xi RiT (X1, S2) f1(S2) fuzzy optimal policy

1 2 1-2 0.2 0.2 1-2
3 1-3 0.4 0.4 1-3
4 1-4 0.3 0.3 1-4

For Stage 2 (i = 2), f2(S3) = minX2{max[R2T (X2, S3), f1(S2)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

2 2-5 0.1 0.2 0.2 2-5

3 5 3-5 0.4 0.4 0.4 3-5
3-6 0.3 0.4 0.4 3-6

4 6 4-5 0.3 0.3 0.3 4-5
4-6 0.4 0.4 0.4 4-6

For last stage 3 (i = 3), f3(S4) = minX3{max[R3L(X3, S4), f2(Sx)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

5 5-7 0.2 0.4 0.4 5-7

6 7 6-7 0.4 0.4 0.4 6-7

Therefore, for the true limit vague network of the shortest path from city 1
to city 7 is 1→ 4→ 6→ 7
Weight of the shortest path WT = (0.2, 0.1, 0.4).

(ii) Shortest path for the false limit fuzzy matrices. Decompose the false
limit fuzzy network into sub network or stage as follows

Similarly we have to find the false limit of the shortest path. HereRiF (Xi, Si+1)
can be defined with the false limit of the corresponding arc.
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By equation we have, fiF (Si+1) = minXi{max[RiF (Xi, Si+1), f(i−1)F (Si)]}.
Now, initially for i = 0, fi(Si+1) = f0(S1) = f0(1) = 0.

For Stage 1(i = 1), f1(S2) = minX1{max[R1F (X1, S2), f0(S1)]}
= minX1 [R1F (X1, S2)].

Now tabulating the data for f1(S2)

S1 S2 Xi RiT (X1, S2) f1(S2) fuzzy optimal policy

1 2 1-2 0.4 0.4 1-2
3 1-3 0.5 0.5 1-3
4 1-4 0.6 0.6 1-4

For stage 2 (i = 2), f2(S3) = minX2{max[R2(X2, S3), f1(S2)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

2 2-5 0.3 0.4 0.4 2-5

3 5 3-5 0.6 0.5 0.6 3-5
3-6 0.5 0.5 0.5 3-6

4 6 4-5 0.7 0.6 0.7 4-5
4-6 0.4 0.6 0.6 4-6

For last stage 3 (i = 3), f2(S4) = minX3{max[R3(X3, S4), f2(S3)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

5 5-7 0.5 0.4 0.5 5-7

6 7 6-7 0.6 0.5 0.6 6-7

Therefore the shortest path from city 1 to city 7 for the false limit vague
network is 1→ 2→ 5→ 7. Weight of the shortest path WF = (0.4, 0.3, 0.6).

Now we conclude by equation. Shortest path in At
N = Shortest path in

At
NT = Shortest path in At

NF = 1 → 2 → 5 → 7, ie.., W = [WT ,WF ] =
[(0.2, 0.1, 0.4), (o.4, 0.3, 0.6)] = ([0.2, 0.4], [0.1, 0.3], [0.4, 0.6]).

Therefore the shortest path of V N is 1→ 2→ 5→ 7

4. Conclusion

In this work we construct two vague networks namely (FN)T and (FN)F with
the associated weight RiT and RiF respectively. Since the vertex sets and edge
sets are same for VN, (FN)T and (FN)F and weight of the each node (i, i+ 1)
in VN is an interval of the form Wi = [WiT ,WiF ] . We conclude that the
shortest path for an VN is the path for which the shortest path in true limit
vague network coincides with the shortest path in false limit vague network and
weight is [WT ,WF ] where WT andWF are the weights of the shortest path for
true and false limit vague networks.
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