ON HYPER BCH-ALGEBRA

M. Sajjad Ali Khan*
Khaista Rahman
Department of Mathematics
Hazara University
Mansehra, KPk
Pakistan
sajjadalimath@yahoo.com
khaista355@yahoo.com

S. Abdullah
Department of Mathematics
Abdul Wali Khan University
Mardan, KPk
Pakistan
saleemabdullah81@yahoo.com

Fawad Hussain
Department of Mathematics
Abbottabad University of Science and Technology
KPk, Pakistan
fawadhussain998@hotmail.com

Abstract. In this paper we initiate the concept of a hyper BCH-algebra which is a
generalization of a BCH-algebra, and hyper BCK/BCI algebras and investigate some
related properties. Moreover we introduce a hyper BCH-ideal, weak hyper BCH-ideal
and strong hyper BCH-ideal in hyper BCH-algebras, and give a few relations among
these hyper BCH-ideals. Finally we define homomorphism of hyper BCH-algebras.

Keywords: hyper BCH-algebra, hyper BCH-ideals, week hyper BCH-ideals, Strong
hyper BCH-ideals, homomorphism.

1. Introduction

In (1966) the notion of BCK-algebra was first introduces by Y. Imai and K.
Iseki [6]. The notion of BCK-algebra is a generalization of properties of the
Set-difference. In (1975), the concept of ideal in BCK-algebra was first initiated
by K. Iseki [7]. A remarkable feature of K. Iseki definition is that, its for-
mulation is free from those of ring theoretical and lattice theoretical concepts.
In same year K. Iseki initiated the concept of BCI-algebra [6, 8] which is the
generalization of BCK-algebra. These algebras have been extensively studied

* Corresponding author
since their introduction. The concept of ideals has played an important role in the study of the theory of BCI-algebras, [9]. In a BCI-algebra X, an ideal I need not be subalgebra of X. If the ideal I is also a subalgebra of X, then it has better algebraic properties. In (1983), Q. P. Hu and X. Li, introduced the concept of BCH-algebra [3, 4] and prove some motivating results. In (1990) and (1991) certain other properties have been studied by W. A. Dudek and J. Thomys [2] and M. A. Chaudhry, [1], respectively. In [1], the author also defines ideals in BCH-algebras. Hyperstructure represent a natural extension of classical algebraic structures and they were introduced by the French mathematician F. Marty in (1934), [12]. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. Hyperstructures have many applications to several sectors of both pure and applied sciences. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure; the composition of two elements is a set. In (2000) Y. B. Jun et al applied the hyperoperation to BCK-algebras and introduced the concept of a hyper BCK-algebra [12] which is a generalization of a BCK-algebra, and investigated some related properties. Ideal theory of hyper BCK-algebra studied in [11]. Further in (2006), X.L. Xin initiated the concept of hyper BCI-algebras [13], which is basically a generalization of hyper BCK-algebras, and he proved that every hyper BCK-algebra is a hyper BCI-algebra. It should be pointed out that the research of hyper BCI-algebras seems to have been focused on the ideal theory. The author introduced the concepts of hyper BCI-ideals, strong hyper BCI-ideals and reflexive hyper BCI-ideals in hyper BCI-algebras, and he gave the relations among these hyper BCI-ideals. In this paper we initiated the notion of hyper BCH-algebra which is a generalization of BCH-algebra and hyper BCI/BCK-algebras and studied some basic properties. Moreover we introduce a hyper BCH-ideal, weak hyper BCH-ideal and strong hyper BCH-ideal in hyper BCH-algebras, and give some relations among these hyper BCH-ideals. We define homomorphism in hyper BCH-algebra and then we investigate some related results.

2. Preliminaries

Let H be a non-empty set and "\circ" a function from $H \times H \rightarrow P(H) \setminus \{\emptyset\}$, where $P(H)$ denotes the power set of H. For any two non-empty subsets A and B of H, denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b$. We will use $x \circ y$ instead of $x \circ \{y\}$, $\{x\} \circ y$ or $\{x\} \circ \{y\}$. Also we define $x \ll y$ by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by for all $a \in A$, there exist $b \in B$ such that $a \ll b$.

Definition 2.1 ([10]). A non-empty set H endowed with a constant 0 and a hyperoperation is called hyper BCK-algebra if it satisfies the following axioms:

- **HK1** $(x \circ y) \circ (y \circ z) \ll x \circ y$,
- **HK2** $(x \circ y) \circ z = (x \circ z) \circ y$,
- **HK3** $x \circ H \ll \{x\}$,
- **HK4** $x \ll y$ and $y \ll x \Rightarrow x = y$.
for all $x, y, z \in H$.

Definition 2.2 ([13]). A non-empty set H endowed with a constant 0 and a hyperoperation is called hyper BCI-algebra if it satisfies the following axioms:
- $H1_1$ $(x \circ y) \circ (y \circ z) \ll x \circ y$,
- $H1_2$ $(x \circ y) \circ z = (x \circ z) \circ y$,
- $H1_3$ $x \circ H \ll \{x\}$,
- $H1_4$ $x \ll y$ and $y \ll x \Rightarrow x = y$.

for all $x, y, z \in H$.

Definition 2.3 ([11]). Let I be a nonempty subset of a hyper BCK-algebra H and $0 \in I$. Then I is said to be a hyper BCK-ideal of H if $x \circ y \ll I$ and $y \in I$ implies $x \in I$ for all $x, y \in H$, reflexive if $x \circ x \subseteq I$ for all $x \in H$, strong hyper BCK-ideal of H if $(x \circ y) \cap I = \emptyset$ and $y \in I$ implies $x \in I$ for all $x, y \in H$, hyper subalgebra of H if $x \circ y \subseteq I$ for all $x, y \in I$.

Proposition 2.4 ([11]). Let H be hyper BCK-algebra. Then,
- (i) any strong hyper BCK-ideal of H is a hyper BCK-ideal of H.
- (ii) if I is a hyper BCK-ideal of H and A is a nonempty subset of H. Then $A \ll I$ implies $A \subseteq I$.
- (iii) if I is a reflexive hyper BCK-ideal of H and $(x \circ y) \cap I = \emptyset$, then $x \circ y \subseteq I$ for all $x, y \in H$.
- (iv) H is a BCK-algebra if and only if $H = \{x \in H : x \circ x = \{0\}\}$.

3. Hyper BCH-algebra

In this section we introduce a notion of hyper BCH-algebra and studied some of its basic properties.

Definition 3.1. Let H be a on-empty set with a constant "0" and "\circ" be a hyper operation defined on H. Then $(H, \circ, 0)$ is said to be a hyper BCH-algebra if the following axioms are satisfied:
- $HCH1$ $x \ll x$,
- $HCH2$ $(x \circ y) \circ z = (x \circ z) \circ y$,
- $HCH3$ $x \ll y$ and $y \ll x \Rightarrow x = y$

for all $x, y, z \in H$: where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by for all $a \in A$, there exists $b \in B$ such that $a \ll b$. In such case, "\ll" is called a hyper order in H.

Example 3.2. Let $H = \{0, 1, 2\}$ and "\circ" be a hyperoperation defined on H in the following table:

<table>
<thead>
<tr>
<th>\circ</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${0}$</td>
<td>${0}$</td>
<td>${1}$</td>
</tr>
<tr>
<td>1</td>
<td>${1}$</td>
<td>${0, 1}$</td>
<td>${0, 1}$</td>
</tr>
<tr>
<td>2</td>
<td>${2}$</td>
<td>${0, 2}$</td>
<td>${0, 1, 2}$</td>
</tr>
</tbody>
</table>

Then (H, \circ) is a hyper BCH-algebra.
Example 3.3. Let \(H = \{0, 1, 2, 3\} \) and "\(\circ \)" be a hyperoperation defined on \(H \) in the following table:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{2}</td>
<td>{3}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0, 1}</td>
<td>{0, 3}</td>
<td>{0, 3}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{0, 2}</td>
<td>{0, 2}</td>
<td>{0, 2}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{0, 2}</td>
<td>{0, 2}</td>
<td>{0, 2}</td>
</tr>
</tbody>
</table>

Then \((H, \circ)\) is a hyper BCH-algebra.

Proposition 3.4. Any hyper BCK/BCI- algebra is a hyper BCH-algebra.

Proposition 3.5. Let \(H \) be a hyper BCH-algebra, then for all \(x, y, z \in H \) and \(A \subseteq H \); the following holds.

1. \(x \circ y \ll z \iff x \circ z \ll y \)
2. \(x \circ y \ll x \)
3. \(0 \ll x \)
4. \(t \in 0 \circ 0 \iff t = 0 \)
5. \(x \in x \circ 0 \)
6. \(A \circ y \ll A \)
7. \(x \circ A \ll y \iff x \circ y \ll A \)
8. \(A \ll A \circ 0 \)
9. \(x \circ x = \{x\} \iff x = 0 \).

Proof. We only prove 1, 2, 5, 6, 7 and 9.

1) Let \(x, y, z \in H, \) be such that \(x \circ y \ll z. \) Then there exists \(t \in x \circ y \) such that \(t \ll z. \) Thus \(0 \in t \circ z \subseteq (x \circ y) \circ z = (x \circ z) \circ y \) and hence there exists \(w \in x \circ z \) such that \(0 \in w \circ y \) that is \(w \ll y. \) Therefore \(x \circ z \ll y. \)

Conversely, let \(x, y, z \in H \) be such that \(x \circ z \ll y. \) Then there exists \(w \in x \circ z \) such that \(w \ll y. \) Thus \(0 \in w \circ y \subseteq (x \circ z) \circ y = (x \circ y) \circ z \) and hence there exists \(t \in x \circ y \) such that \(0 \in t \circ z \) that is \(t \ll z. \) Therefore \(x \circ y \ll z. \)

2) Let \(0 \in 0 \circ 0 \subseteq (x \circ x) \circ y = (x \circ y) \circ x. \) Then there exists \(t \in x \circ y \) such that \(0 \in t \circ x \Rightarrow t \ll t \Rightarrow x \circ y \ll x. \)

5) By (2) above we have \(x \circ 0 \ll x, \) so there exists \(t \in x \circ 0 \) such that \(t \ll x, \) since \(t \in x \circ 0, \) then \(x \circ 0 \ll t \) and so by (1) \(x \circ t \ll 0. \) Thus there is \(r \in x \circ t \) such that \(r \ll 0, \) so by (3) and \((HCH3)\) \(r = 0. \) so \(0 \in x \circ t, \) that is \(x \ll t \) since \(x \ll t \) and \(t \ll x; \) then by \((HCH3)\) \(x = t. \) Therefore \(x \in x \circ 0. \)

6) Let \(a \in A \) be any element, then by (2) \(a \circ y \ll a \) hence there is \(b \in a \circ y \subseteq A \circ y \) such that \(b \ll a, \) that is \(A \circ y \ll A. \)

7) Since \(x \circ A \ll y \) which implies that there exists \(a \in A \) such that \(x \circ a \ll y. \) Hence by (1) \(x \circ a \ll a \ll A \) implies that \(x \circ y \ll A. \) The proof of the converse is easy to prove.

9) \(\{x\} = x \circ x \subseteq x \circ (x \circ 0). \) Hence by (5) \(x \ll 0; \) thus \(x = 0. \) The converse follows from (4). \(\square \)
Proposition 3.6. In any hyper BCH-algebra \(H \), \(x \circ 0 = \{ x \} \) for all \(x \in H \).

Proof. We have from above proposition (5) \(x \in x \circ 0 \), now let \(t \in x \circ 0 \). Since \(x \circ 0 \ll \{ x \} \), we have \(t \ll x \). So, \(0 \in t \circ t \subseteq (x \circ 0) \circ t = (x \circ t) \circ 0 \). Then there exists \(a \in x \circ t \) such that \(0 \in a \circ 0 \). Thus \(a \ll 0 \). Then \(a = 0 \); Thus \(x \ll t \). We have that \(x = t \). Therefore, \(x \circ 0 = \{ x \} \). \(\square \)

It is known that every hyper BCI-algebra is a hyper BCH-algebra, but the following example show that the converse is not true.

Example 3.7. Let \(H = \{0, 1, 2, 3\} \) and \(\circ \) be a hyperoperation define on \(H \) in the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{1}</td>
<td>{1}</td>
<td>{1}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0}</td>
<td>{3}</td>
<td>{3}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{3}</td>
<td>{0}</td>
<td>{2}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
</tbody>
</table>

Then \((H, \circ) \) is a hyper BCH-algebra, but it is not a hyper BCI-algebra. Because,

\[
(2 \circ 3) \circ (2 \circ 1) = \{2\} \circ \{3\} = \{2, 3\}
\]

and

\[
(1 \circ 3) = \{3\}, (2 \circ 3) \circ (2 \circ 1) \neq (1 \circ 3)
\]

Example 3.8. Let \(H = \{0, 1, 2, 3, 4\} \) and \(\circ \) be a hyperoperation defined of \(H \) in the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0}</td>
<td>{2}</td>
<td>{1}</td>
<td>{0}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{2}</td>
<td>{0}</td>
<td>{2}</td>
<td>{0}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{3}</td>
<td>{3}</td>
<td>{0}</td>
<td>{4}</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
<td>{4}</td>
<td>{4}</td>
<td>{4}</td>
<td>{0}</td>
</tr>
</tbody>
</table>

Then \((H, \circ) \) is a hyper BCH-algebra, but it is not a hyper BCI-algebra. Because,

\[
(1 \circ 3) \circ (1 \circ 2) = \{1\} \circ \{2\} = \{1, 2\}
\]

and \((2 \circ 3) = \{2\} \) that is \(\{1, 2\} \not\ll \{2\} \).

Definition 3.9. A hyper BCH-algebra \(H \) is called proper if it is not a hyper BCI-algebra.

In above examples the hyper BCH-algebras are proper hyper BCH-algebras.

Definition 3.10. Let \((H, \circ) \) be a hyper BCH-algebra, and \(X \) a non-empty subset of \(H \) containing \(\{0\} \). Then \(X \) is called hypersubalgebra of \(H \) if \(X \) is a hyper BCH-algebra under the same hyperoperation \(\circ \) on \(H \).
Example 3.11. From the above Example 3.8 if we let $X = \{0, 1, 2\}$, then X is a hypersubalgebra of H as we in the following table:

<table>
<thead>
<tr>
<th>\circ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0,4}</td>
<td>{0,5}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0}</td>
<td>{0}</td>
<td>{1}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{0,2}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{0,3}</td>
<td>{0,3}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
<td>{0,4}</td>
<td>{0,4}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>5</td>
<td>{5}</td>
<td>{0,5}</td>
<td>{0,5}</td>
<td>{0,5}</td>
<td>{0,5}</td>
<td>{0}</td>
</tr>
</tbody>
</table>

Also, let $X = \{0, 1, 3\}$. Then X is a hypersubalgebra of H.

Theorem 3.12. Let X be a non-empty subset of a hyper BCH-algebra (H, \circ). The X is a hypersubalgebra of H if and only if $x \circ y \subseteq X$ for all $x, y \in X$.

Proof. Straightforward.

Theorem 3.13. Let (H, \circ) be a hyper BCH-algebra and $X(H) = \{x \in H \mid 0 \circ x \ll \{0\}\}$. Then $X(H)$ is a hypersubalgebra of H.

Proof. Let $x, y \in X(H)$, then by definition $a = 0 \circ a \ll \{0\}$ and $b = 0 \circ b \ll \{0\}$. Now

$$a \circ b = (0 \circ a) \circ (0 \circ b) \ll \{0\} \circ \{0\} = \{0\}$$

Hence, $a \circ b \ll \{0\}$. Which implies that $a \circ b \ll X(H)$. Hence $X(H)$ is a hypersubalgebra of H. The set $X(H)$ is called the hyper BCA-part of the hyper BCH-algebra H.

4. Hyper BCH-Ideals

Definition 4.1. Let (H, \circ) be a hyper BCH-algebra and I a subset of H. Then I is called a hyper BCH-ideal of H if:

i) $0 \in I$

ii) $x \circ y \ll I$ and $y \in I \Rightarrow x \in I$ for all $x, y \in I$.

Example 4.2. Let $H = \{0, 1, 2, 3, 4, 5\}$ and "\circ" be a hyperoperation defined on H in the following table:

<table>
<thead>
<tr>
<th>\circ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>5</td>
<td>{5}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
</tbody>
</table>

Then (H, \circ) is a hyper BCH-algebra. Let $I = \{0, 1, 2, 3\}$ is an ideal of H.

Example 4.3. Let \(H = \{0, 1, 2, 3, 4\} \) and "\(\circ \)" be a hyperoperation defined on \(H \) in the following table:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>{0, 3}</td>
<td>{0, 4}</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>{0}</td>
<td>{0, 1}</td>
<td>{0, 1}</td>
<td>{0, 4}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{0, 2}</td>
<td>{0}</td>
<td>{0, 2}</td>
<td>{0, 3}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
<td>{0, 3}</td>
<td>{0, 3}</td>
<td>{0}</td>
<td>{0, 2}</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
<td>{0, 4}</td>
<td>{0, 4}</td>
<td>{0, 1}</td>
<td>{0}</td>
</tr>
</tbody>
</table>

Then \((H, \circ)\) is a hyper BCH-algebra.

Let \(I_1 = \{0, 1, 2\} \), then \(I_1 \) is a hyper BCH-ideal of \(H \).

Let \(I_2 = \{0, 1, 3\} \), then \(I_2 \) is a hyper BCH-ideal of \(H \).

Let \(I_3 = \{0, 2, 3\} \), then \(I_3 \) is not a hyper BCH-ideal of \(H \). Because \((3 \circ 4) = \{0, 2\} \not\subseteq I_3 \) and \(4 \in I_3 \) but \(3 \not\in I_3 \).

Theorem 4.4. Let \((H, \circ)\) be a hyper BCH-algebra and \(\{I_\lambda | \lambda \in \Lambda\} \) a family of hyper BCH-ideals of \(H \), then \(\bigcap_{\lambda \in \Lambda} I_\lambda \) is a hyper BCH-ideal of \(H \).

Proof. For any \(\lambda \in \Lambda \); let \(I_\lambda \) be a hyper BCH-ideal of a hyper BCH-algebra \(H \), then clearly \(0 \in \bigcap_{\lambda \in \Lambda} I_\lambda \). Now let \(x, y \in H \) be such that \(x \circ y \ll I_\lambda \) and \(y \in I_\lambda \) for every \(\lambda \in \Lambda \). Since each \(I_\lambda \) for each \(\lambda \in \Lambda \) is a hyper BCH-ideal of \(H \). Therefore it implies that \(x \circ y \ll I_\lambda \) for every \(\lambda \in \Lambda \) and \(y \in I_\lambda \Rightarrow x \in I_\lambda \). Hence \(x \circ y \ll \bigcap_{\lambda \in \Lambda} I_\lambda \) and \(y \in \bigcap_{\lambda \in \Lambda} I_\lambda \Rightarrow x \in \bigcap_{\lambda \in \Lambda} I_\lambda \). Thus \(\bigcap_{\lambda \in \Lambda} I_\lambda \) is a hyper BCH-ideal of \(H \).

Remark 4.5. The union of two hyper BCH-ideals need not be hyper BCH-ideals. For this we have the following example.

Example 4.6. Let \(H = \{0, 1, 2, 3, 4\} \) be a hyper BCH-algebra define in Example 4.3. Let \(I_1 = \{0, 1, 3\} \) and \(I_2 = \{0, 1, 4\} \) be hyper BCH-ideals of \(H \). But, \((3 \circ 4) = \{0, 2\} \not\subseteq I_1 \cup I_2 \), which show that union of two hyper BCH-ideals is not a hyper BCH-ideal.

Theorem 4.7. Every hyper BCH-ideal of a hyper BCH-algebra is a hypersubalgebra.

Proof. Let \((H, \circ)\) be a hyper BCH-algebra and \(I \) a hyper BCH-ideal of \(H \). Let \(x, y \in I \). Then since \(I \) is a hyper BCH-ideal of \(H \), and so by definition it implies that, \(x \circ y \ll I \); which shows that \(I \) is a hypersubalgebra of \(H \).

The convers of the above theorem is not true, that is a hypersubalgebra is not a hyper BCH-ideal. From the above example if we consider \(I_3 = \{0, 2, 4\} \), then is a hypersubalgebra of \(H \) but not a hyper BCH-ideal of \(H \).

Proposition 4.8. Let \(I \) be a hyper BCH-ideal and \(A \) a subset of a hyper BCH-algebra \(H \) such that \(A \ll I \). Then \(A \subseteq I \).
Let I be a hyper BCH-ideal of H and A a subset of H. Let $A \ll I$ implies there exists $a \in A$ and $x \in I$ such that $a \ll x \Rightarrow 0 \in a \circ x \ll I$. Since I is a hyper BCH-ideal of H it implies that $a \in I$ and so $A \subseteq I$.

Definition 4.9. Let I be a non-empty subset of a hyper BCH-algebra H. Then I is said to be a weak hyper BCH-ideal of H, if for all $x, y \in H$

1. $0 \in I$
2. $x \circ y \subseteq I$ and $y \in I \Rightarrow x \in I$.

Theorem 4.10. The intersection of any family of weak hyper BCH-ideal of a hyper BCH-algebra is a weak hyper BCH-ideal.

Proof. For any $\lambda \in \Lambda$; let I_λ be a weak hyper BCH-ideal of a hyper BCH-algebra H. Then clearly $0 \in \bigcap_{\lambda \in \Lambda} I_\lambda$. Now let $x, y \in H$ be such that $x \circ y \subseteq I_\lambda$ and $y \in I_\lambda$ for every $\lambda \in \Lambda$. Since each I_λ for every $\lambda \in \Lambda$ is a weak hyper BCH-ideal of H. Therefore it implies that $x \circ y \subseteq I_\lambda$ for every $\lambda \in \Lambda$ and $y \in I_\lambda \Rightarrow x \in I_\lambda$ for every $\lambda \in \Lambda$. Hence $x \circ y \subseteq \bigcap_{\lambda \in \Lambda} I_\lambda$ and $y \in \bigcap_{\lambda \in \Lambda} I_\lambda \Rightarrow x \in \bigcap_{\lambda \in \Lambda} I_\lambda$. Thus $\bigcap_{\lambda \in \Lambda} I_\lambda$ is a weak hyper BCH-ideal of H.

Proposition 4.11. Every hyper BCH-ideal in hyper BCH-algebra H is a weak hyper BCH-ideal.

Proof. Let I be a hyper BCH-ideal of a hyper BCH-algebra H. Let $x \circ y \subseteq I$ and $y \in I$ for some $x, y \in H$. Since $x \circ y \subseteq I$ which implies that $x \circ y \ll I$. Now since I is a hyper BCH-ideal of H, so it implies that $x \in I$. Hence I is a weak hyper BCH-ideal of H.

Definition 4.12. Let I be a non-empty subset of a hyper BCH-algebra H. Then I is said to be a strong hyper BCH-ideal of H if for all $x, y \in H$

1. $0 \in I$
2. $(x \circ y) \cap I \neq \emptyset$ and $y \in I \Rightarrow x \in I$.

Theorem 4.13. The intersection of any family of strong hyper BCH-ideal of a hyper BCH-algebra is a strong hyper BCH-ideal.

Proof. For any $\lambda \in \Lambda$; let I_λ be a strong hyper BCH-ideal of a hyper BCH-algebra H. Then clearly $0 \in \bigcap_{\lambda \in \Lambda} I_\lambda$. Now let $x, y \in H$ be such that $(x \circ y) \cap \bigcap_{\lambda \in \Lambda} I_\lambda \neq \emptyset$ and $y \in \bigcap_{\lambda \in \Lambda} I_\lambda$. Since each I_λ for every $\lambda \in \Lambda$ is a strong hyper BCH-ideal of H. Therefore it implies that $(x \circ y) \cap I_\lambda \neq \emptyset$ for every $\lambda \in \Lambda$ and $y \in I_\lambda \Rightarrow x \in I_\lambda$. Hence $(x \circ y) \cap \bigcap_{\lambda \in \Lambda} I_\lambda \neq \emptyset$ and $y \in \bigcap_{\lambda \in \Lambda} I_\lambda \Rightarrow x \in \bigcap_{\lambda \in \Lambda} I_\lambda$. Thus $\bigcap_{\lambda \in \Lambda} I_\lambda$ is a strong hyper BCH-ideal of H.

Proposition 4.14. Every strong hyper BCH-ideal in hyper BCH-algebra H is a hyper BCH-ideal.

Proof. Let I be a strong hyper BCH-ideal of H. Let $x, y \in H$ be such that $x \circ y \ll I$ and $y \in I$. Then for $a \in x \circ y$ there exists $b \in I$ such that $a \ll b \Rightarrow 0 \in a \circ b$. It follows that $(a \circ b) \cap I \neq \emptyset \Rightarrow a \in I$. Thus $x \circ y \subseteq I$ and so $(x \circ y) \cap I \neq \emptyset$. Since I is a strong hyper BCH-ideal of H. It follows that $x \in I$. Hence I is a hyper BCH-ideal of H. \square
5. Homomorphisms of hyper BCH-algebras

Definition 5.1. Let H_1 and H_2 be two hyper BCH-algebras. A mapping $\psi : H_1 \to H_2$ is called a homomorphism if

(i) $\psi(0) = 0$

(ii) $\psi(x \circ y) = \psi(x) \circ \psi(y)$; for all $x, y \in H_1$.

If ψ is $1 - 1$ (or onto) we say that ψ is a monomorphism (or epimorphism). And if ψ is both $1 - 1$ and onto, we say that ψ is an isomorphism.

Theorem 5.2. Let $\psi : H_1 \to H_2$ be a homomorphism of hyper BCH-algebras. Then

(i) If S is a hyper BCH-subalgebra of H_1, then $\psi(S)$ is a hyper BCH-subalgebra of H_2.

(ii) $\psi(H_1)$ is a hyper BCH-subalgebra of H_2.

(iii) If S is a hyper BCH-subalgebra of H_2, then $\psi^{-1}(S)$ is a hyper BCH-subalgebra of H_1.

(iv) If I is a (weak) hyper BCH-ideal of H_2, then $\psi^{-1}(I)$ is a (weak) hyper BCH-ideal of H_1.

(v) $\ker\psi = \{x \in H_1 | \psi(x) = 0\}$ is a hyper BCH-ideal and hence a weak hyper BCH-ideal of H_1.

(vi) If ψ is onto and I is a hyper BCH-ideal of H_1 which contains $\ker\psi$, then $\psi(I)$ is a hyper BCH-ideal of H_2.

Proof. (i) Let $x, y \in \psi(S)$. Then there exist $a, b \in S$ such that $\psi(a) = x$ and $\psi(b) = y$. It follows from Theorem 3.12 that $x \circ y = \psi(a) \circ \psi(b) = \psi(a \circ b) \subseteq \psi(S)$ so that $\psi(S)$ is a hyper BCH-subalgebra of H_2.

(ii) Proof of this is same as (i).

(iii) Since $0 \in S$, we have $\psi^{-1}(0) \subseteq \psi^{-1}(S)$. Since $\psi(0) = 0$, so $0 \in \psi^{-1}(0) \subseteq \psi^{-1}(S)$. Therefore $\psi^{-1}(S)$ is non-empty. Now let $x, y \in \psi^{-1}(S)$. Then $\psi^{-1}(x), \psi^{-1}(y) \in S$. Thus $\psi(x \circ y) = \psi(x) \circ \psi(y) \subseteq S$ and so $x \circ y \subseteq \psi^{-1}(S)$, which implies that $\psi^{-1}(S)$ is a hyper BCH-subalgebra of H_1.

(iv) Let I be a weak hyper BCH-ideal of H_2. Clearly $0 \in \psi^{-1}(I)$. Let $x, y \in H_1$ such that $x \circ y \in \psi^{-1}(I)$ and $y \in \psi^{-1}(I)$ and $\psi(y) \in I$. Since I is a weak hyper BCH-ideal, it follows from (Id2) that $\psi(x) \in I$, i.e., $x \in \psi^{-1}(I)$. Hence $\psi^{-1}(I)$ is a weak hyper BCH-ideal of H_1. Now let I be a hyper BCH-ideal of H_2. Obviously $0 \in \psi^{-1}(I)$. Let $x, y \in H_1$ such that $x \circ y \in \psi^{-1}(I)$ and $y \in \psi^{-1}(I)$. Then there exist $t \in x \circ y$ and $z \in \psi^{-1}(I)$ such that $t \ll z$, that is $0 \in t \circ z$. Since $\psi(z) \in I$ and $0 \in t \circ z \subseteq (x \circ y) \circ z$, it follows that $0 = \psi(0) = \psi((x \circ y) \circ z) = \psi(x \circ y) \circ \psi(z) \subseteq \psi(x \circ y) \circ I$ so that $\psi(x) \circ \psi(y) = \psi(x \circ y) \ll I$. As $\psi(y) \in I$ and I is hyper BCH-ideal, by using (Id3) we have $\psi(x) \in I$, that is $x \in \psi^{-1}(I)$. Hence $\psi^{-1}(I)$ is a hyper BCH-ideal of H_1.

(v) First we show that $\{0\} \subseteq H_2$ is a hyper BCH-ideal. To do this, let $x, y \in H_2$ be such that $x \circ y \ll \{0\}$ and $y \in \{0\}$. Then $y = 0$ and so $x \circ 0 = x \circ y \ll \{0\}$. Therefore there exists $t \in x \circ 0$ such that $t \ll 0$. Thus $t = 0$, and consequently
0 ∈ x ⊙ 0, that is x ≪ 0, which implies that x = 0. This shows that \{0\} is a hyper BCH-ideal of H₂. Now by (iv), Kerf = ψ⁻¹(\{0\}) is a hyper BCH-ideal of H₁.

(vii) Since 0 ∈ I, we have 0 = ψ(0) ∈ ψ(I). Let x and y be arbitrary elements in H₂ such that x ⊙ y ≪ f(I) and y ∈ ψ(I). Since y ∈ ψ(I) and ψ is onto, there are y₁ ∈ I and x₁ ∈ H₁ such that y = ψ(y₁) and x = ψ(x₁). Thus ψ(x₁ ⊙ y₁) = ψ(x₁) ⊙ ψ(y₁) = x ⊙ ψ(y₁) ≪ ψ(I). Therefore there are a ∈ x₁ ⊙ y₁ and b ∈ I such that ψ(a) ≪ ψ(b). So 0 ∈ ψ(a) ⊙ ψ(b) = ψ(a ⊙ b), which implies that ψ(c) = 0 for some c ∈ a ⊙ b. It follows that c ∈ Kerψ ⊆ I so that a ⊙ b ≪ I. Now since I is a hyper BCH-ideal of H₁ and b ∈ I, we get a ∈ I. Thus x₁ ⊙ y₁ ≪ I, which implies that x₁ ∈ I. Thus x = ψ(x₁) ∈ ψ(I), and so ψ(I) is a hyper BCH-ideal of H₂.

\[\text{Theorem 5.3. Let } \psi : H₁ → H₂ \text{ be an epimorphism of hyper BCH-algebras. Then there is a one to one correspondence between the set of all hyper BCH-ideals of } H₁ \text{ containing Ker}ψ \text{ and the set of all hyper BCH-ideals of } H₂. \]

\[\text{Theorem 5.4. Let } \psi : H₁ → H₂ \text{ and } \pi : H₁ → H₃ \text{ be two homomorphisms of hyper BCH-algebras such that } \psi \text{ is onto and Ker}ψ \subseteq Kerπ. \text{ Then there exists a homomorphism } \tau : H₂ → H₃ \text{ such that } \tau ∘ ψ = \pi. \]

\[\text{Proof. Let } y ∈ H₂ \text{ be arbitrary. Since } ψ \text{ is onto, there exists } x ∈ H₁ \text{ such that } y = ψ(x). \text{ Define } \tau : H₂ → H₃ \text{ by } \tau(y) = \pi(x), \text{ for all } y ∈ H₂. \text{ Now we show that } \tau \text{ is well-defined. Let } y₁, y₂ ∈ H₂ \text{ and } y₁ = y₂. \text{ Since } ψ \text{ is onto, there are } x₁, x₂ ∈ H₁ \text{ such that } y₁ = ψ(x₁) \text{ and } y₂ = ψ(x₂). \text{ Therefore } ψ(x₁) = ψ(x₂) \text{ and thus } 0 ∈ ψ(x₁) ⊙ ψ(x₂) = ψ(x₁ ⊙ x₂). \text{ It follows that there exists } t ∈ x₁ ⊙ x₂ \text{ such that } \tau(t) = 0. \text{ Thus } t ∈ Kerψ \subseteq Kerπ \text{ and so } \pi(t) = 0. \text{ Since } t ∈ x₁ ⊙ x₂ \text{ we conclude that } 0 = \pi(t) = \pi(x₁ ⊙ x₂) = \pi(x₁) ⊙ \pi(x₂) \text{ which implies that } \pi(x₁) ≪ \pi(x₂). \text{ On the other hand since } 0 ∈ ψ(x₂) ⊙ ψ(x₁) = ψ(x₂ ⊙ x₁), \text{ similarly we can conclude that } 0 ∈ \pi(x₂) ⊙ \pi(x₁), \text{ that is } \pi(x₂) ≪ \pi(x₁). \text{ Thus } \pi(x₁) = \pi(x₂), \text{ which shows that } \tau \text{ is well-defined. Clearly } \tau ∘ ψ = \pi. \text{ Finally we show that } \tau \text{ is a homomorphism. Let } y₁, y₂ ∈ H₂ \text{ be arbitrary. Since } ψ \text{ is onto there are } x₁, x₂ ∈ H₁ \text{ such that } y₁ = ψ(x₁) \text{ and } y₂ = ψ(x₂). \text{ Then } \]

\[\tau(y₁ ⊙ y₂) = \tau(ψ(x₁) ⊙ ψ(x₂)) = \tau(ψ(x₁ ⊙ x₂)) = (τ ∘ ψ)(x₁ ⊙ x₂) = π(x₁ ⊙ x₂) = π(x₁) ⊙ π(x₂) = (τ ∘ ψ)(x₁) ∘ (τ ∘ ψ)(x₂) = τ(ψ(x₁)) ∘ τ(ψ(x₂)) = τ(y₁) ∘ τ(y₂) \]

Moreover since ψ(0) = 0 and π(0) = 0, we conclude that \(\tau(0) = τ(ψ(0)) = (τ ∘ ψ)(0) = π(0) = 0. \) Thus \(\tau \) is a homomorphism. \[\square \]
Theorem 5.5. Let \(\psi : H_1 \rightarrow H_2 \) be a homomorphism of hyper BCH-algebras. If \(I \) is a strong hyper BCH-ideal of \(H_2 \), then \(\psi^{-1}(I) \) is a strong hyper BCH-ideal of \(H_1 \).

Proof. Suppose \(I \) is a strong hyper BCH-ideal, then clearly \(0 \in \psi^{-1}(I) \). Let \(a, b \in H_1 \) be such that \((a \circ b) \cap \psi^{-1}(I) \neq \phi \) and \(b \in \psi^{-1}(I) \). Then we have \(\psi((a \circ b) \cap \psi^{-1}(I)) \subseteq \psi((a \circ b) \cap \psi^{-1}(I)) \subseteq \psi((a \circ b) \cap I) \) and so \((\psi(a) \circ \psi(b)) \cap I \neq \phi \) and \(\psi(a) \in \psi^{-1}(I) \). Since \(I \) is a strong hyper BCH-ideal of \(H_2 \), we have \(\psi(a) \in I \) and so \(x \in \psi^{-1}(I) \). Therefore \(\psi^{-1}(I) \) is a strong hyper BCH-ideal of \(H_1 \).

\[\square \]

Theorem 5.6. Let \(\psi : H_1 \rightarrow H_2 \) be a homomorphism of hyper BCH-algebras. Then \(k \ker \psi = \{ x \in H_1 \mid \psi(x) = 0 \} \) is a strong hyper BCH-ideal of \(H_1 \).

Proof. To prove this first we show that \(\{ 0 \} \) is a strong hyper BCH-ideal of \(H_2 \). For this, let \(a, b \in H_1 \) be such that \((a \circ b) \cap \{ 0 \} \neq \phi \) and \(b \in \{ 0 \} \). Then \(b = 0 \) and so \(0 \in a \circ 0 \) since \((a \circ 0) \cap \{ 0 \} \neq \phi \). Thus we have \(a \lessdot 0 \). By (HCH3) and 3.5, we get \(a = 0 = 0 \in \{ 0 \} \). This shows that \(\{ 0 \} \) is a strong hyper BCH-ideal of \(H_2 \).

It follows from Theorem 5.5 that \(\ker \psi = \psi^{-1}(\{ 0 \}) \) is a strong hyper BCH-ideal of \(H_1 \).

\[\square \]

Theorem 5.7. Let \(\psi : H_1 \rightarrow H_2 \) be a homomorphism of hyper K-algebras. If \(\psi \) is onto and \(I \) is a strong hyper BCH-ideal of \(H_1 \) which contains \(k \ker \psi \), then \(\psi(I) \) is a strong hyper BCH-ideal of \(H_2 \).

Proof. Suppose \(I \) is a strong hyper BCH-ideal of \(H_1 \). Clearly \(0 \in \psi(I) \). Let \(x, y \in H_2 \) be such that \((x \circ y) \cap \psi(I) \neq \phi \) and \(y \in \psi(I) \). Since \(y \in \psi(I) \) and \(\psi \) is onto, there are \(y_1 \in I \) and \(x_1 \in H_1 \) such that \(y = \psi(y_1) \) and \(x = \psi(x_1) \).

Thus \(\phi \neq (x \circ y) \cap \psi(I) = \psi(x_1 \circ y_1) \cap \psi(I) \) and so there exists \(a \in H_2 \) such that \(a \in \psi(x_1 \circ y_1) \) and \(a \in \psi(I) \). It follows that there are \(a_1 \in x_1 \circ y_1 \) and \(b_1 \in I \) such that \(a = \psi(a_1) \) and \(a = \psi(b_1) \) so that \(0 \in a \circ a = \psi(a_1 \circ b_1) = \psi(a_1 \circ b_1) \) which implies that \(\psi(c) = 0 \) for some \(c \in a_1 \circ b_1 \). Hence \(c \in \ker \psi \subseteq I \) and so \((a_1 \circ b_1) \cap I \neq \phi \).

Now since \(I \) is a strong hyper BCH-ideal of \(H_1 \) and \(b_1 \in I \), we get \(a_1 \in I \). Thus \((x_1 \circ y_1) \cap I \neq \phi \), which implies that \(x_1 \in I \). Therefore \(x = \psi(x_1) \in \psi(I) \), and so \(\psi(I) \) is a strong hyper BCH-ideal of \(H_2 \).

\[\square \]

References

Accepted: 20.02.2017