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Abstract. In this paper we initiate the concept of a hyper BCH-algebra which is a
generalization of a BCH-algebra, and hyper BCK/BCI algebras and investigate some
related properties. Moreover we introduce a hyper BCH-ideal, weak hyper BCH-ideal
and strong hyper BCH-ideal in hyper BCH-algebras, and give a few relations among
these hyper BCH-ideals. Finally we define homomorphism of hyper BCH-algebras.
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1. Introduction

In (1966) the notion of BCK-algebra was first introduces by Y. Imai and K.
Iseki [6]. The notion of BCK-algebra is a generalization of properties of the
Set-difference. In (1975), the concept of ideal in BCK-algebra was first initiated
by K. Iseki [7]. A remarkable feature of K. Iseki definition is that, its for-
mulation is free from those of ring theoretical and lattice theoretical concepts.
In same year K. Iseki initiated the concept of BCI-algebra [6, 8] which is the
generalization of BCK-algebra. These algebras have been extensively studied
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since their introduction. The concept of ideals has played an important role
in the study of the theory of BCI-algebras, [9]. In a BCI-algebra X, an ideal
I need not be subalgebra of X. If the ideal I is also a subalgebra of X, then
it has better algebraic properties. In (1983), Q. P. Hu and X. Li, introduced
the concept of BCH-algebra [3, 4] and prove some motivating results. In (1990)
and (1991) certain other properties have been studied by W. A. Dudek and J.
Thomys [2] and M. A. Chaudhry, [1], respectively. In [1], the author also defines
ideals in BCH-algebras. Hyperstructure represent a natural extension of classi-
cal algebraic structures and they were introduced by the French mathematician
F. Marty in (1934), [12]. Algebraic hyperstructures are a suitable generaliza-
tion of classical algebraic structures. Hyperstructures have many applications
to several sectors of both pure and applied sciences. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic
hyperstructure; the composition of two elements is a set. In (2000) Y. B. Jun et
al applied the hyperoperation to BCK-algebras and introduced the concept of
a hyper BCK-algebra [12] which is a generalization of a BCK-algebra, and in-
vestigated some related properties. Ideal theory of hyper BCK-algebra studied
in [11]. Further in (2006), X.L. Xin initiated the concept of hyper BCI-algebras
[13], which is basically a generalization of hyper BCK-algebras, and he proved
that every hyper BCK-algebra is a hyper BCI-algebra. It should be pointed
out that the research of hyper BCI-algebras seems to have been focused on the
ideal theory. The author introduced the concepts of hyper BCI-ideals, weak hy-
per BCI-ideals, strong hyper BCI-ideals and reflexive hyper BCI-ideals in hyper
BCI-algebras, and he gave the relations among these hyper BCI-ideals. In this
paper we initiated the notion of hyper BCH-algebra which is a generalization of
BCH-algebra and hyper BCI/BCK-algebras and studied some basic properties.
Moreover we introduce a hyper BCH-ideal, weak hyper BCH-ideal and strong
hyper BCH-ideal in hyper BCH-algebras, and give some relations among these
hyper BCH-ideals. We define homomorphism in hyper BCH-algebra and then
we investigate some related results.

2. Premilinaries

Let H be a non-empty set and ”◦” a function from H×H → P (H) \ {ϕ} , where
P (H) denotes the power set of H. For any two non-empty subsets A and B of
H, denote by A ◦B the set

∪
a∈A,b∈B a ◦ b. We will use x ◦ y instead of x ◦ {y},

{x} ◦ y or {x} ◦ {y}. Also we define x≪ y by 0 ∈ x ◦ y and for every A,B ⊆ H,
A≪ B is defined by for all a ∈ A, there exist b ∈ B such that a≪ b.

Definition 2.1 ([10]). A non-empty set H endowed with a constant 0 and a
hyperoperation is called hyper BCK-algebra if it satisfies the following axioms:

HK1) (x ◦ y) ◦ (y ◦ z) ≪ x ◦ y,
HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
HK3) x ◦H ≪ {x} ,
HK4) x≪ y and y ≪ x⇒ x = y.
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for all x, y, z ∈ H.

Definition 2.2 ([13]). A non-empty set H endowed with a constant 0 and a
hyperoperation is called hyper BCI-algebra if it satisfies the following axioms:

HI1) (x ◦ y) ◦ (y ◦ z) ≪ x ◦ y,
HI2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
HI3) x ◦H ≪ {x} ,
HI4) x≪ y and y ≪ x⇒ x = y.
HI5) 0 ◦ (0 ◦ x) ≪ x.
for all x, y, z ∈ H.

Definition 2.3 ([11]). Let I be a nonempty subset of a hyper BCK-algebra H
and 0 ∈ I. Then I is said to be a hyper BCK-ideal of H if x ◦ y ≪ I and y ∈ I
implies x ∈ I for all x, y ∈ H, reflexive if x ◦ x ⊆ I for all x ∈ H, strong hyper
BCK-ideal of H if (x ◦ y)∩ I = ϕ and y ∈ I implies x ∈ I for all x, y ∈ H, hyper
subalgebra of H if x ◦ y ⊆ I for all x, y ∈ I.

Proposition 2.4 ([11]). Let H be hyper BCK-algebra. Then,
(i) any strong hyper BCK-ideal of H is a hyper BCK-ideal of H.
(ii) if I is a hyper BCK-ideal of H and A is a nonempty subset of H. Then

A≪ I implies A ⊆ I.
(iii) if I is a reflexive hyper BCK-ideal of H and (x◦y)∩I = ϕ, then x◦y ⊆ I

for all x, y ∈ H.
(iv) H is a BCK-algebra if and only if H = {x ∈ H : x ◦ x = {0}}.

3. Hyper BCH-algebra

In this section we introduce a notion of hyper BCH-algebra and studied some
of its basic properties.

Definition 3.1. Let H be a on-empty set with a constant ”0” and ”◦” be a
hyper operation defined onH. Then (H, ◦, 0) is said to be a hyper BCH-algebra
if the following axioms are satisfied:

HCH1) x ≪ x,
HCH2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
HCH3) x ≪ y and y ≪ x⇒ x = y
for all x, y, z ∈ H; where x ≪ y is defined by 0 ∈ x ◦ y and for every A,B

⊆ H, A≪ B is defined by for all a ∈ A, there exists b ∈ B such that a ≪ b. In
such case, ”≪ ” is called a hyper order in H.

Example 3.2. Let H = {0, 1, 2} and ” ◦ ” be a hyperoperation defined on H in
the following table:

◦ 0 1 2

0 {0} {0} {1}
1 {1} {0, 1} {0, 1}
2 {2} {0, 2} {0, 1, 2}

Then (H, ◦) is a hyper BCH-algebra.
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Example 3.3. Let H = {0, 1, 2, 3} and ”◦” be a hyperoperation defined on H
in the following table:

◦ 0 1 2 3

0 {0} {0} {2} {3}
1 {1} {0, 1} {0, 3} {0, 3}
2 {2} {0, 2} {0, 2} {0, 2}
3 {3} {0, 2} {0, 2} {0, 2}

Then (H, ◦) is a hyper BCH-algebra.

Proposition 3.4. Any hyper BCK/BCI- algebra is a hyper BCH-algebra.

Proposition 3.5. Let H be a hyper BCH-algebra, then for all x, y, z ∈ H and
A ⊆ H;the following holds.

1) x◦ y ≪ z ⇔ x ◦ z ≪ y

2) x ◦ y ≪ x

3) 0 ≪ x

4) t ∈ 0 ◦ 0 ⇔ t = 0

5) x ∈ x ◦ 0
6) A ◦ y ≪ A

7) x ◦ A≪ y ⇔ x ◦ y ≪ A

8) A ≪ A ◦ 0
9) x ◦ x = {x} ⇔ x = 0.

Proof. We only prove 1, 2, 5, 6, 7 and 9.

1) Letx, y, z ∈ H,be such that x◦y ≪ z.Then there exists t ∈ x◦y such that
t≪ z.Thus 0 ∈ t ◦ z ⊆ (x ◦ y) ◦ z = (x ◦ z) ◦ y and hence there exists w ∈ x ◦ z
such that 0 ∈ w ◦ y that is w ≪ y.Therefore x ◦ z ≪ y.

Conversly, let x, y, z ∈ H be such that x ◦ z ≪ y. Then there exists w ∈ x ◦ z
such that w ≪ y.Thus 0 ∈ w ◦ y ⊆ (x ◦ z) ◦ y = (x ◦ y) ◦ z and hence there exists
t ∈ x ◦ y such that 0 ∈ t ◦ zthat is t≪ z.Therefore x ◦ y ≪ z.

2) Let 0 ∈ 0 ◦ y ⊆ (x ◦ x) ◦ y = (x ◦ y) ◦ x. Then there exists t ∈ x ◦ y such
that 0 ∈ t ◦ x⇒ t≪ x⇒ x ◦ y ≪ x.

5) By (2) above we have x ◦ 0 ≪ x, so there exists t ∈ x ◦ 0 such that t ≪ x,
since t ∈ x ◦ 0, then x ◦ 0 ≪ t and so by (1) x ◦ t ≪ 0. Thus there is r ∈ x ◦ t
such that r ≪ 0, so by (3) and (HCH3) r = 0. so 0 ∈ x ◦ t, that is x ≪ t since
x ≪ t and t ≪ x; then by (HCH3) ⇒ x = t. Therefore x ∈ x ◦ 0.

6) Let a ∈ A be any element, then by (2) a ◦ y ≪ a hence there is b
∈ a ◦ y ⊆ A ◦ y such that b≪ a, that is A ◦ y ≪ A.

7) Since x◦A≪ y which implies that there exists a ∈ A such that x◦a≪ y.
Hence by (1) x ◦ a≪ a≪ A implies that x ◦ y ≪ A. The proof of the converse
is easy to prove.

9) {x} = x ◦ x ⊆ x ◦ (x ◦ 0). Hence by (5) x ≪ 0; thus x = 0. The converse
follows from (4).
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Proposition 3.6. In any hyper BCH-algebra H, x ◦ 0 = {x} for all x ∈ H.

Proof. We have from above proposition (5) x ∈ x ◦ 0, now let t ∈ x ◦ 0.Since
x ◦ 0 ≪ {x}, we have t ≪ x. So, 0 ∈ t ◦ t ⊆ (x ◦ 0) ◦ t = (x ◦ t) ◦ 0. Then there
exists a ∈ x ◦ t such that 0 ∈ a ◦ 0.Thus a ≪ 0.Then a = 0; Thus x ≪ t. We
have that x = t. Therefore, x ◦ 0 = {x}.

It is known that every hyper BCI-algebra is a hyper BCH-algebrs, but the
following example show that the converse is not true.

Example 3.7. Let H = {0, 1, 2, 3}and ”◦” be a hyperoperation define on H in
the following table:

◦ 0 1 2 3

0 {0} {1} {1} {1}
1 {1} {0} {3} {3}
2 {2} {3} {0} {2}
3 {3} {0} {0} {0}

Then (H, ◦) is a hyper BCH-algebra, but it is not a hyper BCI-algebra. Because,

(2 ◦ 3) ◦ (2 ◦ 1) = {2} ◦ {3} = {2, 3}

and
(1 ◦ 3) = {3}.(2 ◦ 3) ◦ (2 ◦ 1) ̸= (1 ◦ 3)

Example 3.8. Let H = {0, 1, 2, 3, 4} and ”◦” be a hyperoperation defined of
H in the following table:

◦ 0 1 2 3 4

0 {0} {0} {0} {0} {0}
1 {1} {0} {2} {1} {0, 4}
2 {2} {2} {0} {2} {0, 4}
3 {3} {3} {3} {0} {4}
4 {4} {4} {4} {4} {0}

Then (H, ◦) is a hyper BCH-algebra, but it is not a hyper BCI-algebra. Because,

(1 ◦ 3) ◦ (1 ◦ 2) = {1} ◦ {2} = {1, 2}

and (2 ◦ 3) = {2} that is {1, 2} ≮ {2}.

Definition 3.9. A hyper BCH-algebra H is called proper if it is not a hyper
BCI-algebra.

In above examples the hyper BCH-algebras are proper hyper BCH-algebras.

Definition 3.10. Let (H, ◦) be a hyper BCH-algebra, and X a non-empty
subset of H containing ”0”. Then X is called hypersubalgebra of H if X is a
hyper BCH-algebra under the same hyperoperation ”◦” on H.
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Example 3.11. From the above Example 3.8 if we let X = {0, 1, 2}, then X is
a hypersubalgebra of H as we in the following table:

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {0, 2} {0}

Also, let X = {0, 1, 3}. Then X is a hypersubalgebra of H.

Theorem 3.12. Let X be a non-empty subset of a hyper BCH-algebra (H, ◦).
The X is a hypersubalgebra of H if and only if x ◦ y ⊆ X for all x, y ∈ X.

Proof. Straghtfarword.

Theorem 3.13. Let (H, ◦) be a hyper BCH-algebra and X(H) = {x ∈ H |
0 ◦ x≪ {0}}. Then X(H) is a hypersubalgebra of H.

Proof. Let x, y ∈ X(H), then by definition a = 0◦a≪ {0} and b = 0◦b≪ {0}.
Now

a ◦ b = (0 ◦ a) ◦ (0 ◦ b) ≪ {0} ◦ {0} = {0}

Hence, a ◦ b ≪ {0}.Which implies that a ◦ b ≪ X(H). Hence X(H) is a hy-
persubalgebra of H. The set X(H) is called the hyper BCA-part of the hyper
BCH-algebra H.

4. Hyper BCH-Ideals

Definition 4.1. Let (H, ◦) be a hyper BCH-algebra and I a subset of H. Then
I is called a hyper BCH-ideal of H if:

i) 0 ∈ I

ii) x ◦ y ≪ I and y ∈ I ⇒ x ∈ I for all x, y ∈ I.

Example 4.2. Let H = {0, 1, 2, 3, 4, 5} and ”◦” be a hyperoperation defined on
H in the following table:

◦ 0 1 2 3 4 5

0 {0} {0} {0} {0} {0, 4} {0, 5}
1 {1} {0} {0} {0} {1} {0, 5}
2 {2} {0, 2} {0} {0} {0} {0, 5}
3 {3} {0, 3} {0, 3} {0} {0} {0, 5}
4 {4} {0, 4} {0, 4} {0, 4} {0} {0}
5 {5} {0, 5} {0, 5} {0, 5} {0, 5} {0}

Then (H, ◦) is a hyper BCH-algebra. Let I = {0, 1, 2, 3} is an ideal of H.
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Example 4.3. Let H = {0, 1, 2, 3, 4} and ”◦” be a hyperoperation defined on
H in the following table:

◦ 0 1 2 3 4

0 {0} {0} {0} {0, 3} {0, 4}
1 {1} {0} {0, 1} {0, 1} {0, 4}
2 {2} {0, 2} {0} {0, 2} {0, 3}
3 {3} {0, 3} {0, 3} {0} {0, 2}
4 {4} {0, 4} {0, 4} {0, 1} {0}

Then (H, ◦) is a hyper BCH-algebra.
Let I1 = {0, 1, 2}, then I1 is a hyper BCH-ideal of H.
Let I2 = {0, 1, 3}, then I2 is a hyper BCH-ideal of H.
Let I3 = {0, 2, 3}, then I3 is not a hyper BCH-ideal of H. Because (3 ◦ 4) =

{0, 2} ≪ I3 and 4 ∈ I3 but 3 /∈ I3.

Theorem 4.4. Let (H, ◦) be a hyper BCH-algebra and {Iλ| λ ∈ Λ} a family of
hyper BCH-ideals of H, then

∩
λ∈Λ Iλ is a hyper BCH-ideal of H.

Proof. For any λ ∈ Λ; let Iλ be a hyper BCH-ideal of a hyper BCH-algebra
H, then clearly 0 ∈

∩
λ∈Λ Iλ. Now let x, y ∈ H be such that x ◦ y ≪ Iλ and

y ∈ Iλ for every λ ∈ Λ. Since each Iλ for every λ ∈ Λ is a hyper BCH-ideal of
H. Therefore it implies that x ◦ y ≪ Iλ for every λ ∈ Λ and y ∈ Iλ ⇒ x ∈ Iλ.
Hence x ◦ y ≪

∩
λ∈Λ Iλ and y ∈

∩
λ∈Λ Iλ ⇒ x ∈

∩
λ∈Λ Iλ. Thus

∩
λ∈Λ Iλ is a

hyper BCH-ideal of H.

Remark 4.5. The union of two hyper BCH-ideals need not be hyper BCH-
ideals. For this we have the following example.

Example 4.6. LetH = {0, 1, 2, 3, 4} be a hyper BCH-algebra define in Example
4.3. Let I1 = {0, 1, 3} and I2 = {0, 1, 4} be hyper BCH-ideals of H. But,
(3 ◦ 4) = {0, 2} � I1∪ I2, which show that union of two hyper BCH-ideals is not
a hyper BCH-ideal.

Theorem 4.7. Every hyper BCH-ideal of a hyper BCH-algebra is a hypersub-
algebra.

Proof. Let (H, ◦) be a hyper BCH-algebra and I a hyper BCH-ideal of H. Let
x, y ∈ I. Then since I is a hyper BCH-ideal of H, and so by definition it implies
that, x ◦ y ≪ I; which shows that I is a hypersubalgebra of H.

The convers of the above theorem is not true, that is a hypersubalgebra is
not a hyper BCH-ideal. From the above example if we consider I3 = {0, 2, 4},
then is a hypersubalgebra of H but not a hyper BCH-ideal of H.

Proposition 4.8. Let I be a hyper BCH-ideal and A a subset of a hyper BCH-
algebra H such that A≪ I. Then A ⊆ I.
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Proof. Let I be a hyper BCH-ideal of H and A a subset of H. Let A ≪ I
implies there exists a ∈ A and x ∈ I such that a≪ x⇒ 0 ∈ a ◦ x≪ I. Since I
is a hyper BCH-ideal of H it implies that a ∈ I and so A ⊆ I.

Definition 4.9. Let I be a non-empty subset of a hyper BCH-algebra H. Then
I is said to be a weak hyper BCH-ideal of H, if for all x, y ∈ H

(i) 0 ∈ I
(ii) x ◦ y ⊆ I and y ∈ I ⇒ x ∈ I.

Theorem 4.10. The intersection of any family of weak hyper BCH-ideal of a
hyper BCH-algebra is a weak hyper BCH-ideal.

Proof. For any λ ∈ Λ; let Iλ be a weak hyper BCH-ideal of a hyper BCH-algebra
H. Then clearly 0 ∈

∩
λ∈Λ Iλ. Now let x, y ∈ H be such that x ◦ y ⊆ Iλand

y ∈ Iλfor every λ ∈ Λ. Since each Iλ for every λ ∈ Λ is a weak hyper BCH-ideal
of H. Therefore it implies that x ◦ y ⊆ Iλ for every λ ∈ Λ and y ∈ Iλ ⇒ x ∈ Iλ
for every λ ∈ Λ. Hence x◦ y ⊆

∩
λ∈Λ Iλ and y ∈

∩
λ∈Λ Iλ ⇒ x ∈

∩
λ∈Λ Iλ. Thus∩

λ∈Λ Iλ is a weak hyper BCH-ideal of H.

Proposition 4.11. Every hyper BCH-ideal in hyper BCH-algebra H is a weak
hyper BCH-ideal.

Proof. Let I be a hyper BCH-ideal of a hyper BCH-algebra H. Let x ◦ y ⊆ I
and y ∈ I for some x, y ∈ H. Since x ◦ y ⊆ I which implies that x ◦ y ≪ I. Now
since I is a hyper BCH-ideal of H, so it implies that x ∈ I. Hence I is a weak
hyper BCH-ideal of H.

Definition 4.12. Let I be a non-empty subset of a hyper BCH-algebra H.
Then I is said to be a strong hyper BCH-ideal of H if for all x, y ∈ H

(i) 0 ∈ I
(ii) (x ◦ y) ∩ I ̸= ϕ and y ∈ I ⇒ x ∈ I.

Theorem 4.13. The intersection of any family of strong hyper BCH-ideal of a
hyper BCH-algebra is a stong hyper BCH-ideal.

Proof. For any λ ∈ Λ; let Iλ be a strong hyper BCH-ideal of a hyper BCH-
algebra H. Then clearly 0 ∈

∩
λ∈Λ Iλ. Now let x, y ∈ H be such that (x ◦ y)

∩
∩

λ∈Λ Iλ ̸= ϕ and y ∈
∩

λ∈Λ Iλ. Since each Iλ for every λ ∈ Λ is a strong hyper
BCH-ideal of H. Therefore it implies that (x ◦ y) ∩ Iλ ̸= ϕ for every λ ∈ Λ and
y ∈ Iλ ⇒ x ∈ Iλ. Hence (x ◦ y) ∩

∩
λ∈Λ Iλ ̸= ϕ and y ∈

∩
λ∈Λ Iλ ⇒ x ∈

∩
λ∈Λ

Iλ. Thus
∩

λ∈Λ Iλ is a strong hyper BCH-ideal of H.

Proposition 4.14. Every strong hyper BCH-ideal in hyper BCH-algebra H is
a hyper BCH-ideal.

Proof. Let I be a strong hyper BCH-ideal of H. Let x, y ∈ H be such that
x ◦ y ≪ I and y ∈ I. Then for a ∈ x ◦ y there exists b ∈ I such that a ≪
b ⇒ 0 ∈ a ◦ b. It follows that (a ◦ b) ∩ I ̸= ϕ ⇒ a ∈ I. Thus x ◦ y ⊆ I and so
(x ◦ y)∩ I ̸= ϕ. Since I is a strong hyper BCH-ideal of H. It follows that x ∈ I.
Hence I is a hyper BCH-ideal of H.
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5. Homomorphisms of hyper BCH-algebras

Definition 5.1. Let H1 and H2 be two hyper BCH-algebras. A mapping ψ :
H1 → H2 is called a homomorphism if

(i) ψ(0) = 0

(ii) ψ(x ◦ y) = ψ(x) ◦ ψ(y); for all x, y ∈ H1.

If ψ is 1− 1 (or onto) we say that ψ is a monomorphism (or epimorphism).
And if ψ is both 1− 1 and onto, we say that ψ is an isomorphism.

Theorem 5.2. Let ψ : H1 → H2 be a homomorphism of hyper BCH-algebras.
Then

(i) If S is a hyper BCH-subalgebra of H1, then ψ(S) is a hyper BCH-
subalgebra of H2,

(ii) ψ(H1) is a hyper BCH-subalgebra of H2,

(iii) If S is a hyper BCH-subalgebra of H2, then ψ−1(S) is a hyper BCH-
subalgebra of H1,

(iv) If I is a (weak) hyper BCH-ideal of H2, then ψ
−1(I) is a (weak) hyper

BCH-ideal of H1,

(v) Kerψ = {x ∈ H1|ψ(x) = 0} is a hyper BCH-ideal and hence a weak hyper
BCH-ideal of H1,

(vi) If ψ is onto and I is a hyper BCH-ideal of H1 which contains Kerψ,
then ψ(I) is a hyper BCH-ideal of H2.

Proof. (i) Let x, y ∈ ψ(S). Then there exist a, b ∈ S such that ψ(a) = x and
ψ(b) = y. It follows from Theorem 3.12 that x◦y = ψ(a)◦ψ(b) = ψ(a◦b) ⊆ ψ(S)
so that ψ(S) is a hyper BCH-subalgebra of H2.

(ii) Proof of this is same as (i).

(iii) Since 0 ∈ S, we have ψ−1(0) ⊆ ψ−1(S). Since ψ(0) = 0, so 0 ∈
ψ−1(0) ⊆ ψ−1(S). Therefore ψ−1(S) is non-empty. Now let x, y ∈ ψ−1(S).
Then ψ−1(x), ψ−1(y) ∈ S. Thus ψ(x◦y) = ψ(x)◦ψ(y) ⊆ S and so x◦y ⊆ ψ−1(S),
which implies that ψ−1(S) is a hyper BCH-subalgebra of H1.

(iv) Let I be a weak hyper BCH-ideal of H2. Clearly 0 ∈ ψ−1(I). Let x, y ∈
H1 such that x ◦ y ⊆ ψ−1(I) and y ∈ ψ−1(I). Then ψ(x) ◦ ψ(y) = ψ(x ◦ y) ⊆ I
and ψ(y) ∈ I. Since I is a weak hyper BCH-ideal, it follows from (Id2) that
ψ(x) ∈ I, i.e., x ∈ ψ−1(I). Hence ψ−1(I) is a weak hyper BCH-ideal of H1. Now
let I be a hyper BCH-ideal of H2. Obviously 0 ∈ ψ−1(I). Let x, y ∈ H1 such
that x ◦ y ≪ ψ−1(I) and y ∈ ψ−1(I). Then there exist t ∈ x ◦ y and z ∈ ψ−1(I)
such that t ≪ z, that is 0 ∈ t ◦ z. Since ψ(z) ∈ I and 0 ∈ t ◦ z ⊆ (x ◦ y) ◦ z, it
follows that 0 = ψ(0) ∈ ψ((x ◦ y) ◦ z) = ψ(x ◦ y) ◦ ψ(z) ⊆ ψ(x ◦ y) ◦ I so that
ψ(x) ◦ ψ(y) = ψ(x ◦ y) ≪ I. As ψ(y) ∈ I and I is hyper BCH-ideal, by using
(Id3) we have ψ(x) ∈ I, that is x ∈ ψ−1(I). Hence ψ−1(I) is a hyper BCH-ideal
of H1.

(v) First we show that {0} ⊆ H2 is a hyper BCH-ideal. To do this, let x, y ∈
H2 be such that x◦y ≪ {0} and y ∈ {0}. Then y = 0 and so x◦0 = x◦y ≪ {0}.
Therefore there exists t ∈ x ◦ 0 such that t ≪ 0. Thus t = 0, and consequently
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0 ∈ x ◦ 0, that is x ≪ 0, which implies that x = 0. This shows that {0} is a
hyper BCH-ideal of H2. Now by (iv), Kerf = ψ−1({0}) is a hyper BCH-ideal
of H1.

(vii) Since 0 ∈ I, we have 0 = ψ(0) ∈ ψ(I). Let x and y be arbitrary
elements in H2 such that x ◦ y ≪ f(I) and y ∈ ψ(I). Since y ∈ ψ(I) and ψ is
onto, there are y1 ∈ I and x1 ∈ H1 such that y = ψ(y1) and x = ψ(x1). Thus
ψ(x1 ◦ y1) = ψ(x1) ◦ ψ(y1) = x ◦ ◦y ≪ ψ(I). Therefore there are a ∈ x1 ◦ y1 and
b ∈ I such that ψ(a) ≪ ψ(b). So 0 ∈ ψ(a) ◦ ψ(b) = ψ(a ◦ b), which implies that
ψ(c) = 0 for some c ∈ a◦ b. It follows that c ∈ Kerψ ⊆ I so that a◦ b≪ I. Now
since I is a hyper BCH-ideal of H1 and b ∈ I, we get a ∈ I. Thus x1 ◦ y1 ≪ I,
which implies that x1 ∈ I. Thus x = ψ(x1) ∈ ψ(I), and so ψ(I) is a hyper
BCH-ideal of H2.

Theorem 5.3. Let ψ : H1 → H2 be an epimorphism of hyper BCH-algebras.
Then there is a one to one correspondence between the set of all hyper BCH-
ideals of H1 containing Kerψ and the set of all hyper BCH-ideals of H2.

Theorem 5.4. Let ψ : H1 → H2 and π : H1 → H3 be two homomorphisms of
hyper BCH- algebras such that ψ is onto and Kerψ ⊆ Kerπ. Then there exists
a homomorphism τ : H2 → H3 such that τ ◦ ψ = π.

Proof. Let y ∈ H2 be arbitrary. Since ψ is onto, there exists x ∈ H1 such that
y = ψ(x). Define τ : H2 → H3 by τ(y) = π(x), for all y ∈ H2. Now we show
that τ is well-defined. Let y1; y2 ∈ H2 and y1 = y2. Since ψ is onto, there are
x1;x2 ∈ H1 such that y1 = ψ(x1) and y2 = ψ(x2). Therefore ψ(x1) = ψ(x2)
and thus 0 ∈ ψ(x1) ◦ ψ(x2) = ψ(x1 ◦ x2). It follows that there exists t ∈ x1 ◦ x2
such that ψ(t) = 0. Thus t ∈ Kerψ ⊆ Kerπ and so π(t) = 0. Since t ∈ x1 ◦ x2
we conclude that 0 = π(t) ∈ π(x1 ◦ x2) = π(x1) ◦ π(x2) which implies that
π(x1) ≪ π(x2). On the other hand since 0 ∈ ψ(x2) ◦ ψ(x1) = ψ(x2 ◦ x1),
similarly we can conclude that 0 ∈ π(x2) ◦ π(x1), that is π(x2) ≪ π(x1). Thus
π(x1) = π(x2), which shows that τ is well-defined. Clearly τ ◦ ψ = π. Finally
we show that τ is a homomorphism. Let y1; y2 ∈ H2 be arbitrary. Since ψ is
onto there are x1, x2 ∈ H1 such that y1 = ψ(x1) and y2 = ψ(x2). Then

τ(y1 ◦ y2) = τ(ψ(x1) ◦ ψ(x2))
= τ(ψ(x1 ◦ x2))
= (τ ◦ ψ)(x1 ◦ x2)
= π(x1 ◦ x2)
= π(x1) ◦ π(x2)
= (τ ◦ ψ)(x1) ◦ (τ ◦ ψ)(x2)
= τ(ψ(x1)) ◦ τ(ψ(x2))
= τ(y1) ◦ τ(y2)

Moreover since ψ(0) = 0 and π(0) = 0, we conclude that τ(0) = τ(ψ(0)) =
(τ ◦ ψ)(0) = π(0) = 0. Thus τ is a homomorphism.
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Theorem 5.5. Let ψ : H1 → H2 be a homomorphism of hyper BCH-algebras.
If I is a strong hyper BCH-ideal of H2, then ψ

−1(I) is a strong hyper BCH-ideal
of H1.

Proof. Suppose I is a strong hyper BCH-ideal, then clearly 0 ∈ ψ−1(I). Let
a, b ∈ H1 be such that (a ◦ b) ∩ ψ−1(I) ̸= ϕ and b ∈ ψ−1(I). Then we have ϕ ̸=
ψ(a◦b)∩ψ−1(I)) ⊆ ψ(a◦b)∩ψψ−1(I) ⊆ ψ(a)◦ψ(b)∩I and so (ψ(a)◦ψ(b))∩I ̸= ϕ
and ψ(a) ∈ ψ(ψ−1(I)) ⊆ I. Since I is a strong hyper BCH-ideal of H2, we have
ψ(a) ∈ I and so x ∈ ψ−1(I). Therefore ψ−1(I) is a strong hyper BCH-ideal of
H1.

Theorem 5.6. Let ψ : H1 → H2 be a homomorphism of hyper BCH-algebras.
Then kerψ = {x ∈ H1|ψ(x) = 0} is a strong hyper BCH-ideal of H1.

Proof. To prove this first we show that {0} is a strong hyper BCH-ideal of H2.
For this, let a, b ∈ H1 be such that (a◦b)∩{0} ̸= ϕ and b ∈ {0}. Then b = 0 and
so 0 ∈ a ◦ 0 since (a ◦ 0) ∩ {0} ̸= ϕ. Thus we have a ≪ 0. By (HCH3) and 3.5
3, we get a = 0 ∈ {0}. This shows that {0} is a strong hyper BCH-ideal of H2.
It follows fromTheorem 5.5 that kerψ = ψ−1({0}) is a strong hyper BCH-ideal
of H1.

Theorem 5.7. Let ψ : H1 → H2 be a homomorphism of hyper K-algebras. If
ψis onto and I is a strong hyper BCH-ideal of H1 which contains kerψ , then
ψ(I) is a strong hyper BCH-ideal of H2.

Proof. Suppose I is a strong hyper BCH-ideal of H1. Clearly 0 ∈ ψ(I). Let
x, y ∈ H2 be such that (x ◦ y) ∩ ψ(I) ̸= ϕ and y ∈ ψ(I). Since y ∈ ψ(I) and
ψ is onto, there are y1 ∈ I and x1 ∈ H1 such that y = ψ(y1) and x = ψ(x1).
Thus ϕ ̸= (x ◦ y)∩ψ(I) = ψ(x1 ◦ y1)∩ψ(I) and so there exists a ∈ H2 such that
a ∈ ψ(x1 ◦ y1) and a ∈ ψ(I). It follows that there are a1 ∈ x1 ◦ y1 and b1 ∈ I
such that a = ψ(a1) and a = ψ(b1) so that 0 ∈ a ◦ a = ψa1 ◦ ψb1 = ψ (a1 ◦ b1)
which implies that ψ(c) = 0 for some c ∈ a1 ◦ b1. Hence c ∈ kerψ ⊆ I and so
(a1 ◦ b1) ∩ I ̸= ϕ. Now since I is a strong hyper BCH-ideal of H1 and b1 ∈ I,
we get a1 ∈ I. Thus (x1 ◦ y1) ∩ I ̸= ϕ, which implies that x1 ∈ I. Thereby
x = ψ(x1) ∈ ψ(I), and so ψ(I) is a strong hyper BCH-ideal of H2.
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