FINITE GROUPS WHOSE ALL PROPER SUBGROUPS ARE GPST-GROUPS

Pengfei Guo
College of Mathematics and Statistics
Hainan Normal University
Haikou, 571158
P. R. China
guopf999@163.com

Yue Yang
College of Mathematics and Statistics
Hainan Normal University
Haikou, 571158
P. R. China
1441568839@qq.com

Abstract. A set $W = \{W_1, \ldots, W_t\}$ of nilpotent Hall subgroups of G is a complete Wielandt set if $(|W_i|, |W_j|) = 1$ for all i, j. A finite group G is called a GPST-group if G has a complete Wielandt set W such that every member in W permutes all maximal subgroups of any non-cyclic subgroup S in W. In this paper, we give a complete classification of those groups which are not GPST-groups but all of whose proper subgroups are GPST-groups, i.e., they are precisely minimal non-PST-groups.

Keywords: Wielandt set, GPST-group, supersoluble group, power automorphism, permutable subgroup.

1. Introduction

All groups considered in this paper are finite and our notation is standard.

Let Σ be an abstract group theoretical property, for example, nilpotency, supersolubility, solubility, etc. If all proper subgroups of a group G have the property Σ but G does not have it, then G is called a minimal non-Σ-group.

The structures of minimal non-Σ-groups have been studied for various classes of groups Σ, and many classical results about this topic have been obtained. For instance, Miller and Moreno [8], Schmidt [12], and Doerk [5] analyzed the structures of minimal non-abelian groups, minimal non-nilpotent groups, and minimal non-supersoluble groups, respectively. However, the complete classifications of minimal non-nilpotent groups and minimal non-supersoluble groups were given by Ballester-Bolinches, Esteban-Romero and Robinson [4], Ballester-Bolinches and Esteban-Romero [2], respectively.

* Corresponding author
On the other hand, Robinson [10] characterized minimal non-T-groups (T-groups are groups in which normality is a transitive relation, i. e., if the normality of H in K and of K in G always imply that H is normal in G). A subgroup H of G is said to be s-permutable in G if H permutes all Sylow subgroups of G. Agrawal [1] studied PST-groups, i. e., groups in which Sylow permutability is a transitive relation. A group is a soluble PST-group if and only if it has an abelian Hall subgroup L of odd order such that G/L is nilpotent, and every element of G induces a power automorphism in L. Robinson [11] also gave a complete classification of minimal non-PST-groups.

The aim in the present work is to determine the structure of a kind of minimal non-Σ-groups. Guo and Skiba [6] called a set $W = \{W_1, \ldots, W_i\}$ of nilpotent Hall subgroups of G a complete Wielandt set if $(|W_i|, |W_j|) = 1$ for all i, j, and characterized the structure of a group G which has a complete Wielandt set W such that every member in W permutes all maximal subgroups of any non-cyclic subgroup S in W. The specific result is as follows.

Theorem A [6, Theorem A]. A group G has a complete Wielandt set of subgroups W such that every member in W permutes all maximal subgroups of any non-cyclic subgroup S in W if and only if $G = D \rtimes M$ is a supersoluble group where $D = G^N$ is a nilpotent Hall subgroup of G of odd order whose maximal subgroups are normal in G.

In view of the structure of a group described in Theorem A is very close to soluble PST-group but weaker than soluble PST-group, so Guo and Skiba [6] called this group a generalized PST-group or GPST-group for short.

In this paper, we give a complete classification of those groups which are not GPST-groups but all of whose proper subgroups are GPST-groups. Our main result is as follows:

Theorem 1.1. Let p and q be distinct prime divisors of the order of a group G. Then G is a minimal non-GPST-group if and only if G is one of the following types:

1. $G = P \rtimes Q$, where $P = \langle a, b \rangle$ is an elementary abelian p-group of order p^2, and $Q = \langle x \rangle$ is cyclic of order q'. Define $a^x = a^i$, $b^x = b^j$, $p \equiv 1 (\text{mod } q')$, and $r \geq 1$, where i is the least positive primitive q'-th root of unity modulo p, $j = 1 + kq^{f-1}$, with $0 < k < q$ and $r \geq f$;

2. $G = P \rtimes Q$, where $Q = \langle x \rangle$ is cyclic of order $q' > 1$, with $q \nmid p - 1$, and P is an irreducible Q-module over the field of p elements with kernel $\langle x^q \rangle$ in Q;

3. $G = P \rtimes Q$, where P is a non-abelian special p-group of rank $2m$, the order of p modulo q being $2m$, $Q = \langle x \rangle$ is cyclic of order $q' > 1$, x induces an automorphism in P such that $P/\Phi(P)$ is a faithful and irreducible Q-module, and x centralizes $\Phi(P)$. Furthermore, $|P/\Phi(P)| = p^{2m}$ and $|P'| \leq p^m$;

4. $G = PQ$, where $P = \langle a_0, a_1, \ldots, a_{q-1} \rangle$ is an elementary abelian p-group of order p^q, $Q = \langle x \rangle$ is cyclic of order q', q^f is the highest power of q dividing
$p - 1$ and $r > f \geq 1$. Define $a_j^x = a_{j+1}$ for $0 \leq j < q - 1$ and $a^x_{q-1} = a_0$, where i is a primitive q^f-th root of unity modulo p.

Coincidentally, by comparing with main result in [11], minimal non-GPST-groups are precisely minimal non-PST-groups. In addition, Ballester-Bolinches and Esteban-Romero [3] introduced an interesting definition. Let p be a prime. A group G is said to be a \mathcal{Y}_p-group if, for all p-subgroups H and S of G such that $H \leq S$, H is S-permutable in $N_G(S)$. They also gave that: a group G is a soluble PST-group if and only if G is a \mathcal{Y}_p-group for all primes p [3, Theorem 4]. Hence the classification of minimal non-\mathcal{Y}_p-group in [4, Theorem 2] may be regarded as a local approach to the classification of minimal non-PST-groups. Our result is given naturally.

Corollary 1.2. Let G be a group. Then the following conditions are equivalent:

(i) G is a minimal non-PST-group.

(ii) G is a minimal non-GPST-group.

(iii) G is a minimal non-\mathcal{Y}_p-group for every prime divisor p of the order of G.

2. Preliminary results

We collect some lemmas which will be frequently used in the sequel.

Lemma 2.1 ([7]). Let $\{P_1, P_2, \ldots, P_r\}$ be a Sylow basis of a soluble group G. Then the following statements are equivalent:

(a) Every subgroup of P_i permutes every subgroup of P_j for $i \neq j$.

(b) The nilpotent residual G^N of G is an abelian Hall subgroup of G, and every element of G induces a power automorphism in G^N.

Lemma 2.2. Let G be a minimal non-GPST-group. Then there exists a normal non-cyclic Sylow p-subgroup P of G and a non-normal cyclic Sylow q-subgroup Q of G with $p \neq q$ such that $|G| = p^aq^b$ for positive integers a and b.

Proof. Since every proper subgroup of G is a GPST-group, G is supersoluble or minimal non-supersoluble by Theorem A. By a result of Doerk [5], G is soluble and G has a nontrivial normal Sylow p-subgroup $P = O_p(G) \neq 1$, for some prime p. Let $G = P \rtimes H$ and $W = \langle P, H_1, \ldots, H_t \rangle$ of nilpotent Hall subgroups of G be a complete Wielandt set, where H is a p'-group of G. If $t \geq 2$, then PH_1, PH_2, \ldots, PH_t are GPST-groups. Thus H_1, H_2, \ldots, H_t permute every maximal subgroup of P whether or not P is cyclic. Since the normality of P and the fact that H is a GPST-group again, G is a GPST-group, a contradiction. Hence $t = 1$. Similar arguments as above, if $|\pi(H)| \geq 2$, then G is a GPST-group, a contradiction. So $H = Q \in \text{Syl}_q(G)$ with $q \neq p$ a prime. If Q is non-cyclic, then $\langle x, P \rangle \neq G$ for every element x of Q. The minimality of G implies that $\langle x, P \rangle$ is a GPST-group. By applying Theorem A, every maximal subgroup of P is normal in G. By induction again, every subgroup of
Suppose \(P \) permutes every subgroup of \(\langle x \rangle \). By Lemma 2.1, \(P \) is abelian and \(x \) induces a power automorphism on \(P \). So \(G \) is a GPST-group, a contradiction. This induces that \(H = \langle x \rangle \), where \(|x| = q^b > 1 \). Clearly, \(P \) is non-cyclic by the definition of GPST-group. The proof of Lemma 2.2 is complete. \(\square \)

Lemma 2.3 ([14, Lemma 5]). Suppose \(G = P \langle x \rangle \), \(P \) is a normal \(p \)-subgroup of \(G \) and \(x \) is a \(q \)-element. If all maximal subgroups of Sylow subgroups of \(G \) are normal in \(G \), then \(x \) induces a power automorphism on \(P/\Phi(P) \).

Lemma 2.4 ([9], 13.4.3). Let \(\alpha \) be a power automorphism of an abelian group \(A \). If \(A \) is a \(p \)-group of finite exponent, then there is a positive integer \(l \) such that \(a^{\alpha} = a^l \) for all \(a \) in \(A \). If \(\alpha \) is nontrivial and has order prime to \(p \), then \(\alpha \) is fixed-point-free.

Lemma 2.5 ([5]). Let \(G \) be a minimal non-supersoluble group. Then

1. \(G \) has a unique normal Sylow \(p \)-subgroup \(P \);
2. \(P/\Phi(P) \) is a minimal normal subgroup of \(G/\Phi(P) \), and \(P/\Phi(P) \) is non-cyclic;
3. If \(p \neq 2 \), then the exponent of \(P \) is \(p \);
4. If \(P \) is non-abelian and \(p = 2 \), then the exponent of \(P \) is \(4 \);
5. If \(P \) is abelian, then the exponent of \(P \) is \(p \).

3. The proof of Theorem 1.1

Proof. If \(G \) is a minimal non-GPST-group, then we may assume \(G = PQ \) by Lemma 2.2, where \(P \) is a non-cyclic normal Sylow \(p \)-subgroup of \(G \) and \(Q = \langle x \rangle \) is a non-normal Sylow \(q \)-subgroup of \(G \) of order \(q^r \). Since all Sylow \(q \)-subgroups are conjugate in \(G \), we only consider the case that \(Q \) acts on \(P \). So we investigate the following two cases.

1. Assume that \(G \) is supersoluble and \(d(P) = k \), where \(d(P) \) is the rank of \(P \).

 Let \(1 \leq \cdots \leq R \leq P \leq \cdots \leq G \) be an arbitrary chief series of \(G \). By Maschke’s Theorem [9, Theorem 8.1.2], there exists a normal subgroup \(N \) of \(G \) contained in \(P \) such that \(P/\Phi(P) = R/\Phi(P) \times N/\Phi(P) \), where \(|N/\Phi(P)| = p \). Clearly, \(N \nsubseteq R \) and \(1 \leq N \leq P \leq G \) is a normal series of \(G \). By applying Schreier’s Refinement Theorem [9, Theorem 3.1.2], \(P \) has another maximal subgroup \(K \neq R \) such that \(K \) is normal in \(G \). Therefore, \(P \) has at least two maximal subgroups \(R \) and \(K \) which are normal in \(G \).

 Now we prove \(k = 2 \). If \(k \geq 3 \), then we can let \(P/\Phi(P) = \langle \bar{a}_1 \rangle \times \langle \bar{a}_2 \rangle \times \cdots \times \langle \bar{a}_k \rangle \) where \(a_1, a_2, \ldots, a_{k-1} \in R, a_2, a_3, \ldots, a_k \in K \). Since \(R/\langle x \rangle \) is a GPST-group, every maximal subgroup of \(R \) is normal in \(G \). By Lemma 2.3, \((y\Phi(R))^x = y^l\Phi(R) \) for every \(y \in R \), where \(l \) is a positive integer. Thus, \((y\Phi(P))^x = y^l\Phi(P) \) for every \(y \in R \). Similarly, \((z\Phi(P))^x = z^m\Phi(P) \) for every \(z \in K \), where \(m \) is a positive integer. Furthermore, \(a_1^l\Phi(P) = (a_2\Phi(P))^x = a_2^m\Phi(P) \), and so \(l \equiv m \text{ (mod } p \) \). Hence, \((a_i\Phi(P))^x = a_i^l\Phi(P) \) for \(i = 1, 2, \ldots, k \). It is easy to
see that every maximal subgroup of P is normal in G. By Theorem A, G is a GPST-group. This contradiction implies $k = 2$.

Now we let $P/\Phi(P) = R/\Phi(P) \times K/\Phi(P) = \langle \tilde{a}_1 \rangle \times \langle \tilde{a}_2 \rangle$, where $a_1 \in R, a_2 \in K$, $\tilde{a}_1^x = \tilde{a}_1^{k_1}$ and $\tilde{a}_2^x = \tilde{a}_2^{k_2}$. If $k_1 = k_2$, then every maximal subgroup of P is normal in G, and so G is a GPST-group, a contradiction. Hence, $k_1 \neq k_2$. Furthermore, we have that P has only two maximal subgroups which are normal in G. Clearly, at least one action of which x acts on R and P is nontrivial.

Without loss of generality, we may assume that x induces an automorphism α on R. Since every subgroup of $P(x)$ is a GPST-group and by induction, it follows from Theorem A that every subgroup of P permutes every subgroup of $\langle x \rangle$. By Lemma 2.1, R is abelian and α is a power automorphism on R. By Lemma 2.4, α is fixed-point-free. Hence, we have either $K \cap R = 1$ if $K \langle x \rangle = K \times \langle x \rangle$ or $K \langle x \rangle \neq K \times \langle x \rangle$. If $K \cap R = 1$ and $K \langle x \rangle = K \times \langle x \rangle$, then $P = \langle a, b \rangle$ is an elementary abelian group of order p^2. We can easily have that G is of type (I) with $f = 1$ and $k = q - 1$.

If $K \langle x \rangle \neq K \times \langle x \rangle$, similar arguments as above, K is abelian, and x induces a power automorphism in K. Thus, $\Phi(P) = R \cap K \leq Z(P)$. If $|P : Z(P)| \leq p$, then P is abelian.

We prove that P is elementary abelian. Let $\Omega_1(P)$ be the group generated by all elements of order p in P and assume that $\Omega_1(P) \neq P$. Then $\langle \Omega_1(P), x \rangle \neq G$ and it is a GPST-group. Therefore x induces a power automorphism in $\Omega_1(P)$, i.e., there is a positive integer t, relatively prime to p, such that $a^t = a^t$ for all $a \in \Omega_1(P)$. Let β be the automorphism of P induced by x and let γ be the automorphism of P in which $a \mapsto a^t$. Then $\beta \gamma^{-1}$ is an automorphism of P fixing each element of order p and $\beta \gamma^{-1}$ has order equal to a power of p, say p^d. Obviously $\beta \gamma = \gamma \beta$, so $\beta^p = \gamma^p \in \langle \gamma \rangle$. But β has order prime to p, so $\beta \in \langle \gamma \rangle$ and β is a power automorphism of P, a contradiction.

Assume that $P = \langle a \rangle \times \langle b \rangle$ is elementary abelian. Let q^l be the order of the automorphism of P induced by x, $a^x = a^i$ and $b^x = b^j$, where i and s are two distinct primitive q^l-th roots of unity modulo p. Then $0 < f \leq r$ and $p \equiv 1(\text{mod } q^l)$. Since $P(x^q) \neq G$, x^q induces a power automorphism in P and $i^q = s^q$. So i and s both have order q^l. Then $s = ij$ for some integer $j \equiv 1(\text{mod } q^l)$. Now $i^q = s^q = s^q$, so $j \equiv 1(\text{mod } q^l)$, and we can assume that $j = 1 + kq^l$. Hence G is again of type (I).

If $|P : Z(P)| = p^2$, then $\Phi(P) = R \cap K = Z(P)$, and so P is minimal non-abelian and $|P'| = p$. Let $P_1 = \langle a, P' \rangle$ and $P_2 = \langle b, P' \rangle$. Then $P_1 Q$ and $P_2 Q$ are GPST-groups. By hypothesis, x induces power automorphisms in P_1 and P_2, say $g \mapsto g^{n_1}$ and $g \mapsto g^{n_2}$ respectively. By Lemma 2.4, these two power automorphisms are fixed-point-free. However, they must agree on P', so $n_1 \equiv n_2(\text{mod } p)$ and we can assume $n_1 = n_2$. Since $[a, b]^{n_1} = [a, b]^x = [a^{n_1}, b^{n_1}]$, $n_1^2 \equiv n_1(\text{mod } p)$ and $n_1 \equiv 1(\text{mod } p)$, a contradiction.

(2) Assume that G is minimal non-supersoluble.

Let M be a maximal subgroup of G such that $Q \leq M$. Then $M = P_3 Q$, where P_3 is a Sylow p-subgroup of M. By $[P_3, Q] \leq P \cap P_3 Q = P_3$, we have
finite groups whose all proper subgroups are gpst-groups

\[N_G(P_3) \geq P_3Q = M. \] Since \(N_P(P_3) > P_3 \), \(P_3 \) is normal in \(G \). By Lemma 2.5 and the maximality of \(M \), \(P_3 = \Phi(P) \) is the Sylow \(p \)-subgroup of \(M \).

Case 1. If \(G \) is also a minimal non-nilpotent group, then by applying [4, Theorem 3], \(G \) is of either type (II) or type (III).

Case 2. If \(G \) is not a minimal non-nilpotent group and \(P \) is abelian, then by applying [2, Theorem 9, 10], we assume that \(G = PQ \), where \(P = \langle a_0, a_1, \ldots, a_{q-1} \rangle \) is an elementary abelian \(p \)-group of order \(p^q \), \(Q = \langle x \rangle \) is cyclic of order \(q^r \), \(q^f \) is the highest power of \(q \) dividing \(p - 1 \) and \(r > f \geq 1 \). Define \(a_j^x = a_{j+1} \) for \(0 \leq j < q - 1 \) and \(a_{q-1}^x = a_0^i \), where \(i \) is a primitive \(q^f \)-th root of unity modulo \(p \).

For a maximal subgroup \(P^Q \) of \(G \) and any element \(a_k \) of \(P \), by computation, \(a_k^x = a_k^i \). So \(G \) is of type (IV).

Case 3. Assume that \(G \) is not a minimal non-nilpotent group and \(P \) is non-abelian. By applying [2, Theorem 9, 10], we may assume that \(G = P^Q \) such that \(P = \langle a_0, a_1 \rangle \) is an extraspecial group of order \(p^3 \) with exponent \(p \), \(Q = \langle x \rangle \) is a cyclic group of order \(2^f \) with \(2^f \) the highest power of \(2 \) dividing \(p - 1 \) and \(r > f \geq 1 \) and \(a_0^y = a_1 \) and \(a_1^y = a_0^i \), where \(y \in \langle a_0, a_1 \rangle \) and \(i \) is a primitive \(2^f \)-th root of unity modulo \(p \).

Since every subgroup of \(P^Q \) is a GPST-group, every subgroup of \(P \) permutes every subgroup of \(\langle x^2 \rangle \) by induction. If \(P^Q \neq P \times \langle x^2 \rangle \), then \(P \) is abelian by Lemma 2.1, a contradiction. Hence \(P^Q = P \times \langle x^2 \rangle \) and \(a_0^y = a_1^y = a_0^i \), which implies that \(x = 1 \) and \(i \equiv 1 \mod p \), a contradiction. Therefore, \(G \) is not of the type as above.

Conversely, it is easy to check that all groups satisfied types (I)—(IV) are minimal non-GPST-groups.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11661031).

References

Accepted: 13.03.2018