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Abstract. In this work,the homo separation analysis method (HSAM) is applied to
obtain the exact solution for linear and nonlinear partial differential equation. The
proposed algorithm presents a procedure of constructing the set of base functions and
gives the one-order deformation equation in a simple form. This analytical method is a
combination of the homotopy analysis method (HAM) with the separation of variables
method. The exact solution is constructed by choosing an initial guess in addition to
only one term of the series obtained by HAM. This work verifies the validity and the
potential of the HSAM for the study of nonlinear partial differential equation.
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1. Introduction

The study of nonlinear partial differential equation is of crucial importance in
all areas of physics and engineering, as well as in other disciplines. It is very
difficult to solve nonlinear problems and in general it is often more difficult to
get an exact solution to a given nonlinear problem. The importance of obtain-
ing the exact solutions of nonlinear PDE in mathematics is stell a significant
problem that needs new methods. Several numerical and analytical methods
have been developed and successfully employed to solve linear and nonlinear
PDE. Such methods include variational iteration method [4, 12], Adomian de-
composition method [5, 10, 21], differential transform method [2, 6, 17], the
homopety perturbation method [15], the exp method [13], Legendre polynomial
method [8, 9] and the homotopy analysis method [18, 19, 22]. Some of these
methods use specific transformations and others give the solution as a series
which converges to the exact solution. Recently, a lot of attention has been
focused on the studies to getting exact solution for linear and nonlinear PDEs.
Zhang and others [3, 14] give the exact solution for some specific nonlinear PDE.
However, Yang [7] used the modified homotopy perturbation method to obtain
the exact solution of the Fokker-Plank equation. Furthermore, Karbalaie et
al.[1] used homotopy perturbation method with sepration of variables to find
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exact solution of PDE. The HAM yields rapidly convergent series solutions by
using few iterations for both linear and nonlinear differential equations. The
HAM was successfully applied to solve many nonlinear problems such as Riccati
differential equation of fractional order [11], fractional KdV-Burgers-Kuramoto
equation [16] and systems of fractional algebraic-differential equations [20]. In
this paper, we developed a symbolic algorithm to find the exact solution of non-
linear PDE by using the construct of mth-order deformation equation of HAM
and the technique of sepration of variables. We present an elegant fast ap-
proach by designing and utilizing a proper initial guess which satisify the initial
condition of PDE as follows

u0(x, t) = u(x, 0)c1(t) +
∂

∂x
u(x, 0)c2(t),

where u(x, 0) is the initial condition of the PDE. The Initial guess u0(x, t) has
the form of sepration of variables, as an initial condition for HAM. By using this
method, the other of the PDE to be solved is reduced into an ODE or system
of ODEs. The organization of this paper is as follows: in section 2, we present
the basic idea of HAM and the construct of homo sepration analysis method
(HSAM). In Section 3, four examples are solved to illustrated the applicability
of the considered method. Finally, relevant conclusions are drawn in section 4.

2. Homo sepration analysis method

The homotopy analysis method based on the concept of the homotopy, a fun-
damental concept in topology and differential geometry. In this section, the
algorithm of this method is briefly illustrated. To achieve our gool, we consider
the nonlinear partial differential equation

(2.1) ut = F (x, t, u, ux, uxx, uxt), t ≥ 0,

subject to the initial condition

(2.2) u(x, 0) = f(x).

The so-called zero-order deformation equation of the equation (2.1) can be
constructed as follows

(1− q)L[ϕ(x, t, q)− u0(x, t)] = qh[
∂

∂t
ϕ(x, t, q)− F (x, t, ϕ(x, t, q),

∂

∂x
ϕ(x, t, q),

∂2

∂x2
ϕ(x, t, q),

∂2

∂x∂t
ϕ(x, t, q))],(2.3)

where q ∈ [0, 1] is an embedding parameter, L is an auxiliary linear operator,
h ̸= 0 is an auxiliary parameter, ϕ(x, t, q) is unknown function and u0(x, t) is an
initial guess of u(x, t) which satisfy the initial condition. Obviously, when q = 0

(2.4) ϕ(x, t, 0) = u0(x, t),
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and when q = 1, we have

(2.5) ϕ(x, t, 1) = u(x, t).

Expanding ϕ(x, t, q) in Taylor series with respect to q, we get

(2.6) ϕ(x, t, q) = u0(x, t) +
∞∑

m=1

um(x, t)qm,

where

(2.7) um(x, t) =
1

m!

∂mϕ(x, t, q)

∂qm
|q=0.

If the initial guess u0(x, t), the auxiliary linear operator L and the nonzero aux-
iliary parameter h are properly chosen so that the power series (2.6) converges
at q = 1, one has

(2.8) u(x, t) = ϕ(x, t, 1) = u0(x, t) +

∞∑
m=1

um(x, t).

Define the vector

−→u m(x, t) = {u0(x, t), u1(x, t), . . . , um(x, t)}.

Differentiating the zero-order deformation equation (2.3) m times with respec-
tive to q, then setting q = 0 and dividing them by m!, finally using (2.7), we
have the so-called high-order deformation equations

(2.9) L[um(x, t)− χm um−1(x, t)] = h ℜm(−→u m−1(x, t)),

subject to the initial conditions

um(x, 0) = 0,

where

ℜm(−→u m−1(x, t)) =
∂

∂t
um−1(x, t)−

1

(m− 1)!

∂m−1

∂qm−1
F (x, t, ϕ(x, t, q),

∂

∂x
ϕ(x, t, q),

∂2

∂x2
ϕ(x, t, q),

∂2

∂x∂t
ϕ(x, t, q))|q=0,(2.10)

and

χm =

{
0, m ≤ 1

1, m > 1
.

Select the auxiliary linear operator L = ∂
∂t , and h = −1, then the mth-order

deformation equation (2.9) can be written in the form

(2.11)
∂

∂t
(um(x, t)− χm um−1(x, t)) + ℜm(−→u m−1(x, t)) = 0.
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For special case takem = 1 in equation (2.11) and using the relations (2.4),(2.10),
then we have

∂

∂t
u1(x, t) =

∂

∂t
u0(x, t)− F (x, t, u0(x, t),

(2.12)
∂

∂x
u0(x, t),

∂2

∂x2
u0(x, t),

∂2

∂x∂t
u0(x, t)) ≡ 0,

By utilizing the results of equation (2.8), we approximate the analytical solution
u(x, t), by the truncated series:

(2.13) u(x, t) = u0 + u1 + ...+ un−1 =

n−1∑
i=0

ui,

For simplicity, we assume that un(x, t) = 0, when n > 1, which means that
the exact solution in equation (2.13) is

u(x, t) = u0(x, t).

To illustrate our basic idea, we consider the initial approximation of equation
(2.1) as follows

u(x, t) = u0(x, t) = u(x, 0)c1(t) +
∂

∂x
u(x, 0)c2(t),

. = f(x)c1(t) + f ′(x)c2(t).(2.14)

Our gool in this method is finding c1(t) and c2(t). Since equation (2.14)
satisfies the initial condition, we get

(2.15) c1(0) = 1, c2(0) = 0.

By substituting equation (2.14) into equation (2.12), we obtain

∂

∂t
u1(x, t) = f(x)c′1(t) + f ′(x)c′2(t)− F (x, t, f(x)c1(t) + f ′(x)c2(t),

f ′(x)c1(t) + f ′′(x)c2(t), f
′′(x)c1(t) + f ′′′(x)c′2(t),(2.16)

f ′(x)c′1(t) + f ′′(x)c′2(t)) ≡ 0.

The partial differential equation (2.16) transform into an ordinary differential
equation or a system of ordinary differential equations. The exact solution of
the partial differential equation is found when the target unknowns c1(t) and
c2(t) are computed, by utlizing (2.16) and the initial conditions (2.15).



THE HOMO SEPARATION ANALYSIS METHOD ... 539

3. Numerical results

In this work, we carefully propose the HSAM, a reliable modification of the
HAM, that gives the exact solution of the linear and non linear partial differential
equation. To demonstrate the effectiveness of the method, we consider here the
following four examples.

Example 3.1. Consider the following nonhomogenous partial differential equa-
tion

(3.1) ut = −x2etuxx + (x+ 2)ux + tx,

with the initial condition
u(x, 0) = x+ 2.

Using the relation (2.14), then we get the initial approximation

u(x, t) = u0(x, t) = (x+ 2)c1(t) + c2(t),

and by using the relation (2.16), then we have

∂

∂t
u1(x, t) = x(c′1(t)− c1(t)− t) + (c′2(t) + 2c′1(t)− 2c1(t)) ≡ 0.

We obtain the system of ordinary differential equations

(3.2) c′1(t)− c1(t)− t = 0, c1(0) = 1,

(3.3) c′2(t) + 2c′1(t)− 2c1(t) = 0, c2(0) = 0.

Solving the equations (3.2) and (3.3), by using the ODEs properties, we obtain

c1(t) = 2et − t− 1, c2(t) = −t2,

and the exact solution is

u(x, t) = (x+ 2)(2et − t− 1)− t2.

Example 3.2. Consider the following Black-scholes equation

(3.4) ut = uxx + (k − 1)ux − ku,

with the initial condition

(3.5) u(x, 0) = ex − 1.

The initial approximation has the form

u(x, t) = u0(x, t) = (ex − 1)c1(t) + exc2(t),
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and by using the relation (2.16), then we have

∂

∂t
u1(x, t) = ex(c′1(t) + c′2(t))− (c′1(t) + kc1(t)) ≡ 0.

We obtain the system of ordinary differential equations

(3.6) c′1(t) + kc1(t) = 0, c1(0) = 1,

(3.7) c′1(t) + c′2(t) = 0, c2(0) = 0.

Solving the equations (3.6) and (3.7), by using the ODEs properties, we obtain

c1(t) = e−kt, c2(t) = 1− e−kt,

and the exact solution is

u(x, t) = (ex − 1)e−kt + ex(1− e−kt).

Example 3.3. Consider the following nonlinear partial differential equation

(3.8) ut = uxx + ux(u+ uxx),

subject to the initial condition

(3.9) u(x, 0) = sinx.

The initial approximation has the form

u(x, t) = u0(x, t) = sinx c1(t) + cosx c2(t),

then
∂

∂t
u1(x, t) = sinx(c′1(t) + c1(t)) + cosx(c′2(t) + c2(t)) ≡ 0.

We obtain the system of ordinary differential equations

(3.10) c′1(t) + c1(t) = 0, c1(0) = 1,

(3.11) c′2(t) + c2(t) = 0, c2(0) = 0.

Solving the equations (3.10) and (3.11), by using the ODEs properties, we obtain

c1(t) = e−t, c2(t) = 0,

and the exact solution is

u(x, t) = e−t sinx.
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Example 3.4. Consider the following nonlinear partial differential equation

(3.12) ut = u2 − 4u ux + 2uxt −
1

8
u ,

subject to the initial condition

(3.13) u(x, 0) = e
1
4
x.

Choose the initial approximation

u(x, t) = u0(x, t) = e
1
4
x c1(t) +

1

4
e

1
4
x c2(t)

=
1

4
e

1
4
x(4c1(t) + c2(t)),

then
∂

∂t
u1(x, t) =

1

32
e

1
4
x [4(4c′1(t) + c′2(t)) + (4c1(t) + c2(t))] ≡ 0.

We obtain the ordinary differential equation

(3.14) 4y′(t) + y(t) = 0, y(0) = 4,

where
y(t) = 4c1(t) + c2(t)

Solving the equations (3.14), by using the ODEs properties, we obtain

4c1(t) + c2(t) = 4e−
1
4
t,

and the exact solution is
u(x, t) = e

1
4
(x−t).

4. Conclusions

The fundamental goal of this work is to propose a simple method for the
solution of PDEs. A combined form of the HAM with sepration of variables
is effectively used to handle linear and nonlinear partial differential equations.
The main advantage of the method is its fast and gives exact solution for our
problem. In this research work, it was demonstrated through different examples
how this new method can be used for solving linear and nonlinear PDE. When
compared with the existing published methods, it is easy to notice that the new
method has many advantages. It is straightforward, easy to understand and
requiring much less computations to perform a limited number of steps of the
simple procedure that can be applied to find the exact solution of a wide range
of types of PDEs Finally, the recent appearance of nonlinear partial differential
equations as models in some fields such as models in science and engineering
makes it is necessary to investigate the method of solutions for such equations.
and we hope that this work is a step in this direction.
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