SOME OPERATOR α -GEOMETRIC MEAN INEQUALITIES

Jianming Xue

Oxbridge College
Kunming University of Science and Technology
Kunming, Yunnan 650106
P. R. China
xuejianming104@163.com

Abstract. In this paper, we refine an operator α -geometric mean inequality as follows: let Φ be a positive unital linear map and let A and B be positive operators. If $0 < m \le A \le m' < M' \le B \le M$ or $0 < m \le B \le m' < M' \le A \le M$, then for each $\alpha \in [0, 1]$,

$$\left(\Phi\left(A\right)\sharp_{\alpha}\Phi\left(B\right)\right)^{2}\leq\left(\frac{K\left(h\right)}{K^{2r}\left(h'\right)}\right)^{2}\Phi^{2}\left(A\sharp_{\alpha}B\right),$$

where $K(h) = \frac{(h+1)^2}{4h}$, $K(h') = \frac{(h'+1)^2}{4h'}$, $h = \frac{M}{m}$, $h' = \frac{M'}{m'}$ and $r = \min\{\alpha, 1 - \alpha\}$. **Keywords:** operator inequalities, α -geometric mean, positive linear maps.

1. Introduction

Throughout this paper, $\|\cdot\|$ is the operator norm and I denotes the identity operator. $A \geq 0$ (A > 0) implies that A is positive (strictly positive) operator. Φ is a positive unital linear map if $\Phi(A) \geq 0$ with $A \geq 0$ and $\Phi(I) = I$. For A, B > 0 and $\alpha \in [0, 1]$, the α -geometric mean $A \sharp_{\alpha} B$ is defined by

$$A\sharp_{\alpha}B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}},$$

when $\alpha = \frac{1}{2}$, $A\sharp_{\frac{1}{2}}B = A\sharp B$ is said to be the geometric mean.

Seo [1] gave the following α -geometric mean inequality: let Φ be a positive unital linear map. If $0 < m_1 \le A, B \le M_1$ for some numbers $m_1 \le M_1$. Then for $\alpha \in [0, 1]$,

$$\Phi(A)\sharp_{\alpha}\Phi(B) \le K(m, M, \alpha)^{-1}\Phi(A\sharp_{\alpha}B),$$

where $m=\frac{m_1}{M_1},\,M=\frac{M_1}{m_1}$ and the generalized Kantorovich constant $K\left(m,M,\alpha\right)$ ([2, Definition 2.2]) is defined by

$$K\left(m,M,\alpha\right) = \frac{mM^{\alpha} - Mm^{\alpha}}{\left(\alpha - 1\right)\left(M - m\right)} \left(\frac{\alpha - 1}{\alpha} \frac{M^{\alpha} - m^{\alpha}}{mM^{\alpha} - Mm^{\alpha}}\right)^{\alpha}$$

for any real number $\alpha \in R$.

Fu [3] squared operator α -geometric mean inequality: let Φ be a positive unital linear map. If $0 < m \le A, B \le M$ for some numbers $m \le M$. Then for $\alpha \in [0,1]$

$$(1.1) \qquad (\Phi(A) \sharp_{\alpha} \Phi(B))^{2} \leq K^{2}(h) \Phi^{2}(A \sharp_{\alpha} B),$$

where $K(h) = \frac{(h+1)^2}{4h}$ with $h = \frac{M}{m}$ is the Kantorovich constant. A great number of results on operator inequalities have been given in the

literature, for example, see [4-8] and the references therein.

In this paper, we will get a stronger result than (1.1) and apply it to obtain an operator α -geometric mean inequality to the power of 2p $(p \geq 2)$.

2. Main results

In this section, the main results of this paper will be given. To do this, the following lemmas are necessary.

Lemma 1 ([9]). Let A, B > 0. Then

$$||AB|| \le \frac{1}{4} ||A + B||^2.$$

Lemma 2 ([10]). Let A > 0. Then for every positive unital linear map Φ ,

$$\Phi(A^{-1}) \ge \Phi^{-1}(A).$$

Lemma 3 ([11]). Let A, B > 0. Then for $1 \le r < \infty$,

$$(2.3) $||A^r + B^r|| \le ||(A+B)^r||.$$$

Lemma 4 ([12]). Let $0 < m \le A \le m' < M' \le B \le M$ or $0 < m \le B \le m' < M' \le B \le M$ $M' \leq A \leq M$. Then for each $\alpha \in [0, 1]$,

$$(2.4) K^r(h')(A\sharp_{\alpha}B) \le A\nabla_{\alpha}B,$$

where
$$K(h') = \frac{(h'+1)^2}{4h'}$$
, $h' = \frac{M'}{m'}$ and $r = \min\{\alpha, 1 - \alpha\}$.

 $A \leq M$. Then for each $\alpha \in [0,1]$,

$$(2.5) K^r \left(h' \right) \left(A^{-1} \sharp_{\alpha} B^{-1} \right) \le A^{-1} \nabla_{\alpha} B^{-1},$$

where
$$K(h') = \frac{(h'+1)^2}{4h'}$$
, $h' = \frac{M'}{m'}$ and $r = \min\{\alpha, 1 - \alpha\}$.

530 JIANMING XUE

Proof. If $0 < m \le A \le m' < M' \le B \le M$, it follows that

$$0 < \frac{1}{M} \le B^{-1} \le \frac{1}{M'} < \frac{1}{m'} \le A^{-1} \le \frac{1}{m}.$$

By $h' = \frac{M'}{m'} = \frac{\frac{1}{m'}}{\frac{1}{M'}}$ and (2.4), we have

$$K^r(h')(A^{-1}\sharp_{\alpha}B^{-1}) \le A^{-1}\nabla_{\alpha}B^{-1}.$$

If $0 < m \le B \le m' < M' \le A \le M$, similarly, (2.5) holds.

This completes the proof.

Theorem 1. Let Φ be a positive unital linear map and let A and B be positive operators. If $0 < m \le A \le m' < M' \le B \le M$ or $0 < m \le B \le m' < M' \le A \le M$, then for each $\alpha \in [0,1]$,

$$(2.6) \qquad (\Phi(A) \sharp_{\alpha} \Phi(B))^{2} \leq \left(\frac{K(h)}{K^{2r}(h')}\right)^{2} \Phi^{2}(A \sharp_{\alpha} B),$$

where
$$K(h) = \frac{(h+1)^2}{4h}$$
, $K(h') = \frac{(h'+1)^2}{4h'}$, $h = \frac{M}{m}$, $h' = \frac{M'}{m'}$ and $r = \min\{\alpha, 1 - \alpha\}$.

Proof. The inequality (2.6) is equivalent to

$$\left\| \left(\Phi\left(A \right) \sharp_{\alpha} \Phi\left(B \right) \right) \Phi^{-1}\left(A \sharp_{\alpha} B \right) \right\| \leq \frac{K\left(h \right)}{K^{2r}\left(h' \right)}.$$

It is easy to see that

$$(2.7) (1 - \alpha) (A + MmA^{-1}) \le (1 - \alpha) (M + m)$$

and

(2.8)
$$\alpha \left(B + MmB^{-1} \right) \le \alpha \left(M + m \right).$$

Summing up inequalities (2.7) and (2.8), we get

$$A\nabla_{\alpha}B + Mm\left(A^{-1}\nabla_{\alpha}B^{-1}\right) \le M + m$$

and hence

(2.9)
$$\Phi\left(A\nabla_{\alpha}B\right) + Mm\Phi\left(A^{-1}\nabla_{\alpha}B^{-1}\right) \le M + m.$$

Compute

$$\|\Phi(A) \sharp_{\alpha} \Phi(B) MmK^{2r} (h') \Phi^{-1} (A \sharp_{\alpha} B)\|$$

$$\leq \frac{1}{4} \|K^{r} (h') \Phi(A) \sharp_{\alpha} \Phi(B) + MmK^{r} (h') \Phi^{-1} (A \sharp_{\alpha} B)\|^{2} \quad (by(2.1))$$

$$\leq \frac{1}{4} \|K^{r} (h') \Phi(A) \sharp_{\alpha} \Phi(B) + MmK^{r} (h') \Phi(A^{-1} \sharp_{\alpha} B^{-1})\|^{2} \quad (by(2.2))$$

$$\leq \frac{1}{4} \|\Phi(A) \nabla_{\alpha} \Phi(B) + Mm\Phi(A^{-1} \nabla_{\alpha} B^{-1})\|^{2} \quad (by(2.4), (2.5))$$

$$\leq \frac{1}{4} \|\Phi(A \nabla_{\alpha} B) + Mm\Phi(A^{-1} \nabla_{\alpha} B^{-1})\|^{2}$$

$$\leq \frac{1}{4} (M + m)^{2} . \quad (by(2.9))$$

That is

$$\left\| \left(\Phi\left(A\right) \sharp_{\alpha} \Phi\left(B\right) \right) \Phi^{-1}\left(A \sharp_{\alpha} B\right) \right\| \leq \frac{\left(M+m\right)^{2}}{4MmK^{2r}\left(h^{\prime}\right)} = \frac{K\left(h\right)}{K^{2r}\left(h^{\prime}\right)}.$$

Thus, (2.6) holds.

This completes the proof.

Remark 1. Since h' > 1, then

$$\frac{K\left(h\right)}{K^{2r}\left(h'\right)} < K\left(h\right).$$

Thus, inequality (2.6) is tighter than (1.1).

Theorem 2. Let Φ be a positive unital linear map and let A and B be positive operators. If $0 < m \le A \le m' < M' \le B \le M$ or $0 < m \le B \le m' < M' \le A \le M$ and $0 \le p < \infty$, then for each $0 \in [0, 1]$,

$$(2.10) \qquad (\Phi(A) \sharp_{\alpha} \Phi(B))^{2p} \leq \frac{1}{16} \left(\frac{K^{2}(h) (M^{2} + m^{2})^{2}}{K^{4r}(h') M^{2} m^{2}} \right)^{p} \Phi^{2p}(A \sharp_{\alpha} B),$$

where
$$K(h) = \frac{(h+1)^2}{4h}$$
, $K(h') = \frac{(h'+1)^2}{4h'}$, $h = \frac{M}{m}$, $h' = \frac{M'}{m'}$ and $r = \min\{\alpha, 1 - \alpha\}$.

Proof. The inequality (2.10) is equivalent to

(2.11)
$$\|(\Phi(A) \sharp_{\alpha} \Phi(B))^{p} \Phi^{-p} (A \sharp_{\alpha} B)\| \leq \frac{1}{4} \left(\frac{K^{2}(h) (M^{2} + m^{2})^{2}}{K^{4r}(h') M^{2} m^{2}} \right)^{\frac{p}{2}}.$$

By the operator reverse monotonicity of inequality (2.6), we have

(2.12)
$$\Phi^{-2}(A\sharp_{\alpha}B) \le \left(\frac{K(h)}{K^{2r}(h')}\right)^{2} (\Phi(A)\sharp_{\alpha}\Phi(B))^{-2}.$$

Since $0 < m \le A, B \le M$, it follows that

$$m \leq \Phi(A) \sharp_{\alpha} \Phi(B) \leq M$$

and hence

$$(2.13) \qquad (\Phi(A) \sharp_{\alpha} \Phi(B))^{2} + M^{2} m^{2} (\Phi(A) \sharp_{\alpha} \Phi(B))^{-2} \leq M^{2} + m^{2}.$$

532 JIANMING XUE

Compute

$$\begin{split} & \left\| (\Phi(A) \,\sharp_{\alpha} \Phi(B))^{p} \, M^{p} m^{p} \Phi^{-p} \, (A \sharp_{\alpha} B) \right\| \\ & \leq \frac{1}{4} \left\| \left(\frac{K(h)}{K^{2r}(h')} \right)^{\frac{p}{2}} (\Phi(A) \,\sharp_{\alpha} \Phi(B))^{p} + \left(\frac{M^{2} m^{2}}{\frac{K(h)}{K^{2r}(h')}} \right)^{\frac{p}{2}} \Phi^{-p} \, (A \sharp_{\alpha} B) \right\|^{2} \quad (by (2.1)) \\ & \leq \frac{1}{4} \left\| \frac{K(h)}{K^{2r}(h')} (\Phi(A) \,\sharp_{\alpha} \Phi(B))^{2} + \frac{M^{2} m^{2}}{\frac{K(h)}{K^{2r}(h')}} \Phi^{-2} \, (A \sharp_{\alpha} B) \right\|^{p} \quad (by (2.3)) \\ & \leq \frac{1}{4} \left\| \frac{K(h)}{K^{2r}(h')} (\Phi(A) \,\sharp_{\alpha} \Phi(B))^{2} + \frac{K(h)}{K^{2r}(h')} M^{2} m^{2} \, (\Phi(A) \sharp_{\alpha} \Phi(B))^{-2} \right\|^{p} \quad (by (2.12)) \\ & \leq \frac{1}{4} \left(\frac{K(h)}{K^{2r}(h')} (M^{2} + m^{2}) \right)^{p} . \quad (by (2.13)) \end{split}$$

That is

$$\left\| (\Phi(A) \sharp_{\alpha} \Phi(B))^{p} \Phi^{-p} (A \sharp_{\alpha} B) \right\| \leq \frac{1}{4} \left(\frac{K^{2}(h) (M^{2} + m^{2})^{2}}{K^{4r}(h') M^{2} m^{2}} \right)^{\frac{p}{2}}.$$

Thus, (2.10) holds.

This completes the proof.

Lemma 6 ([13]). For any bounded operator X,

$$(2.14) |X| \le tI \Leftrightarrow ||X|| \le t \Leftrightarrow \begin{bmatrix} tI & X \\ X^* & tI \end{bmatrix} \ge 0 (t \ge 0).$$

Theorem 3. Let Φ be a positive unital linear map and let A and B be positive operators. If $0 < m \le A \le m' < M' \le B \le M$ or $0 < m \le B \le m' < M' \le A \le M$ and $0 \le p < \infty$, then for each $0 \in [0,1]$,

$$(\Phi(A) \sharp_{\alpha} \Phi(B))^{p} \Phi^{-p} (A \sharp_{\alpha} B) + \Phi^{-p} (A \sharp_{\alpha} B) (\Phi(A) \sharp_{\alpha} \Phi(B))^{p}$$

$$\leq \frac{1}{2} \left(\frac{K^{2} (h) (M^{2} + m^{2})^{2}}{K^{4r} (h') M^{2} m^{2}} \right)^{\frac{p}{2}},$$

where
$$K(h) = \frac{(h+1)^2}{4h}$$
, $K(h') = \frac{(h'+1)^2}{4h'}$, $h = \frac{M}{m}$, $h' = \frac{M'}{m'}$ and $r = \min\{\alpha, 1 - \alpha\}$.

Proof. Put $t = \frac{1}{2} \left(\frac{K^2(h)(M^2 + m^2)^2}{K^{4r}(h')M^2m^2} \right)^{\frac{p}{2}}$, $X_1 = (\Phi(A) \sharp_{\alpha} \Phi(B))^p \Phi^{-p}(A \sharp_{\alpha} B)$, $X_2 = \Phi^{-p}(A \sharp_{\alpha} B) (\Phi(A) \sharp_{\alpha} \Phi(B))^p$ and $X = X_1 + X_2$. By (2.11) and (2.14), we have

and

(2.17)
$$\left[\begin{array}{cc} tI & X_2 \\ X_1 & tI \end{array} \right] \ge 0.$$

Summing up (2.16) and (2.17), we have

$$\left[\begin{array}{cc} 2tI & X \\ X & 2tI \end{array}\right] \ge 0.$$

Since X is self-adjoint, (2.15) follows from the maximal characterization of geometric mean.

This completes the proof.

Acknowledgments

This work is supported by Scientific Research Fund of Yunnan Provincial Education Department (No. 2014Y645).

References

- [1] Y. Seo, Reverses of Ando's inequality for positive linear maps, Math. Inequal. Appl., 14 (2011), 905-910.
- [2] T. Furuta, J. Mićić, J.E. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [3] X. Fu, An operator α -geometric mean inequality, J. Math. Inequal., 9 (2015), 947-950.
- [4] J. Xue, Some refinements of operator reverse AM-GM mean inequalities, J. Inequal. Appl., 2017 (2017).
- [5] J. Xue, On reverse weighted arithmetic-geometric mean inequalities for two positive operators, Ital. J. Pure Appl. Math., 37 (2017), 113-116.
- [6] P. Zhang, More operator inequalities for positive linear maps, Banach J. Math. Anal., 9 (2015), 166-172.
- [7] M. Lin, On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl., 402 (2013), 127-132.
- [8] L. Zou, An arithmetic-geometric mean inequality for singular values and its applications, Linear Algebra Appl., 528 (2017), 25-32.
- [9] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl., 308 (2000), 203-211.

534 JIANMING XUE

[10] R. Bhatia, *Positive Definite Matrices*, Princeton University Press, Princeton, 2007.

- [11] T. Ando, X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann., 315 (1999), 771-780.
- [12] H. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.
- [13] R.A. Horn, C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.

Accepted: 7.02.2018