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Abstract. In this communication we argue that we can account for the shortcomings
of the Standard Model by including noncommutative geometry leading to a non-zero
(electron) neutrino mass.
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It is well known that the standard model of particle physics is as of now the
most complete theory and yet there are frantic efforts to go beyond the standard
model to overcome its shortcomings. Some of these are:

1. It fails to deliver the mass to the neutrino which thus remains a massless
particle in this theory.

2. This apart it does not include gravity, which is otherwise one of the four
fundamental interactions.

3. There is the hierarchy problem viz., the wide range of masses for the
elementary particles or even for the quarks.

4. It appears that other as yet undiscovered particles exist which could
change the picture, for example in supersymmetry in which the particles have
their supersymmetric counterparts.

5. The standard model has no place for dark matter, which on the other
hand has not yet been definitely found. Nor is there place for dark energy.

6. Finally one has to explain the 18 odd arbitrary constants which creep
into the theory.

There are however obvious shortcomings which can be addressed in a rela-
tively simple manner which could enable us to go beyond the standard model.
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Let us start with the standard model Lagrangian
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which includes the Dirac Lagrangian amongst other things.
We would now like to point out that all this has been on the basis of the

usual point spacetime which is what may be called commutative. But in recent
years several authors including in particular the present author have worked
with a noncommutative spacetime which originates back to Snyder in the late
forties itself. (This was in an attempt to overcome the divergences).

We first observe that it was Dirac [1] who pointed out two intriguing features
of his equation: 1. The Compton wavelength and 2. Zitterbewegung.

For the former, his intuition was that we can never make measurements at
space or time points. We need to observe over an interval to get a meaningful
definition of momentum for example. This interval was the Compton region [2].
Next, his solution was rapidly oscillatory, what is called Zitterbewegung. This
oscillatory behaviour disappears on averaging over spacetime intervals over the
Compton region. Once this is done while meaningful physics appears, we are
left with not points but minimum intervals.

This leads to a noncommutative geometry. One model for this is that of
Snyder [3]. Applied at the Compton wavelength this leads to the so called
Snyder-Sidharth dispersion relation, the geometry being given by [4]

(2) [xı, xj ] = βıj · l2.

As described in details in reference [5] this leads to a modification in the Dirac
and also the Klein-Gordon equation. This is because (2) in particular it leads
to the following energy momentum relation ([4])

(3) E2 − p2 −m2 + αl2p4 = 0,
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where α is a scalar constant, ∼ 10−3 [6, 7]. Though the value of α is of no con-
sequence for the present work, it may be mentioned that α gives the Schwinger
term. If we work with this energy momentum relation (3) and follow the usual
process we get as in the usual Dirac theory

(4) {γµpµ −m}ψ ≡ {γ◦p◦ + Γ}ψ = 0.

We now include the extra term in the energy momentum relation (3). It can be
easily shown that this leads to

(5) p20 −
(
ΓΓ + {Γβ + βΓ}+ β2αl2p4

}
ψ = 0.

Whence the modified Dirac equation

(6)
{
γ◦p◦ + Γ + γ5αlp2

}
.ψ = 0.

The Modified Dirac equation contains an extra term. The extra term gives a
slight mass for the neutrino which is roughly of the correct order viz., 10−8me,
me being the mass of the electron. The behaviour too is that of the neutrino
[5, 8].

To sum up the introduction of the noncommutative geometry described in
(2) leads to a Dirac like equation (6) and a Lagrangian that leads to the electron
neutrino mass.

It must be pointed out that the modified Lagrangian differs from the usual
Lagrangian in that the γ0 matrix is now replaced by a new matrix

γ0
′
= γ0 + γ0 · γ5lp2

that includes the term giving rise to the neutrino mass. We can verify that the
modified Lagrangian gives back the modified Dirac equation (6). Further as
has been discussed in detail the extra term arising out of the noncommutative
geometry is the direct result of the dark energy which thus also features in
the modified standard model Lagrangian. This apart this argument has been
shown to lead to a mass spectrum for elementary particles that includes all the
elementary particles, giving the masses with about 5% or less error [4].

References

[1] P.A.M. Dirac, The principles of quantum mechanics, Clarendon Press, Ox-
ford, 1958.

[2] B.G. Sidharth, Das Abhishek, Int. J. Mod. Phys. A., 32 (2017), 175-173.

[3] H.S. Snyder, Physical review, 72 (1947), 68-71.

[4] B.G. Sidharth, The thermodynamic universe, World Scientific, Singapore,
2008.



GOING BEYOND THE STANDARD MODEL 437

[5] B.G. Sidharth, Int. J. Mod. Phys. E, 19 (2010), 1-8.

[6] B.G. Sidharth, A. Das, R. Arka, Electron J. Theor. Phys., 34 (2015), 139-
152.

[7] B.G. Sidharth, A. Das, R. Arka, Int. J. Th. Phys., 55 (2016), 801-808.

[8] B.G. Sidharth, New advances in physics, 11 (2017), 5-97.

Accepted: 5.01.2018


