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Abstract. A topological index of a simple connected graph Γ is a numeric quantity
related to the structure of the graph Γ. The set of all automorphisms of Γ under the
composition of mapping forms a group which is denoted by Aut(Γ). Let G be a group,
and let S ⊂ G be a set of group elements such that the identity element 1 /∈ S. The
Cayley graph associated with (G,S) is defined as the directed graph with vertex set G
and edge set E such that e = xy is an edge of E if (x−1y) ∈ S for every vertices x, y in
G. In this paper we define the Cayley graph of the Dihedral group D2n and the Cayley
graph of the generalized quaternion group Q2n on the specified subsets of these groups,
and compute the Wiener, Szeged and PI indices of these graphs.

Keywords: Cayley graph, Dihedral group, generalized Quaternion group, topological
index.

1. Introduction

Let G be a group with identity element 1 and let S be a nonempty subset of G
such that, 1 /∈ S. The Cayley graph of G relative to S is denoted by Γ = Γ(G,S)
and it is a directed graph with vertex set G and edge set E consisting of the
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ordered pairs (x,y) such that (x−1y) ∈ S. It is obvious that the Cayley graph
Γ(G,S) of a group G is undirected iff S = S−1, i.e, (x, y) ∈ E iff (y, x) ∈ E in
this case Γ(G,S) is called the Cayley graph of G relative to S. The Cayley graph
Γ(G,S) is connected iff the set S is a generating set of the group G. The Cayley
graph has been studied in [10, 11]. Let Γ (V,E) be a graph with vertex set V
and edge set E, An automorphism θ of Γ is a bijective function on V which
preserves the edges of Γ, i.e, e=uv is an edge of Γ iff eθ = uθvθ is an edge of Γ
too. The set of all automorphisms of Γ forms a group Aut(Γ) under combination
of functions. Aut(Γ) acts transitively on V if for two arbitrary vertices u and v
there is an automorphisms θ ∈ Aut(Γ) such that uθ = v, then in this case Γ is
said to be a vertex-transitive graph. In graph theory it has been shown that the
Cayley graph (directed or undirected) of a group is always vertex-transitive.

The topological index of Γ is a numerical quantity which is constant under
any arbitrary automorphism of Γ. The Wiener index is the oldest topological
index of the simple connected graph, it first was introduced by a chemist named
H.Wiener for molecular graphs while he was studying properties of chemical
compounds [2, 3, 5, 9]. The Wiener index of a connected graph Γ is denoted by
W (Γ) and it is defined by:

W (Γ) =
∑

{u,v}⊆V

d(u, v) =
1

2

∑
u∈V

d(u).

Where d(u,v) is the distance between two vertices u and v, and d(u) is the
distances between u with other vertices of Γ.

The Szeged index [4, 8] is another invariant of a graph Γ which is related
to the distribution of the vertices of the graph and denoted by Sz(Γ) and it is
defined as follows:

Let e = uv be an edge of the graph Γ, the sets Nu(e|Γ) and Nv(e|Γ) are
defined as: Nu(e|Γ) = {x ∈ V |d(x, u) < d(x, v)}, Nv(e|Γ) = {x ∈ V |d(x, v) <
d(x, u)}. Then Nu(e|Γ) is the set of all vertices of Γ which are closer to u than
v, Nv(e|Γ) is defined similarly. The cardinalities of Nu(e|Γ) and Nv(eΓ) are
denoted by nv(e|Γ) and nv(e|Γ) respectively.

Now, the Szeged index of Γ which is denoted by Sz(Γ) is defined as:

Sz(Γ) =
∑

e=uv∈E
nu(e|Γ).nv(e|Γ).

The Szeged index is closely related to the Wiener index such that in the case
that the graph Γ is a tree, they are the same. Thus the Szeged index concerned
with the distribution of the vertices of the graph, there is a topological index
named Padmakar-Ivan index [6, 7] which is related to the distribution of the
edges of the graph. The Padmakar-Ivan index of graph Γ is denoted by PI(Γ)
and is defined as follows:

PI(Γ) =
∑

e=uv∈E
(neu(e|Γ) + nev(e|Γ)).
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Where neu(e|Γ) (resp. nev(e|Γ)) is the number of edges of the subgraph of Γ
which has the vertax set Nu(e|Γ)(resp. Nv(e|Γ)).

The Dihedral group D2n is the symmetry group of an n-sided regular polyg-
onal which it has the following presentation D2n =< a, b |a2 = bn = I, (ab)2 =
I > . Considering subset S1 = {a, ab, bn−1, b} of D2n, we can define the Cayley
graph Cay(D2n, S1) in the cases that n is odd or even.

The generalized Quaternion Q2n is the non-abelian group of order 2n and
it has the following presentation Q2n =< a, b|a2n−1

= 1, a2
n−2

= b2, b−1ab =
a−1 > . For some integer n ≥ 3. The ordinary Quaternion group corresponds to
the case n=3. Now, we regard the subset S2 = {a, a2n−1−1, b, a2

n−2} of Q2n and
define the Cayley graph Cay(Q2n , S2)

It is obvious that S1 = S−11 and S2 = S−12 also S1 and S2 are generating
sets of groups (D2n, (Q2n respectively, so the Cayley graphs Cay(D2n, S1) and
Cay(Q2n , S2) both are undirected connected graphs. Here we try to compute
the Wiener and Szeged indices of the Cayley graph Cay(D2n, S1).

Figure 1: The Cay(D2n, S1)

2. Computation of Wiener, Szeged and PI indices of Cay(D2n, S1)

In this paper the following lemma [1] are frequently used.

Lemma 1. Let G = (V,E) be a simple connected graph with vertex set V
and edge set E. suppose Aut(G) has orbits ∆i = ∆i(ui), 1 ≤ i ≤ k, on V ,
where ui is orbit representative. Then W (G) = 1

2

∑k
i=1 |∆i|d(ui). Where d(ui) =∑

x∈V d(ui, x). As a result of this lemma, when Aut(G) acts transitively on V,
i.e, G is a vertex transitive graph, then W (G) = 1

2 |V |d(u), for some u ∈ V .

Lemma 2. Let G=(V,E) be a simple connected graph with vertex set V and edge
set E. If Aut(G) on E has orbits E1, E2, ..., Er with representatives e1, e2, ..., er,
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where ei = uivi ∈ E then:

Sz(G) =

r∑
i=1

|Ei|(nui(ei|G).nvi(ei|G)), P I(G) =

r∑
i=1

|Ei|(neiui(ei|G)+neivi(ei|G)).

Proposition 1. The Wiener index of the graph Γ = Cay(D2n, S1) is W (Γ) =
n2(n+1)

2

Proof. Because Γ is a vertex transitive graph by the lemma 1. the Wiener
index of Γ is:

(1) W (G) =
1

2
|D2n|d(x).

Where x is an arbitrary vertex of Γ. We have D2n = {1, b, b2, ..., bn−1, a, ab, ab2,
..., abn−1}. Suppose that n is even, without less of generality we may choose
x = 1 and calculate d(1) as follows:

(2) d(1) =
∑
u∈V

d(1, u) =

n−1∑
i=1

d(1, bi) +

n∑
i=1

d(1, abi).

Because the vertices 1, b, b2, ..., bn−1 form a cycle so, we have d(1, bi) = i, 1 ≤
i ≤ n

2 , d(1, bi) = n− i, n2 + 1 ≤ i ≤ n− 1. Therefore:

n−1∑
i=1

d(1, bi) =

n
2∑
i=1

d(1, bi) +

n−1∑
i=n

2
+1

d(1, bi) =

n
2∑
i=1

i+

n−1∑
i=n

2
+1

n− i(3)

=
1

2
(
n

2
)(
n

2
+ 1) +

1

2
(
n

2
)(
n

2
− 1) =

n2

4
.

Also the vertices a, ab, ab2, ..., abn−1 form a cycle we have: d(1, abi) = i, 1 ≤ i ≤
n
2 , d(1, abi) = n− i+ 1, n2 + 1 ≤ i ≤ n. Therefore:

n∑
i=1

d(1, abi) =

n
2∑
i=1

d(1, abi) +

n∑
i=n

2
+1

d(1, abi) =

n
2∑
i=1

i

+
n∑

i=n
2
+1

n− i+ 1 =
1

2
(
n

2
)(
n

2
+ 1) +

1

2
(
n

2
)(
n

2
+ 1) = (

n

2
)(
n

2
+ 1).(4)

Considering (3), (4) and replacing in (2), d(1) = n
2 (n+ 1). Now, suppose that n

is odd, d(1, bi) = i, 1 ≤ i ≤ n−1
2 , d(1, bi) = n− i, n+1

2 + 1 ≤ i ≤ n−1. Therefore:

n−1∑
i=1

d(1, bi) =

n−1
2∑
i=1

d(1, bi) +

n−1∑
i=n+1

2

d(1, bi) =

n−1
2∑
i=1

i+

n−1∑
i=n+1

2

n− i

=
1

2
(
n− 1

2
)(
n+ 1

2
) +

1

2
(
n− 1

2
)(
n+ 1

2
) =

(n− 1)(n+ 1)

4
(5)
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Also, d(1, abi) = i, 1 ≤ i ≤ n−1
2 , d(1, abi) = n−i+1, n+1

2 +1 ≤ i ≤ n. Therefore:

n∑
i=1

d(1, abi) =

n−1
2∑
i=1

d(1, abi) +

n∑
i=n+1

2

d(1, abi) =

n−1
2∑
i=1

i+

n∑
i=n+1

2

n− i+ 1

=
1

2
(
n− 1

2
)(
n+ 1

2
) +

1

2
(
n+ 1

2
)(
n+ 3

2
)(6)

=
n+ 1

4
(
n− 1

2
)(
n+ 3

2
) =

n+ 1

4
(n+ 1).

Considering (5),(6) and replacing in (2) we have:

(7) d(1) =
n

2
(n+ 1).

We see that in two cases n is even or odd the same result is obtained, so replacing
(7) in (1) the proof is completed.

Proposition 2. The Szeged index of the graph Γ = Cay(D2n, S1) is:

Sz(Γ) =

{
n(52n

2 − 4n+ 2), n is even

n(52n
2 − 3n+ 5

2), n is odd.

Proof. Let E be the edge set of the graph Γ. If we consider the action of Aut(Γ)
on the E, it is obvious that it has two orbits, the first is the set of edges which are
the sides of the upper and lower polygons and the second is the edges that are
located between these polygons, which are denoted by E1 and E2 respectively.
Aut(Γ) acts transitively on each orbit and the set E breaks into E1 and E2

whose union is E. By the lemma 2, we have:

Sz(G) =
2∑
i=1

|Ei|(nui(ei|Γ).nvi(ei|Γ))

Where ei = uivi is an arbitrary edge in Ei. We choose edge e1 = u1v1 ∈ E1 as
a representative of E1, and suppose that n is even, (n2 − 1) vertices on upper
polygon and (n2 ) vertices on lower polygon form the set of vertices which are
closer to u1 than v1. (Nu1(e1|Γ)). So is the set (Nv1(e1|Γ)). Also if the edge
e2 = u1v2 ∈ E2 is a representative 0f E2 then (n2 ) vertices on upper polygon
and (n2 ) vertices on lower polygon form the set of vertices which are closer to u1
than v2, (Nu1(e2|Γ)). So is the set (Nv2(e2|Γ)). Therefore we have:

|Nu1(e1|Γ| = |Nv1(e1|Γ)| = n− 1, |Nu1(e2|Γ| = |Nv2(e2|Γ)| = n

2
.
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It is clear that ρ(u) = 4 for every vertex, therefore |E| = 4n, and in two cases n
is even or odd, |E1| = |E2| = 2n, so, we have:

Sz(G) =

2∑
i=1

|Ei|(nui(ei|Γ).nvi(ei|Γ))

= |E1|((nu1(e1|Γ).nv1(e1|Γ)) + |E2|(nu1(e2|Γ).nv2(e2|Γ))

= 2n(n− 1)(n− 1) + 2n(
n

2
)(
n

2
) = 2n(n− 1)2 +

n2

2
= n(

5

2
n2 − 4n+ 2).

Now, when n is odd and e1 = u1v1 and e2 = u1v2 are representative of E1

and E2, respectively considering, (n2 − 1) vertices on upper polygon and (n2 − 1)
vertices on lower polygon form the set Nu1(e1|Γ). So is the set Nv1(e1|Γ). Also
(n+1

2 ) vertices on upper polygon and (n+1
2 ) vertices on lower polygon form the

set Nu1(e2|Γ). So is the set Nv2(e2|Γ). Therefore we have:

|Nu1(e1|Γ| = |Nv1(e1|Γ)| = n− 1, |Nu1(e2|Γ| = |Nv2(e2|Γ)| = n+ 1

2
.

The Szeged index in this case is obtained as follows:

Sz(Γ) =

2∑
i=1

|Ei|(nui(ei|Γ).nvi(ei|Γ))

= |E1|((nu1(e1|Γ).nv1(e1|Γ)) + |E2|(nu1(e2|Γ).nv2(e2|Γ))

= 2n(n− 1)(n− 1) + 2n(
n+ 1

2
)(
n+ 1

2
)

= 2n(n− 1)2 + 2n(
n+ 1

2
)2 = n(

5

2
n2 − 3n+

5

2
).

Proposition 3. The PI index of the graph Γ = Cay(D2n, S1) is:

PI(Γ) =

{
2n(5n− 12), n is even

2n(5n− 11), n is odd.

Proof. Similar to the proof of previous proposition, the action of Aut(Γ) on the
E has two orbits E1, E2 and by the lemma 2, the PI index of Γ can be obtained
by the formula as follows:

(8) PI(Γ) =

2∑
i=1

|Ei|(neiui(ei|Γ) + neivi(ei|Γ)).

Where ei = uivi is an arbitrary edge in Ei. When n is even by considering,
nu1(e1|Γ), nv1(e1|Γ), nu1(e2|Γ), nv2(e2|Γ) in the proof of proposition 2.2 we
have:

(ne1u1(e1|Γ) + ne1v1(e1|Γ)) = (2n− 5), (ne2u1(e2|Γ) + ne2v2(e2|Γ)) =
n

2
− 1.
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So, by (8) PI(Γ) = 2n(2(2n − 5)) + 2n(2(n2 − 1)) = 2n(5n − 12). Similarly in
the case that n is odd we have:

(ne1u1(e1|G) + ne1v1(e1|Γ)) = (2n− 5), (ne2u1(e2|G) + ne2v2(e2|Γ)) =
n− 1

2
.

Therefore PI(Γ) = 2n(2(2n− 5)) + 2n(2(n−12 )) = 2n(5n− 11).

Figure 2: The Cay (Q2n , S2)

3. Computation of Wiener, Szeged and PI indices of Cay(Q2n , S2)

Proposition 4. The Wiener index of the graph H = Cay(Q2n , S2) is W (H) =
2n−1(2n(2n−4 + 1)− 2).

Proof. As what was said in introduction, the Cayley graph is a vertex-transitive
graph so by the lemma1 we have:

(9) W (H) =
1

2
|Q2n |d(x).

Where x is an arbitrary vertex of H. We have Q2n = {1, a, a2, ..., a2n−1−1, b, ab,
a2b, ..., a2

n−1−1b}. Now let x = 1 and calculate d(1), by Fig. 2 we have:

(10) d(1) =
∑
u∈V

d(1, u) =

2n−1−1∑
i=1

d(1, ai) +

2n−1∑
i=1

d(1, aib).

Because the vertices 1, a, a2, ..., a2
n−1−1 form a cycle we have d(1, ai)=d(1, a2

n−1−i),
1 ≤ i ≤ 2n−1,

(11)

2n−1−1∑
i=1

d(1, ai) = 2(

2n−2−1∑
i=1

d(1, ai)) + d(1, a2
n−2

),
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d(1, ai) = i, 1 ≤ i ≤ 2n−3 + 1,

d(1, ai) = 2n−2 − i+ 2, 2n−3 + 2 ≤ i ≤ 2n−2,

d(1, a2
n−2

) = 2.

So:

2n−2−1∑
i=1

d(1, ai) =
2n−3+1∑
i=1

d(1, ai) +
2n−2−1∑
i=2n−3+2

d(1, ai)

2n−3+1∑
i=1

i+
2n−2−1∑
i=2n−3+2

2n−2 − i+ 2(12)

=
(2n−3 + 1)(2n−3 + 2)

2
+

(2n−3)(2n−3 + 1)

2
− 3

= (2n−3 + 1)(2n−3 + 1)− 3 = (2n−3 + 1)2 − 3.

Considering (11),(12) we have:

(13)

2n−1−1∑
i=1

d(1, ai) = 2((2n−3 + 1)2 − 3) + 2 = 2(2n−3 + 1)2 − 4.

Also, the vertices b, ab, a2b, ..., a2
n−1−1b form a cycle so we have d(1, aib) =

d(1, a2
n−2+ib), 1 ≤ i ≤ 2n−2,

(14)
2n−1∑
i=1

d(1, aib) = 2(
2n−2−2∑
i=1

d(1, aib)).

d(1, aib) = i+ 1, 1 ≤ i ≤ 2n−3,

d(1, aib) = 2n−2 − i+ 1, 2n−3 + 1 ≤ i ≤ 2n−2,

2n−2∑
i=1

d(1, aib) =

2n−3∑
i=1

d(1, aib) +

2n−2∑
i=2n−3+1

d(1, aib),

=

2n−3∑
i=1

(i+ 1) +

2n−2∑
i=2n−3+1

(2n−2 − i+ 1) =

2n−3∑
i=1

(i+ 1) +

2n−2∑
i=2n−3+1

i

=
(2n−3 + 1)(2n−3 + 2)

2
− 1 +

(2n−3)(2n−3 + 1)

2
= (2n−3 + 1)(2n−4 + 1)− 1 + (2n−4)(2n−3 + 1)(15)

= (2n−3 + 1)(2n−4 + 1 + 2n−4)− 1

= (2n−3 + 1)(2n−3 + 1)− 1 = (2n−3 + 1)2 − 1 = (2n−2)(2n−4 + 1).
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Now replacing (15) in (14) we have:

(16)
2n−1∑
i=1

d(1, aib) = (2n−1)(2n−4 + 1).

Therefore considering (16) and (13) and replacing in (10) we see:

d(1) = 2(2n−3 + 1)2)− 4 + (2n−1)(2n−4 + 1)

= (2n−1)(2n−4 + 1)− 2 + (2n−1)(2n−4 + 1)(17)

= (2n−1)(2n−3 + 1)− 2 = (2n)(2n−4 + 1)− 2.

So by replacing (17) in (9) the proof is done.

Proposition 5. The Szeged index of the graph H = Cay(Q2n , S2) is:

Sz(H) = 23n−1.

Proof. We denote the vertex set and the edge set of H by V, E respectively.
Note that there is no vertex in V which it’s distances from the nodes of the
edge e ∈ E be the same, for any arbitrary edge e = uv of E. So we have
|Nu(e|H)|+ |Nv(e|H)| = |V |. Also, because the shape of the graph is symmetric,
Fig. 2, so the number of vertices which are closer to u than v are the same to
the vertices which are closer to v than u, for any edge e = uv ∈ E, therefore:

|Nu(e|H)| = |Nv(e|H)| = 1

2
|V | = 1

2
|Q2n | = 2n−1.

By the Fig. 2, it is clear that:

(18) |E| = 2n−1 + 2n−1 + 4.(2n−2) = 2n+1.

So Sz(H) =
∑

e=uv∈E(nu(e|H).nv(e|H)) = (2n−1)(2n−1)|E| = 23n−1.

Proposition 6. The PI index of the graph H = Cay(Q2n , S2) is:

PI(Γ) =

{
2n(7.2n−2 − 9), n > 3

96, n = 3.

Proof. We have PI(H) =
∑

e=uv∈E(neu(e|H)+nev(e|H)). In the case n=3, we
see for any edge e = uv of E, neu(e|H) = nev(e|H) = 3, so by (18) and the
formula of PI index it is done. According to the Fig. 2, it is clear that the
action of Aut(H) on the edge set E of H has two orbits E1,E2. First, the set of
the edges which are the sides of the upper and lower polygons, second the rest
of the edges. we let the edges e1 = u1v1 and e2 = u1v2 as representative of E1

and E2, respectively. By Fig. 2 we have:

ne1u1(e1|H) = ne1v1(e1|H)

= 2n−3 − 1 + 2n−3 − 1 + 2n−1+2n−3−2+(2n−3 − 1).4 + 2=2n − 6.
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And ne2u1(e2|H) = ne2v2(e2|H) = 2n−2 + 2n−2− 2 + 2n−2− 1 = 3(2n−2)− 3. So,
By lemma.2,

PI(H) =
2∑
i=1

|Ei|(neiui(ei|H + neivi(ei|H))

= |E1|(ne1u1(e1|H) + ne1v1(e1|H)) + |E2|(ne2u1(e2|H) + ne2v2(e2|H))

2n(2n − 6) + 2n(3.2n−2 − 3) = 2n(7.2n−2 − 9).
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