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Abstract. Let R be a ring with center Z(R). A mapping F : R → R (not necessarily
additive) is called a multiplicative (generalized)-derivation of R if it is uniquely deter-
mined by a mapping d : R → R such that F (xy) = F (x)y + xd(y) for each x, y ∈ R.
In the present paper, we investigate the commutativity of a semiprime (prime) ring
via studying a number polynomial constraints involving multiplicative (generalized)-
derivations. Moreover, some annihilator conditions are also examined.
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1. Introduction

All through this paper R be an associative ring with center Z(R). A ring R
is said to be a prime ring if for any a, b ∈ R, aRb = (0) implies that either
a = 0 or b = 0 and semiprime if aRa = (0) implies that a = 0. Obviously, every
prime ring is semiprime. For any nonempty subset S of R the right annihilator
rR(S) of S in R is the set of all r ∈ R such that Sr = (0). Accordingly, the left
annihilator lR(S) is the set of all r ∈ R such that rS = (0). The intersection of
right and left annihilators of S in R i.e.

AnnR(S) = {r ∈ R : sr = 0 and rs = 0 for all s ∈ S}

is called an annihilator of S in R . Recall that, for any x, y ∈ R the commutator
and anti-commutator are denoted by the symbols [x, y] = xy − yx and x ◦ y =
xy + yx respectively. We shall frequently use the basic commutator identities:

[xy, z] = x[y, z] + [x, z]y, [x, yz] = y[x, z] + [x, y]z,
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for all x, y, z ∈ R. For any nonempty subset Q of R, a mapping f : R → R is said
to be centralizing on Q if [f(x), x] ∈ Z(R) and commuting if [f(x), x] = 0 for
all x ∈ Q. A derivation (or left multiplier) of R is a map such that d(x+ y) =
d(x) + d(y) and d(xy) = d(x)y + xd(y) (or d(xy) = d(x)y) for all x, y ∈ R.
The notion of derivation was extended to generalized derivation by Bres̆ar [10].
A generalized derivation of R is an additive map uniquely determined by a
derivation d such that F (xy) = F (x)y + xd(y) for all x, y ∈ R.

Inspired by Martindale’s [22] remarkable paper on the additivity of mul-
tiplicative bijective mappings, Daif [12] introduced multiplicative derivation,
which is a map d : R → R satisfying Leibnitz rule and not necessarily additive
on R. The complete description of such mappings was explained by Gold-
mann and S̆emrl [18]. Daif and Tammam-El-Sayiad [14] extended this notion
to multiplicative generalized derivation by dropping the additivity assumption
of generalized derivation F . Recently, Dhara and Ali [16] made a slight gen-
eralization in this definition of multiplicative generalized derivation by relaxing
the conditions on d and call it multiplicative (generalized)-derivation, which is
a map F : R → R (not necessarily additive) along with a map d : R → R
such that F (xy) = F (x)y + xd(y) where x, y ∈ R. Observe that every multi-
plicative derivation is a multiplicative (generalized)-derivation, so multiplicative
(generalized)-derivation covers both the concepts of multiplicative derivation (if
F = d) and multiplicative left multiplier (if d = 0). In this way, multiplicative
(generalized)-derivation is a more satisfactory generalization of multiplicative
derivation.

2. Some preliminary results

Throughout this paper, we shall use the following well known lemmas to prove
our results:

Lemma 1 (Lemma 2, [13]). If R is a prime ring containing nonzero central
ideal, then R is commutative.

Lemma 2 (Corollary 2, [20]). If R is a semiprime ring and I is an ideal of R,
then I ∩AnnR(I) = (0).

Lemma 3 (Lemma 2.3, [17]). If R is a prime ring, I a nonzero ideal and d is
derivation of R. If for some 0 ̸= a ∈ R, [ad(x), x] = 0 for all x ∈ I, then d = 0
or R is commutative.

Lemma 4 (Corollary, [20]). Let R be a semiprime ring and let I be a nonzero
right ideal of R. If I is commutative as a ring, then I ⊆ Z(R).

Lemma 5 (Theorem, [21]). Let g be a polynomial in n noncommuting variables
u1, u2..., un with relatively prime integer coefficients. Then the following are
equivalent:
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(i) Every ring satisfying the polynomial identity g = 0 has nil commutator
ideal.

(ii) Every semiprime ring satisfying g = 0 is commutative.

(iii) For every prime p the ring of 2× 2 matrices over Zp fails to satisfy g = 0.

Throughout this paper, R will denote a semiprime ring with nonzero ideal
I, unless otherwise stated.

3. Main results

3.1 On central value conditions

During the last seven decades, there has been a large amount of results concern-
ing the conditions that force a ring to be commutative. In this direction, Posner
[23] proved a classical result: Every prime ring admitting a nonzero centralizing
derivation is commutative. This theorem has been generalized in many ways.
Towards the commutativity of prime rings with derivations Ashraf et al. [5]
proved: Let R be a prime ring and I be a nonzero ideal of R. Suppose that
d is a nonzero derivation of R such that d(xy) ± xy ∈ Z(R) where x, y ∈ I,
then R is commutative. In [3], Ashraf et al. extend these results for generalized
derivations and obtained the following theorem: Let R be a prime ring and I
a nonzero ideal of R. Suppose F is a generalized derivation associated with a
derivation d on R. If one of the following:

(i) F (xy)± xy ∈ Z(R),

(ii) F (xy)± yx ∈ Z(R),

(iii) F (x)F (y)± xy ∈ Z(R) holds on I, then R is commutative.

After that, Atteya [6] studied these situations on semiprime rings and obtained
the following results: Let R be a semiprime ring and I be a nonzero ideal of R.
If R admits a generalized derivation F associated with a derivation d such that
any one of the following:

(i) F (xy)± xy ∈ Z(R),

(ii) F (xy)± yx ∈ Z(R),

(iii) F (x)F (y)±xy ∈ Z(R) holds on I, then R contains a nonzero central ideal.

It is a fact of interest to generalize these results to multiplicative (generalized)-
derivations. In this line of investigation Dhara and Ali [16] studied the following
identities: (i) F (xy) ± xy = 0, (ii) F (xy) ± yx = 0, (iii) F (xy) ± xy ∈ Z(R),
(iv) F (x)F (y) ± yx ∈ Z(R), where x, y varies over some suitable subset of
semiprime ring R. In this section, we study central valued conditions involv-
ing multiplicative (generalized)-derivations and consequently give a generalized
version of some known results.
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Theorem 1. Let F : R → R be a multiplicative (generalized)-derivation of
R together with a mapping d : R → R. If ϕ is a mapping of R such that
F (xy) + xy ± [ϕ(x), y] ∈ Z(R) for all x, y ∈ I, then [d(x), x] = 0 for all x ∈ I.

Furthermore, if ϕ is an automorphism of R, then I ⊆ Z(R).

Proof. For each x, y ∈ I, we consider

(3.1) F (xy) + xy + [ϕ(x), y] ∈ Z(R).

Replace y by yz in (3.1), where z ∈ I and we get (F (xy) + xy + [ϕ(x), y])z +
xyd(z) + y[ϕ(x), z] ∈ Z(R) . On commuting with z and using our hypothesis,
we find

(3.2) [xyd(z), z] + [y[ϕ(x), z], z] = 0.

Again replace y by zy in (3.2), we have

(3.3) [xzyd(z), z] + z[y[ϕ(x), z], z] = 0.

Left multiply (3.2) by z and subtract from (3.3) in order to obtain

(3.4) [[x, z]yd(z), z] = 0.

Since I is an ideal of R so we substitute xd(z) in place of x in (3.4) and get

(3.5) [x[d(z), z]yd(z), z] + [[x, z]d(z)yd(z), z] = 0.

Now, substitute d(z)y instead of y in (3.4) and subtract from (3.5) to obtain

(3.6) [x[d(z), z]yd(z), z] = 0.

Putting x = d(z)x in (3.6) and we obtain d(z)[x[d(z), z]yd(z), z]+[d(z), z]x[d(z), z
]yd(z) = 0. Relation (3.6) reduces it to [d(z), z]x[d(z), z]yd(z) = 0. That is,
(I[d(z), z])3 = (0). But R has no nonzero nilpotent ideal, hence I[d(z), z] = (0).
Clearly, [d(z), z] ∈ I as well as [d(z), z] ∈ AnnR(I). That means [d(z), z] ∈
I∩AnnR(I). Therefore, Lemma 2 implies that [d(z), z] = 0 for each z ∈ I. This
process also shows that every nonzero ideal of a semiprime ring is a semiprime
ring itself.

Next, we assume that ϕ is an automorphism of R. Replacing y by yz in
(3.2), we get

(3.7) [xyzd(z), z] + [yz[ϕ(x), z], z] = 0.

Multiplying (3.2) from right by z, we get

(3.8) [xyd(z)z, z] + [y[ϕ(x), z]z, z] = 0.
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Subtracting (3.7) from (3.8) and we find [xy[d(z), z], z] + [y[[ϕ(x), z], z], z] = 0.
Since [d(z), z] = 0, we left with the expression

(3.9) [y[[ϕ(x), z], z], z] = 0.

Putting y = ty in (3.9), where t ∈ I, we have t[y[[ϕ(x), z], z], z]+[t, z]y[[ϕ(x), z], z]
= 0 for each x, y, z, t ∈ I. Use of Eq. (3.9) gives

(3.10) [t, z]y[[ϕ(x), z], z] = 0.

Replace t by t[ϕ(x), z] in (3.10) and we obtain

(3.11) t[[ϕ(x), z], z]y[[ϕ(x), z], z] + [t, z][ϕ(x), z]y[[ϕ(x), z], z] = 0.

Replace y by [ϕ(x), z]y in (3.10) and combine with (3.11) in order to find
t[[ϕ(x), z], z]y[[ϕ(x), z], z] = 0. In particular, we have y[[ϕ(x), z], z]Ry[[ϕ(x), z], z]
= (0). Hence, we obtain y[[ϕ(x), z], z] = 0. That is, I[[ϕ(x), z], z] = (0). Thus,
semiprimeness of I assures that, for each x, z ∈ I

(3.12) [[ϕ(x), z], z] = 0.

Linearizing (12) w.r.t.z, we get

(3.13) [[ϕ(x), t], z] + [[ϕ(x), z], t] = 0.

Substituting zt in place of z in (3.13), where t ∈ I. We obtain

(3.14) [[ϕ(x), t], z]t+ z[[ϕ(x), t], t] + [[ϕ(x), z], t]t+ [z[ϕ(x), t], t] = 0.

Using (3.12) and (3.13) in (3.14), it follows that

(3.15) [z, t][ϕ(x), t] = 0.

Replace x by xϕ−1(z) in (3.15), we obtain [z, t]ϕ(x)[z, t] = 0 for any x, z, t ∈ I.
Since ϕ is an automorphism of R so ϕ(I) is an ideal of R. Thus, we may infer
that I is commutative as a ring. Hence, by Lemma 4 we infer that I ⊆ Z(R).

On substituting −ϕ in place of ϕ in (3.1) and following the same argument
with necessary variations, we get the same conclusions for the situation F (xy)+
xy − [ϕ(x), y] ∈ Z(R).

Theorem 2. Let F : R → R be a multiplicative (generalized)-derivation of
R together with a mapping d : R → R. If ϕ is a mapping of R such that
F (xy)− xy ± [ϕ(x), y] ∈ Z(R) for all x, y ∈ I, then [d(x), x] = 0 for all x ∈ I.

Furthermore, if ϕ is an automorphism of R, then I ⊆ Z(R).

Proof. On replacing F by −F and d with −d in Theorem 1, we can get the
desired results.
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Theorem 3. Let F : R → R be a multiplicative (generalized)-derivation of
R together with a mapping d : R → R. If ϕ is a mapping of R such that
F (x)F (y) + xy ± [ϕ(x), y] ∈ Z(R) for all x, y ∈ I, then [d(x), x] = 0 for all
x ∈ I.

Furthermore, if ϕ is an automorphism of R, then I ⊆ Z(R).

Proof. For any x, y ∈ I, we consider

(3.16) F (x)F (y) + xy + [ϕ(x), y] ∈ Z(R).

On replacing y by yz in (3.16), where z ∈ I, we find (F (x)F (y)+xy+[ϕ(x), y])z+
F (x)yd(z)+y[ϕ(x), z] ∈ Z(R). On commuting with z, our hypothesis forces that

(3.17) [F (x)yd(z), z] + [y[ϕ(x), z], z] = 0.

Put y = zy in (3.17) and we get

(3.18) [F (x)zyd(z), z] + z[y[ϕ(x), z], z] = 0.

Left multiply (3.17) by z and subtract from (3.18), we have

(3.19) [[F (x), z]yd(z), z] = 0.

Replace x by xz in (3.19) and we obtain

(3.20) [[F (x), z]zyd(z), z] + [[xd(z), z]yd(z), z] = 0.

Replace y by zy in (3.19) and subtract from (3.20) to obtain [[xd(z), z]yd(z), z] =
0. That is, [x[d(z), z]yd(z), z] + [[x, z]d(z)yd(z), z] = 0. This expression is same
as (3.5), so the similar arguments imply that [d(z), z] = 0 for each z in I. Now,
we replace y by yz in (3.17) and get

(3.21) [F (x)yzd(z), z] + [yz[ϕ(x), z], z] = 0.

Right multiply (3.17) by z, we get

(3.22) [F (x)yd(z)z, z] + [y[ϕ(x), z]z, z] = 0.

Combining relations (3.21) and (3.22), we have [F (x)y[d(z), z], z]+[y[[ϕ(x), z], z],
z] = 0. Utilizing the fact [d(z), z] = 0, for all z ∈ I, we get [y[[ϕ(x), z], z], z] = 0.
This expression is same as equation (3.9), again the proof follows from Theorem
1.

On substituting −ϕ in place of ϕ in (3.16) and following the same tech-
nique with necessary variations, we get the same conclusions for the situation
F (x)F (y) + xy − [ϕ(x), y] ∈ Z(R).

Theorem 4. Let F : R → R be a multiplicative (generalized)-derivation of
R together with a mapping d : R → R. If ϕ is a mapping of R such that
F (x)F (y) − xy ± [ϕ(x), y] ∈ Z(R) for all x, y ∈ I, then [d(x), x] = 0 for all
x ∈ I.

Furthermore, if ϕ is an automorphism of R, then I ⊆ Z(R).
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Proof. On replacing F by −F and d by −d in Theorem 3, we can get the
desired results.

Now, we extend some theorems of Tiwari et al. [25].

Theorem 5. Let F,G : R → R be multiplicative (generalized)-derivations of
R together with mappings d, g respectively. If ϕ is a mapping of R such that
G(xy) + F (x)F (y) ± [ϕ(x), y] ∈ Z(R) for all x, y ∈ I, then [d(x), x] = 0 and
[g(x), x] = 0 for all x ∈ I.

Furthermore, if R is prime and ϕ is an automorphism of R, then R is com-
mutative.

Proof. For each x, y ∈ I, we consider

(3.23) G(xy) + F (x)F (y) + [ϕ(x), y] ∈ Z(R).

Putting y = yz in (3.23), where z ∈ I, we get (G(xy)+F (x)F (y)+ [ϕ(x), y])z+
xyg(z) + F (x)yd(z) + y[ϕ(x), z] ∈ Z(R). On commuting with z, our hypothesis
yields

(3.24) [xyg(z), z] + [F (x)yd(z), z] + [y[ϕ(x), z], z] = 0.

Replace y by zy in (3.24) and we get

(3.25) [xzyg(z), z] + [F (x)zyd(z), z] + z[y[ϕ(x), z], z] = 0.

Left multiply (3.24) by z and subtract from (3.25), we have

(3.26) [[x, z]yg(z), z] + [[F (x), z]yd(z), z] = 0.

On replacing x by xz in (3.26), we get

(3.27) [[x, z]zyg(z), z] + [[F (x), z]zyd(z), z] + [[xd(z), z]yd(z), z] = 0.

Replace y by zy in (3.26) and subtract from (3.27) to find

(3.28) [[xd(z), z]yd(z), z] = 0.

That is, [x[d(z), z]yd(z), z] + [[x, z]d(z)yd(z), z] = 0. This equation is same as
(3.5), so similar arguments imply that [d(z), z] = 0 for each z ∈ I. Now, we
substitute yz instead of y in (3.26) in order to obtain

(3.29) [[x, z]yzg(z), z] + [[F (x), z]yzd(z), z] = 0.

Right multiply (3.26) by z, we get

(3.30) [[x, z]yg(z)z, z] + [[F (x), z]yd(z)z, z] = 0.
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Subtract (3.29) from (3.30), we obtain [[x, z]y[g(z), z], z]+[[F (x), z]y[d(z), z], z] =
0. Utilizing the fact [d(z), z] = 0, for all z ∈ I, we find

(3.31) [[x, z]y[g(z), z], z] = 0.

Put x = xg(z) in (3.31), we get

(3.32) [x[g(z), z]y[g(z), z], z] + [[x, z]g(z)y[g(z), z], z] = 0.

Put y = g(z)y in (3.31) and subtract from (3.32) in order to get

(3.33) [x[g(z), z]y[g(z), z], z] = 0.

Substituting g(z)x for x in (3.33) and we get g(z)[x[g(z), z]y[g(z), z], z] + [g(z),
z]x[g(z), z]y[g(z), z] = 0. Eq. (3.33) reduces it to [g(z), z]x[g(z), z]y[g(z), z] =
0. It implies that (I[g(z), z])3 = (0). Since R has no nonzero ideal, we have
I[g(z), z] = (0). Semiprimeness of I yields that for each z ∈ I, [g(z), z] = 0.

Next, let us assume that R is a prime ring and ϕ is an automorphism of R.
Replace y by yz in (3.24) and we find

(3.34) [xyzg(z), z] + [F (x)yzd(z), z] + [yz[ϕ(x), z], z] = 0.

Right multiply (3.24) by z in order to get

(3.35) [xyg(z)z, z] + [F (x)yd(z)z, z] + [y[ϕ(x), z]z, z] = 0.

Subtracting (3.34) from (3.35) and we find

(3.36) [xy[g(z), z], z] + [F (x)y[d(z), z], z] + [y[[ϕ(x), z], z], z] = 0.

Since d and g are commuting on I, Eq. (3.36) reduces to [y[[ϕ(x), z], z], z] = 0.
This is same as equation (3.9), again from Theorem 1, we get I ⊆ Z(R). By
Lemma 1, R is commutative.

On substituting −ϕ in place of ϕ in (3.23) and following the same argument
with necessary variations, we get the same conclusions for the identity G(xy) +
F (x)F (y)− [ϕ(x), y] ∈ Z(R).

Corollary 1 (Theorem 1, [25]). Let F,G : R → R be multiplicative (generali-
zed)-derivations of R together with mappings d, g respectively. If ϕ is a mapping
of R such that G(xy)+F (x)F (y)±[ϕ(x), y] = 0 for all x, y ∈ I, then [d(x), x] = 0
and [g(x), x] = 0 for all x ∈ I.

Furthermore, if R is prime and ϕ is an automorphism of R, then R is com-
mutative.

Theorem 6. Let F,G : R → R be multiplicative (generalized)-derivations of
R together with mappings d, g respectively. If ϕ is a mapping of R such that
G(xy) − F (x)F (y) ± [ϕ(x), y] ∈ Z(R) for all x, y ∈ I, then [d(x), x] = 0 and
[g(x), x] = 0 for all x ∈ I.

Furthermore, if R is prime and ϕ is an automorphism of R, then R is com-
mutative.



384 GURNINDER S. SANDHU and DEEPAK KUMAR

Proof. On replacing G by −G and g by −g in Theorem 5, we can get the
desired results.

Corollary 2 (Theorem 2, [25]). Let F,G : R → R be multiplicative (generalized)-
derivations of R together with mappings d, g respectively. If ϕ is a mapping of
R such that G(xy)−F (x)F (y)± [ϕ(x), y] = 0 for all x, y ∈ I, then [d(x), x] = 0
and [g(x), x] = 0 for all x ∈ I.

Furthermore, if R is prime and ϕ is an automorphism of R, then R is com-
mutative.

Corollary 3. Let F,G : R → R be multiplicative (generalized)-derivations of R
together with mappings d, g respectively. If any of the following condition

(i) G(xy)± F (x)F (y)± [x, y] ∈ Z(R)

(ii) G(xy)± F (x)F (y)± yx ∈ Z(R)

(iii) G(xy)± F (x)F (y) ∈ Z(R)

(iv) G(xy)± F (x)F (y)± xy ∈ Z(R)

holds on R. Then R is commutative.

Proof. (i) Firstly, we consider G(xy) + F (x)F (y) ± [x, y] ∈ Z(R) for each
x, y ∈ R. In particular, for ϕ = id (identity map), Theorem 5 gives us that
[y[[x, z], z], z] = 0 where x, y, z ∈ R. From Theorem 5 commutativity of R easily
follows. We also can prove the same conclusion with an alternative way. Since
for each x, y, z ∈ I, we have [y[[z, x], z], z] = 0, which is a polynomial identity
in noncommuting three variables on R. If possible assume that, for some prime
integer p the ring M2(GF (p)) satisfies the polynomial identity [y[[z, x], z], z] = 0.
But, if we choose x = e11, y = e12, and z = e12 + e21, where eij denotes the
2× 2 matrix with 1 in (ij)th-entry and 0 elsewhere. With these choices we see
that [y[[z, x], z], z] = 2(e11 − e22), which is a contradiction. Hence by Lemma 5,
R must be commutative.

Similarly, we can prove the commutativity of R for the constraint G(xy) −
F (x)F (y)± [x, y] ∈ Z(R).

The proof of (ii), (iii) and (iv) is straight forward from the fact that if G is a
multiplicative (generalized)-derivation of R associated with a mapping g, then
so is G± id, where id is the identity map of R.

Immediately after Theorem 5 and Theorem 6 with Corollary 4.2 of [9], we
give the following result:

Corollary 4. Let F,G : R → R be multiplicative generalized derivations of
R together with derivations d, g respectively. If for any map ϕ on R, G(xy) ±
F (x)F (y) ± [ϕ(x), y] ∈ Z(R) where x, y ∈ R, then there exist λ1, λ2 ∈ C and
additive mappings ζ1, ζ2 : R → C respectively such that d(x) = λ1x+ ζ1(x) and
g(x) = λ2x+ ζ2(x) for all x ∈ R.
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Next, we give a generalization of Theorem 2.7 of [3] as a consequence of
above results in the setting of generalized derivations:

Remark 1. Let I be a nonzero ideal of a prime ring R. If F and G are
generalized derivations of R together with derivations d and g, then the following
conditions are equivalent:

(i) G(xy) + F (x)F (y) ± [x, y] ∈ Z(R) or G(xy) − F (x)F (y) ± [x, y] ∈ Z(R)
for all x, y ∈ I.

(ii) G(xy) +F (x)F (y)± yx ∈ Z(R) or G(xy)−F (x)F (y)± yx ∈ Z(R) for all
x, y ∈ I.

(iii) G(xy) + F (x)F (y) ∈ Z(R) or G(xy)− F (x)F (y) ∈ Z(R) for all x, y ∈ I.

(iv) G(xy) +F (x)F (y)± xy ∈ Z(R) or G(xy)−F (x)F (y)± xy ∈ Z(R) for all
x, y ∈ I.

(v) R is commutative.

Proof. Clearly, (v) ⇒ (i), (v) ⇒ (ii), (v) ⇒ (iii) and (v) ⇒ (iv).

(i) ⇒ (v) Let x ∈ I be a fixed element. Let Ax = {y ∈ I : G(xy) +
F (x)F (y)±[x, y] ∈ Z(R)} and Bx = {y ∈ I : G(xy)−F (x)F (y)±[x, y] ∈ Z(R)}.
Since F and G are additive mappings so both Ax and Bx are additive subgroups
of I such that I = Ax ∪Bx. Therefore, Brauer’s trick forces that either I = Ax

or I = Bx. Now, for some fixed y ∈ I, let Ay = {x ∈ I : G(xy) + F (x)F (y) ±
[x, y] ∈ Z(R)} and By = {x ∈ I : G(xy) − F (x)F (y) ± [x, y] ∈ Z(R)}. By the
same arguments as above, we find that either I = Ay or I = By. Hence, the
commutativity of R follows from Theorem 5 and Theorem 6 with ϕ = id the
identity map.

(ii) ⇒ (v) By substituting ϕ = id and G = G∓id together with g in Theorem
5 and Theorem 6, we may infer that R is commutative if any one of

(a) G(xy) + F (x)F (y)± yx ∈ Z(R)

(b) G(xy)− F (x)F (y)± yx ∈ Z(R)

holds on I. For a fixed element x ∈ I we set Ax = {y ∈ I : G(xy)+F (x)F (y)±
yx ∈ Z(R)} and Bx = {y ∈ I : G(xy) − F (x)F (y) ± yx ∈ Z(R)}. Further, by
repeating the same arguments we can get the required results.

(iii) ⇒ (v) By substituting ϕ = 0 in Theorem 5 and Theorem 6, we infer
that R is commutative if any one of

(a) G(xy) + F (x)F (y) ∈ Z(R)

(b) G(xy)− F (x)F (y) ∈ Z(R)
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holds on I. For a fixed element x ∈ I we set Ax = {y ∈ I : G(xy)+F (x)F (y) ∈
Z(R)} and Bx = {y ∈ I : G(xy)− F (x)F (y) ∈ Z(R)}. Again, by repeating the
same arguments we can get the desired results.

(iv) ⇒ (v) As we just shown that if either G(xy) + F (x)F (y) ∈ Z(R) or
G(xy)− F (x)F (y) ∈ Z(R) holds on I, then R is commutative. By replacing G
by G± id in these equations, we can easily get the desired conclusion.

3.2 On annihilator conditions

Let S be any subset of R. A derivation d is said to be acting as a homomorphism
or as an anti-homomorphism on a set S if d(xy)− d(x)d(y) = 0 for all x, y ∈ S
or d(xy) − d(y)d(x) = 0 for all x, y ∈ S respectively. Study of the derivations
acting as homomorphisms or as anti-homomorphisms on associative rings was
initiated by Bell and Kappe in [7]. After that a number of results has been
obtained with various types of derivations acting as homomorphisms or as anti-
homomorphisms on some appropriate subsets of associative rings (see [1], [2],
[15], [17], [19], [24] and references therein). In [19], Gusic proved the following:
Let R be an associative prime ring, let d be any function on R (not necessarily a
derivation nor an additive function), let F be any function on R (not necessarily
additive) satisfying F (xy) = F (x)y+ xd(y) for all x, y ∈ R, and let I be a non-
zero ideal in R.

Assume that F (xy)−F (x)F (y) = 0 for all x, y ∈ I. Then d = 0, and F = 0
or F (x) = x for any x ∈ R.

Assume that F (xy) − F (y)F (x) = 0 for all x, y ∈ I. Then d = 0, and
F = 0 or F (x) = x for any x ∈ R (in this case R should be commutative) .
Ali et al. [2] studied the same functional identities on square closed Lie ideal of
2-torsion free prime ring. In [27], Dhara et al. extend this notion by studying
the algebraic identities F (x)G(y) ± H(xy) ∈ Z(R) and F (x)G(y) ± H(yx) ∈
Z(R) on square-closed Lie ideals of prime ring of char ̸= 2, where F,G,H are
generalized derivations of R. Further, Rehman and Raza in [26] gave a study of
generalized derivations acting as homomorphism or anti-homomorphism on Lie
ideals (without the assumption of square-closeness) of 2-torsion free prime ring.

Recently, Dhara et al. [17] obtained the following result: Let R be a prime
ring, I a nonzero ideal of R and F : R → R be a multiplicative (generalized)-
derivation associated with the map d : R → R. For some 0 ̸= a ∈ R, suppose
that a(F (xy)±F (x)F (y)) = 0 for each x, y ∈ I. Then one of the following hold:

1. d(R) = 0 and aF (R) = 0.

2. d(R) = 0 and F (r) = ∓r, where r ∈ R.

Following this line of investigation, in this section we studied the situations
a(F (xy)± F (x)F (y)) ∈ Z(R) and a(F (xy)± F (y)F (x)) = 0.

Theorem 7. Let (0, Id ̸=)F : R → R be a multiplicative (generalized)-derivation
of R together with a mapping d : R → R. If for some 0 ̸= a ∈ R, a(F (xy) ±
F (x)F (y)) ∈ Z(R) for all x, y ∈ I, then [ad(z), z] = 0 for all z ∈ I.
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Furthermore, if R is prime and d is a derivation on R, then R is commuta-
tive.

Proof. For each x, y ∈ I, we consider

(3.37) a(F (xy)± F (x)F (y)) ∈ Z(R).

Replace y by yt in (3.37), where t ∈ I, we find a(F (xy)±F (x)F (y))t+a(xyd(t)±
F (x)yd(t)) ∈ Z(R). On commuting with t and using (3.37), we get

(3.38) [a(xyd(t)± F (x)yd(t)), t] = 0.

Put y = ty in (3.38) and we obtain

(3.39) [a(xtyd(t)± F (x)tyd(t)), t] = 0.

On replacing x by xt in (3.38), we get

(3.40) [a(xtyd(t)± F (x)tyd(t)), t]± [a(xd(t)yd(t)), t] = 0.

Subtracting (3.39) from (3.40), we get [a(xd(t)yd(t)), t] = 0. Substituting d(t)x
in place of x, we obtain [ad(t)xd(t)yd(t), t] = 0. That is,

(3.41) ad(t)xd(t)yd(t)t− tad(t)xd(t)yd(t) = 0.

Replacing x by xad(t)z in (3.41), where z ∈ I, we find

ad(t)xad(t)zd(t)yd(t)t− tad(t)xad(t)zd(t)yd(t) = 0.

Making use of (3.41), we get

ad(t)xtad(t)zd(t)yd(t)− ad(t)xad(t)zd(t)tyd(t) = 0.

(3.42) ad(t)x[ad(t)zd(t), t]yd(t) = 0.

Putting x = zd(t)x in (3.42) in order to get

(3.43) ad(t)zd(t)x[ad(t)zd(t), t]yd(t) = 0.

Replacing x by tx in (3.43), we get

(3.44) ad(t)zd(t)tx[ad(t)zd(t), t]yd(t) = 0.

Left multiply (3.43) by t and subtract it from (3.44), we left with

[ad(t)zd(t), t]x[ad(t)zd(t), t]yd(t) = 0.

In this way, we obtain

[ad(t)zd(t), t]x[ad(t)zd(t), t]y[ad(t)zd(t), t] = 0.
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That is, for each z, t ∈ I we have(I[ad(t)zd(t), t])3 = (0). Semiprimeness of R
forces that I[ad(t)zd(t), t] = (0). Hence, for each t, z ∈ I, we get [ad(t)zd(t), t] =
0. That is,

(3.45) ad(t)zd(t)t− tad(t)zd(t) = 0.

Substitute zad(t)w for z in (3.45), where w ∈ I, we get

(3.46) ad(t)zad(t)wd(t)t− tad(t)zad(t)wd(t) = 0.

By using (3.45), equation (3.46) can be written as

0 =ad(t)ztad(t)wd(t)− ad(t)zad(t)twd(t)

=ad(t)z[t, ad(t)]wd(t).
(3.47)

Replacing z by tz and w by wt in (3.47) in order to get

(3.48) ad(t)tz[t, ad(t)]wtd(t) = 0.

Multiply t on both sides of (3.47), we have

(3.49) tad(t)z[t, ad(t)]wd(t)t = 0.

Subtracting (3.48) and (3.49) to obtain [ad(t), t]z[ad(t), t]w[ad(t), t] = 0. That
means, (I[ad(t), t])3 = (0). Hence, by the same reasons we obtain [ad(t), t] = 0
for any t ∈ I, as desired.

Further, if R is a prime ring and d is derivation of R, then by Lemma 3,
either d = 0 or R is commutative. If d = 0 then our hypothesis gives,

(3.50) aF (x)(y − F (y)) ∈ Z(R).

Replacing y by yk in (3.50), where k ∈ I, we get

(3.51) aF (x)(y − F (y))k ∈ Z(R).

On commuting both sides by j ∈ I, we find

(3.52) aF (x)(y − F (y))kj − jaF (x)(y − F (y))k = 0.

By using (3.51) and (3.52), we get j(aF (x)(y − F (y)))k ∈ Z(R). Put r =
aF (x)(y−F (y)) and our assumption implies that r ̸= 0 so, we have IrI ⊆ Z(R).
That means R contains a nonzero central ideal. Hence, by Lemma 1, R is
commutative.

Example 1. Consider R =

{(
a b
0 c

)
: a, b, c ∈ Z2

}
, be a ring over inte-

gers modulo 2 and let I =

{(
a b
0 0

)
: a, b ∈ Z2

}
, be an ideal of R. We
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define maps F, d : R → R by F

(
a b
0 c

)
=

(
a nb
0 0

)
, d

(
a b
0 c

)
=(

0 (n− 1)b
0 0

)
, where n is any positive integer. Clearly,F is a multiplica-

tive (generalized)-derivation associated with the map d and for any 0 ̸= a ∈ R
it is easy to see that the identities a(F (xy)+F (x)F (y)) ∈ Z(R) and a(F (xy)−
F (x)F (y)) ∈ Z(R) hold for each x, y ∈ I. Here R is not semiprime ring because(

0 1
0 0

)
R

(
0 1
0 0

)
= (0). But neither [ad(z), z] ̸= (0) for all z ∈ I nor R is

commutative. Hence, the condition of semiprimeness and primeness in Theorem
7 is not superfluous.

Recently, in [11] Camci and Aydin proved that: If F is a multiplicative
(generalized)-derivation of a semiprime (prime) ring R together with a map f ,
then f must be multiplicative derivation of R. In the following theorem, we are
taking f as a left multiplier instead of a multiplicative derivation.

Theorem 8. Let R be a non-commutative prime ring and I be a nonzero ideal
of R. Let F : R → R be a mapping (not necessarily additive) of R such that
F (xy) = F (x)y+xd(y), where d is a left-multiplier of R. If for some 0 ̸= a ∈ R,
a(F (xy)± F (y)F (x)) = 0 for all x, y ∈ I, then either aF (R) = (0) or F : R →
Z(R).

Proof. For each x, y ∈ I, we consider

(3.53) a(F (xy)− F (y)F (x)) = 0.

Replacing x by xy in (3.53), we get a(F (xy)y+xyd(y)−F (y)F (x)y−F (y)xd(y)) =
0 for all x, y ∈ I. Our hypothesis forces that

(3.54) axyd(y) = aF (y)xd(y).

Putting ax in place of x in (3.54), we find

(3.55) a2xyd(y) = aF (y)axd(y).

Left multiply (3.54) by a and subtract from (3.55) and we get a[F (y), a]xd(y) =
0. Primeness of R implies that either d(I) = (0) or a[F (I), a] = (0).

We assume that

(3.56) a[F (y), a] = 0, for all y ∈ I.

On substitution of yx for y in (3.56), where x ∈ I, we have aF (y)[x, a] +
a[yd(x), a] = 0. Replacing x by zx, where z ∈ I, in this expression and using it,
we obtain aF (yz)[x, a] = 0. For some r ∈ R, substitute xr in place of x to get
aF (yz)x[r, a] = 0. Replace x by px, where p ∈ R and we get aF (yz)Rx[r, a] =
(0). Therefore, either aF (I2) = 0 or I[r, a] = (0). If I[r, a] = (0), then a ∈ Z(R).
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Since we know that center of a prime ring contains no zero divisor, so Eq. (3.54)
gives that (xy − F (y)x)d(y) = 0 for each x, y ∈ I. For some t ∈ I, replacing x
by tx, we find

(3.57) (txy − F (y)tx)d(y) = 0

On pre-multiplying the expression (xy − F (y)x)d(y) = 0 by t, we obtain

(3.58) (txy − tF (y)x)d(y) = 0

Now we combine (3.57) and (3.58) in order to get [F (y), t]xd(y) = 0. It implies
that either d(I) = (0) or [F (I), I] = (0). Further, if for any x, y ∈ I, [F (x), y] =
0. Putting x = xy, we find x[d(y), y] + [x, y]d(y) = 0 for any x, y ∈ I. Again we
put wx instead of x in the last relation, for all w ∈ I, we obtain [w, y]xd(y) = 0.
For some r ∈ R, we replace x by rx and obtain [w, y]Rxd(y) = (0) where
x, y, w ∈ I. It implies that either [I, I] = (0) or d(I) = (0). Since R is assumed
to be non-commutative, by Lemma 1, [I, I] ̸= (0), so we have d(I) = (0). On
the other side, if aF (yz) = 0 for each y, z ∈ I, then for some t ∈ I, substitution
of zt for z yields that ayzd(t) = 0. Since a ̸= 0 and I a nonzero ideal of the
prime ring R, we have d(I) = (0). Therefore, each of our case gives d(I) = 0.

Next, we see effect of this outcome d(I) = (0) on the behavior of the mapping
F . We consider, d(I) = (0) our hypothesis implies

(3.59) aF (x)y = aF (y)F (x).

Replacing y by yt in (3.59) where t ∈ I, we get

(3.60) aF (x)yt = aF (y)tF (x).

Right multiply (3.59) by t and subtract form (3.60) in order to get aF (y)[F (x), t] =
0. Put y = ry in the last expression, where r ∈ R, we find aF (r)y[F (x), t] = 0.
For some s ∈ R again we replace y be sy in order to get aF (R)RI[F (I), I] = (0).
Primeness of R implies that either aF (R) = (0) or I[F (I), I] = (0). Assume
that I[F (I), I] = (0). That means for each x, t ∈ I, we have

(3.61) [F (x), t] = 0.

Putting x = rx where r ∈ R, in the above relation to obtain [F (r), t]x +
F (r)[x, t] = 0. In particular, we obtain [F (r), t]t = 0. Linearizing the last
relation w.r.t.t and we get

(3.62) [F (r), t]y + [F (r), y]t = 0.

Substitute ys for y in (3.62), where s ∈ R, we obtain

(3.63) [F (r), t]ys+ [F (r), y]st+ y[F (r), s]t = 0.
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Combining (3.62) and (3.63) and we have

(3.64) [F (r), y][s, t] + y[F (r), s]t = 0.

Replace t by tz in (3.64), where z ∈ I, we get [F (r), y][s, t]z + [F (r), y]t[s, z] +
y[F (r), s]tz = 0. Eq. (3.64) reduces it to [F (r), y]t[s, z] = 0, for all y, t, z ∈
I and r, s ∈ R. In particular, putting s = F (r) and y = z, we obtain
[F (r), z]I[F (r), z] = (0). Thus, by primeness of I for each r ∈ R and z ∈ I, we
have [F (r), z] = 0. Evidently, [F (r), s] = 0, where r, s ∈ R i.e. F (R) ⊆ Z(R).
Hence, F sends R into Z(R).

On replacing F by −F and d by −d in the proof given above, we can get the
same conclusions for the situation a(F (xy) + F (y)F (x)) = 0. Hence, it proves
the theorem.

We conclude with the following example, which is showing that the Theorem
8 can’t be extended to multiplicative (generalized)-derivations.

Example 2. Consider R =

{(
m n
p q

)
: m,n, p, q ∈ Z2

}
, be a ring over in-

tegers modulo 2. Since a matrix ring over an integral domain is a prime ring,

so R is a non-commutative prime ring. Let I =

{(
m n
0 0

)
: m,n ∈ Z2

}
, be

an ideal of R. We define maps F, d : R → R by F

(
m n
p q

)
=

(
m 0
p 0

)
, d

(
m n
p q

)
=

(
0 n
p 0

)
. Note that F is a multiplicative (generalized)-

derivation associated with the map d. For any 0 ̸= a ∈ R, it is easy to verify
that the identities a(F (xy) + F (y)F (x)) = 0 and a(F (xy) − F (y)F (x)) = 0
are satisfied on I, but neither aF (R) = (0) nor F (R) ⊆ Z(R). Hence, the
restrictions imposed in Theorem 8 are crucial.
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