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Abstract. Hopf bifurcation and amplitude control in a new 4D hyper-chaotic system
are investigated in this paper. Theoretical analysis shows that the system will exhibit
Hopf bifurcation at equilibrium when the Hopf bifurcation conditions are satisfied. Re-
lationship between the amplitude and control gains is given. Hence the amplitude of the
limit cycle can be controlled by choosing suitable control gains, ensuring the stability of
the bifurcating period solution. Finally, some applications of the amplitude control are
carried out to illustrate the effectiveness of the main theoretical results. The accuracy
of different kinds of control function are also compared.
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1. Introduction

Dynamics of nonlinear system is very rich in terms of bifurcation and chaos, and
they have great potential applications in many areas of science, biology and en-
gineering. Bifurcation analysis and control have been studied as early as in 60s
of the last century, which play an important role in modern nonlinear dynamics
[1, 2, 3, 4, 5]. In general, bifurcation control deals with designing a control law to
modify the bifurcation characteristics. More specifically, in dynamic bifurcation
control, Hopf bifurcation control has an essential role. During the last few years,
great efforts have been devoted to investigating chaotic systems, such as Lorenz
system [6], Chua’s system [7], Chen system [8], Lü system [9], Liu system [10], T
system [11] and other new chaotic system [12]. The problem of amplitude con-
trol of the bifurcated solution is becoming more and more widely concerned by
researchers [13, 14, 15]. On the one hand, decreasing the amplitude can inhibit
the harmful vibration behavior of the system. On the other hand, increasing
the amplitude can make the vibration used by people. 4D hyper-chaotic system
has more complicated dynamical behavior, which has recently become a hot
topic [16, 17, 18, 19]. Base on Lorenz system, a new four-dimensional quadratic
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autonomous hyper-chaotic attractors is present in Ref.[20],

(1)


ẋ1 = a(x2 − x1),
ẋ2 = bx1 − x2 + ex4 − x1x3,
ẋ3 = −cx3 + x1x2 + x21,
ẋ4 = −dx2,

where x1, x2, x3, x4 are the state variables, a, b, c, d, e are positive real param-
eters. Several properties of system (1) were investigated, including analysis of
Hopf bifurcation and estimation of ultimate bound. In this paper, we would like
to investigate Hopf bifurcation and amplitude control of the system.

The rest of this paper is organized as follows. In Section 2, the local stabil-
ity and Hopf bifurcation at the equilibrium are analyzed, then the bifurcation
behavior in the model is given. In Section 3, a control strategy based on the
introduction control parameters with quadratic nonlinearities is applied to the
model. The relationship between the amplitude of the limit cycle and the control
gains is given by using the normal form theory and the center manifold theorem.
In Section 4, some applications of the amplitude control are given, and the ef-
fectiveness of the control strategy is verified through numerical simulation. The
accuracy for different cases of control functions are compared. Conclusions are
given in Section 5 finally.

2. Local stability and Hopf bifurcation analysis

Obviously, system (1) has only one equilibrium at S0(0, 0, 0, 0). The Jacobian
matrix of system (1) at the equilibrium S0 is given by

(2) J =


−a a 0 0
b −1 0 e
0 0 −c 0
0 −d 0 0

 .

And the characteristic equation is

(3) λ4 + k1λ
3 + k2λ

2 + k3λ+ k4 = 0,

where

k1 = 1 + a+ c,

k2 = a− ab+ c+ ac+ de,

k3 = ac− abc+ ade+ cde,

k4 = acde.
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Computing the following determinants:

∆1 = k1,

∆2 =

∣∣∣∣ k1 1
k3 k2

∣∣∣∣ = k1k2 − k3,

∆3 =

∣∣∣∣∣∣
k1 1 0
k3 k2 k1
0 k4 k3

∣∣∣∣∣∣ = k3(k1k2 − k3)− k21k4,

∆4 =

∣∣∣∣∣∣∣∣
k1 1 0 0
k3 k2 k1 1
0 k4 k3 k2
0 0 0 k4

∣∣∣∣∣∣∣∣ = k4∆3.

If k1 > 0, k3 > 0, k4 > 0 and k3(k1k2−k3)−k21k4 > 0, then ∆i > 0(i = 1, 2, 3, 4).
Based on Routh-Hurwitz criteria, all roots of the characteristic equation have
negative real parts. Thus, S0 is locally asymptotically stable. If k3(k1k2− k3)−
k21k4 ≤ 0, and ki > 0(i = 1, 2, 3, 4), S0 is unstable and non-hyperbolic. Taking b
as the Hopf bifurcation parameter, by the equation

(4) k3(k1k2 − k3)− k21k4 = 0,

we get the critical value

(5) b0 =
a+ a2 + de

a+ a2
.

When b = b0, the Jacobian matrix J has a pair of imaginary eigenvalues as
follows:

(6) λ1,2 = ±iω0 = ±i

√
ade

1 + a
.

The other two eigenvalues are

(7) λ3 = −1− a < 0

and

(8) λ4 = −c < 0.

Under these conditions, the following transversality condition is also satisfied:

(9) α′(0) = Re(λ′(0)|λ=iω0) =
(1 + a)(3adek1k5 + 2cω0k6k7)

ade(9k8 + 4k9)
̸= 0,
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where

k5 = cde+ a(c+ de+ cde) + a2(c+ 2de),

k6 = c+ 2ac+ a2c− ade,

k7 = de+ (1 + ω0)(a
2 + a),

k8 = ade(1 + a)(1 + a+ c)2,

k9 = ((1 + a)2c− ade)2.

Therefore, system (1) undergoes Hopf bifurcation at S0(0, 0, 0, 0) based on
Hopf bifurcation theory [21]. The bifurcation results a family of limit cycles
emerging from the equilibrium S0 at the sufficiently small neighborhood of b0.
Next, a control strategy is applied to the model to control the amplitude of the
limit cycle.

3. Relationship between the amplitude of limit cycle and control
gains

In this section, a control strategy is applied to the model. The control functions
are introduced for the quadratic nonlinearities of system (1), as shown below:

(10)


ẋ1 = a(x2 − x1),
ẋ2 = bx1 − x2 + ex4 − f(m) ∗ x1x3,
ẋ3 = −cx3 + g(n) ∗ (x1x2 + x21),
ẋ4 = −dx2,

where f(m) and g(n) are control functions. In general, the threshold of bi-
furcation is determined by the linear parts of the system, and the stability
of bifurcating solution is determined by the non-linear parts of the system.
So, the control approach do not shift the bifurcation critical value. And the
original equilibrium S0(0, 0, 0, 0) is also preserved. By the linear transform
(x1, x2, x3, x4)

T = P (X1, X2, X3, X4)
T , where

(11) P =


(a2+a)ω0

d(a2+a+de)
−ae

a2+a+de
−a2−a

d 0
ω0
d 0 1+a

d 0
0 0 0 1
0 1 1 0

 ,

then system (10) has the following normal form:

(12)


Ẋ1 = −ω0X2 + F1(X1, X2, X3, X4),

Ẋ2 = ω0X1 + F2(X1, X2, X3, X4),

Ẋ3 = λ3X3 + F3(X1, X2, X3, X4),

Ẋ4 = λ4X4 + F4(X1, X2, X3, X4),
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where F1, F2, F3, F4 are high order nonlinear functions about X1, X2, X3, X4 ,
which are shown as follows:

F1(X1, X2, X3, X4)

=
(1 + a)(a2 + 2a+ de+ 1)f(m)(−a2ω0X1X4 + aω2

0X2X4 + (a4 + a3 + a2de)X3X4)

ω0(a2 + de+ a)(a3 + 3a2 + 3a+ ade+ 1)
,

F2(X1, X2, X3, X4)

=
af(m)((1 + a)2ω0X1X4 − (1 + a)deX2X4 − (a4 + 3a3 + 3a2 + a+ (1 + a)2de)X3X4)

a5 + 4a4 + 2a3(3 + de) + 4a2(1 + de) + a(1 + 3de+ d2e2) + de
,

F3(X1, X2, X3, X4)

=
(a2 + a)f(m)(−(1 + a)ω0X1X4 + deX2X4 + (1 + a)(a+ a2de)X3X4)

a5 + 4a4 + 2a3(3 + de) + 4a2(1 + de) + a(1 + 3de+ d2e2) + de
,

F4(X1, X2, X3, X4)

=
ag(n)((1 + a)(2a+ 2a2 + de)ω2

0X
2
1 − (3a2de+ 3ade+ d2e2)ω0X1X2 + ad2e2X2

2 )

d(a+ a2 + de)

+ a(a+ 1)g(n)

(
(1− de− 2a− 3a2)ω0

d
X1X3 + ae(2a− 1)X2X3

+
(a2 − 1)(a2 + a+ de)

d
X2

3

)
.

Based on the center manifold theory and normal form reduction, the curva-
ture coefficient is expressed by the following according to Ref. [21]:

(13) σ1 = Re

{
g20g11
2ω0

i+G1
110w

1
11 +G2

110w
2
11 +

G21 +G1
101w

1
20 +G2

101w
2
20

2

}
.

The characteristic quantities can be calculated from system (12) as follows:

g11 = 0, g20 = 0, G1
110 = 0, G1

101 = 0, G21 = 0, w1
11 = 0, w1

20 = 0,

G2
110 =

−(a(a+ 1)2 + i(a2 + a)ω0)f(m)

2(a3 + 3a2 + 3a+ ade+ 1)
,

G2
101 =

−a5 − 3a3 − 3a2 − a2de+ ade− a+ iω0(a
3 + 4a2 + 5a+ ade+ de+ 2)

2(a2 + a+ de)(a3 + 3a2 + 3a+ ade+ 1)
,

w2
11 =

a2eg(n)

cd(a2 + a+ de)
,

w2
20 =

((−2a3 − 2a2)i+ (3a2 + 3a+ de)ω0)aeg(n)

2d(a2 + a+ de)2(2ω0 − ic)
.

So an explicit expression of the curvature coefficient is written as:

(14) σ1 = −a2e
√
1 + af(m)g(n)(k10 + k11)

8cdk12k13
,
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where

k10 =
√
1 + a(−2cω2

0 + ac2(6 + de) + 2a3(3c2 + 8de)),

k11 = 2a2
√
1 + a(6c2 + 8de+ cω2

0),

k12 = (1 + a)c2 + 4ade,

k13 = a5 + 4a4 + 2a3(3 + de) + 4a2(1 + de) + a(1 + 3de+ d2e2) + de.

Therefore, the approximate amplitude in close vicinity to the Hopf bifurcation
point is

r =

√
−α′(0)

σ1
(b− b0)

=

√
8
√
1 + ack12k13(3adek1k5 + 2cw0k6k7)

a3e2f(m)g(n)(9k8 + 4k9)(k10 + k11)
(b− b0), |b− b0| ≪ 1.(15)

4. Application of amplitude control

It should be pointed out that Eq.(15) describes the relationship between the
amplitude of the state variable x1 and the control functions. Other linear trans-
formation can be chosen to describe the amplitude of the other state variables.
We choose a = 2, c = 1, d = 3, e = 4, then b0 = 3, α′(0) = 0.484654, σ1 =
−0.0546643f(m)g(n). Obviously, σ1 degrade into the curvature coefficient of
the original system(1) when f(m)g(n) = 1. If f(m)g(n) > 0, the bifurcated
limit cycle is stable, and then the parameter µ2 = − σ1

α′(0) > 0, where the Hopf
bifurcation is supercritical and the bifurcating periodic solutions exist for b > b0.
Since this control strategy does not change the bifurcation critical value of the
system, it means that both the original system and the controlled system bifur-
cated at b0 = 3. The bifurcation figures are shown in Fig.1.
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(a) the original system
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(b) the controlled system

Fig. 1. Bifurcation diagrams of the original system and the controlled system at equilibrium
S0.
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Setting b = 3.10, time displacement curves of the period solutions under
different value of control gains are shown in Fig.2 and Fig.3, respectively. The
solid lines denote the period solutions of the original system while the dashed
lines represent the period solutions of the controlled system. It can be seen that
under different values of the control functions, the amplitude can be large or
small. Other values can be similar.
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Fig. 2. Time displacement curves of period solutions (0 < f(m)g(n) < 1, 0 < f(m) <
1).

400 405 410 415 420 425 430

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

t

x 1

400 405 410 415 420 425 430

0.06

0.08

0.10

0.12

t

x 3

Fig. 3. Time displacement curves of period solutions (f(m)g(n) > 1, f(m) >
1).

For simplicity, suppose m = n. Let f(m) = m, while g(m) = m+ 1, g(m) =
1

m+1 , g(m) = em and g(m) = 1
em , the accuracy of approximate solution of

amplitude(15) and numerical solution is compared in Fig.4. In this case, the
dotted lines represent the approximate solution, and the solid lines represent
the numerical solution.

5. Conclusion

This paper is concerned about Hopf bifurcation and amplitude control of a
hyper-chaotic system. Applying Routh-Hurwitz criterion, the stability of the
equilibrium is investigated. Then the existence of Hopf bifurcation is given
based on Hopf bifurcation theory. A control approach is applied to the system,
which not only keeps the equilibrium structure of the original system, but also
not change the Hopf bifurcation critical value. By the normal form theory and
the center manifold theorem, the relationship between the amplitude of the limit
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Fig. 4. The accuracy of approximated solution of amplitude and numerical
solution.

cycle and the control gains is presented. Numerical simulations show, in case of
the stability of the bifurcating periodic solutions, the control law can increase or
decrease the amplitude of the periodic solution effectively under different control
gains. The accuracy of different kinds of control functions is also compared.
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