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Abstract. In this paper, without the assumptions for boundedness, monotonicity,
and differentiability on activation functions and symmetry of interconnections, a class
of Cohen-Grossberg neural networks with time-varying delays is studied. A new useful
criteria on the uniqueness of equilibrium is obtained by utilizing the nonlinear measure.
Combining with Dini derivatives and Young inequality, new sufficient condition for the
global exponential stability is established by directly estimating the upper bound of
solutions of the system. All results are presented in M-matrix form, which extended
and generalized the corresponding results in previous literature.
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1. Introduction

The classic Cohen-Grossberg neural network was initially proposed and studied
by Cohen and Grossberg in 1983([1]), which can be described by the following
ordinary differential equations:

(1) ẋi(t) = ai(xi(t)){−bi(xi(t)) +

n∑
j=1

wijfj(xj(t)) + Ii}, i = 1, 2, . . . , n.

∗. Corresponding author
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Here n ≥ 2 is the number of neurons in the network, xi(t) is the state of neuron
i at time t, ai(·) represents an amplification function, bi(·) is an appropriately
behaved function to keep the solutions of system (1) bounded, the activation
function fj(·) shows how neuron i reacts to the input, W = (wij)n×n is a real
constant matrix and denotes the normal weights of the neuron interconnections.
System(1) is a very general neural network model. Models such as the Hopfield
neural networks, cellular neural networks, and bidirectional associative memory
neural networks are its special cases(see for instance [4],[7],[8]). All these neural
neural networks have attracted much attention for they successful or promis-
ing potential applications in the pattern recognition, associative memory,signal
processing,and optimization([5],[9],[10]).

In reality, however, time delays universally exist in biological and artificial
neural networks due to the finite switching speed of neurons and amplifiers. It
is well known that, with symmetric connection matrix and the so called sigmoid
activation functions, system (1) has the property of absolute stability([1]), i.e.
given any initial conditions, the solution of system (1) converges to some equilib-
rium of the system. On the other hand, the existence of time delays is frequently
a source of oscillation and instability([6]). Marcus and Westervelt ([2]) first in-
troduced a single delay into the model and observed sustained oscillations even
with symmetric connections. Moreover, the delays in artificial neural networks
are usually time-varying([3]). Therefore, it is natural and important to incor-
porate time-varying delays into the model. A general Cohen-Grossberg neural
network with time-varying delays can be described by the following retarded
differential difference equations:

ẋi(t) = ai(xi(t)){ − bi(xi(t)) +

n∑
j=1

wijfj(xj(t))

+

n∑
j=1

wd
ijfj(xj(t− dij(t))) + Ii}, i = 1, 2, . . . , n

(2)

where n, xi(t), ai(·), bi(·) and W = (wij)n×n are the same as these in system
(1), W d = (wd

ij)n×n is a real constant matrix and denotes the delayed weights
of the neuron interconnections, dij(t) is the time delay required in processing
and transmitting signals from neuron j to neuron i at time t.

The stability of neural networks is a prerequisite for almost all applications.
In applications of neural networks to parallel computation, signal processing
and other problems involving the solutions of optimization problems, it is fre-
quently required that the network have a unique global attractive equilibrium.
Meanwhile, in designing and implementing a network, it is preferable and de-
sirable that the neural network not only converges to an equilibrium, but also
converges as fast as possible. It is well known that the exponential stability gives
a fast convergence rate to the equilibrium. Thus, the global exponential stabil-
ity of system(1), system (2) and their special cases are of great importance,
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and has been widely investigated. Many useful results have been obtained
by some authors in the previous literature([14][16], [17],[18],[19],[20],[21],[22],
[23],[24],[25],[26]).

In applications, the activation functions maybe just continuous. On the
other hand, the assumption of symmetry connections also lays a restriction on
the connection topology of the networks. In this paper, without any assumption
on the boundedness, monotonicity, and differentiability of activation functions
and symmetry of interconnections, we will study the existence and global ex-
ponential stability of an equilibrium for System (2). A new useful criteria on
the uniqueness of equilibrium is obtained by utilizing the nonlinear measure,
which was initially introduced in [11]. Combining with Dini derivatives and
Young inequality, new sufficient conditions for the global exponential stability
are established by inroducing many real paremeters and directly estimating the
upper bound of solutions of the system. This mathod has been utilized by
some authors (see for instance,[14],[22],[17]), but we do introduce a different
type parameters. Our results extend and generalize the corresponding results in
previous literature. By the way, for the common use of M-matrix in the study
of qualitative properties of various neural networks, we represent our results in
M-matrix form.

The remainder of this paper is organized as follows. In section 2, the basic
notations, definitions, and some useful lemmas are introduced. Some assump-
tions used in the main results are listed there, too. In section 3, the main results
of this paper are proposed and proved. Some remarks and corollaries are given.
In section 4, some examples are given to demonstrate the main results.

2. Preliminaries

In this section, we state some notations, definitions and lemmas.

Let N = {1, 2, . . . , n}, R denote the set of real numbers, Rn denote the n-
dimensional real vector space, ⟨·, ·⟩ and ∥·∥r (r ≥ 1) denote the usual inner prod-
uct and lr norm of vectors in Rn respectively. For x ∈ Rn, xi denotes the ith co-
ordinate of x, xT denotes the transpose of x, sign(x) = (sign(x1), . . . , sign(xn))

T

denotes the sign vector of x, where sign(·) is the sign function of real num-
bers. Rn

+ = {x|x ∈ Rn, xi > 0, for i ∈ N}. Rn×n denotes the set of all
n × n real matrices, diag{a1, . . . , an} denotes the usual diagonal matrix. For
A = (aij) ∈ Rn×n, |A| = (|aij |), AT denotes the transpose of A, A−1 denotes
the inverse of A (if it has). For two matrices A = (aij), B = (bij) ∈ Rn×n, we
say A ≤ B if aij ≤ bij , for i, j ∈ N .

Throughout this paper, we always assume that for i, j ∈ N, ai, bi, fi, dij :
R → R are continuous functions, and there exist a real number d such that
0 ≤ dij(t) ≤ d, t ∈ R. Let x(t) = (x1(t), . . . , xn(t))

T denote the solution of
system (2). System (2) is supplemented with initial values of the type

x(t) = φ(t), φ(t) ∈ C([−d, 0], Rn), t ∈ [−d, 0],
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where C([−d, 0], Rn) denotes the space of continuous functions φ : [−d, 0] → Rn.

Definition 1. Suppose that x∗ ∈ Rn is an equilibrium of system (2), x∗ is said
to be globally exponentially stable, if there exist λ > 0 and C > 0 such that for
any solution x(t) of system (2), we have

|xi(t)− x∗i | ≤ C

n∑
i=1

sup
t∈[−d,0]

|φi(t)− x∗i |e−λt, for t ≥ 0, i ∈ N.

In order to obtain the uniqueness of equilibrium of system (2), we introduce
some results about nonlinear measure from J.Peng,H.Qiao and Z.Xu([11]).

Definition 2 ([11]). Suppose that Ω is an open subset of Rn, F is an operator
from Ω to Rn, the constant

mΩ(F ) = sup
x,y∈Ω,x ̸=y

⟨F (x)− F (y), sign(x− y)⟩
∥x− y∥1

is called the nonlinear measure of F on Ω.

Lemma 2.1 ([11]). If mΩ(F ) < 0, then F is injective on Ω. If in addition
Ω = Rn, then F is a homeomorphism of Rn.

For the study of the global exponential stability of an equilibrium by our
methods, we introduce the Dini derivatives and the Young inequality now.

Definition 3. Suppose that V (t) is a real function, the left upper Dini derivative
and the left lower Dini derivative of V (t), denoted by D−V (t) and D−V (t)
respectively , are defined by

D−V (t) = lim sup
h→0−

V (t+ h)− V (t)

h
, D−V (t) = lim inf

h→0−

V (t+ h)− V (t)

h
.

Lemma 2.2 ([12],Young inequality). Assume that a ≥ 0, b ≥ 0, p > 1, q > 1
with 1

p + 1
q = 1. Then we have inequality

ab ≤ 1

p
ap +

1

q
bq.

For the common use of M-matrix in the study of qualitative properties of
various neural networks, we represent all of our results in the M-matrix form.
The definition of M-matrix and some useful results about it are given as follows.

Definition 4 ([14]). Let A = (aij) ∈ Rn×n, and aij ≤ 0 for i ̸= j, i, j ∈ N . A
is called M-matrix if there exist P ∈ Rn

+, such that AP > 0 or P TA > 0.

Remark 2.3. From the definition, it is obvious that A is a M-matrix if and
only if for every diagonal matrix D with positive diagonal elements, DA and
AD are M-matrices.
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Lemma 2.4 ([13]). Let A = (aij) ∈ Rn×n, and aij ≤ 0 for i ̸= j, i, j ∈ N .
Then the following conditions are equivalent:

(1) A is a M-matrix;
(2) All the leading principal minors of A are positive;
(3) A−1 ≥ 0.

Remark 2.5. From lemma 2.4 (2), we can obtain that A is a M-matrix if and
only if AT is. Thus in the definition, The statement ” there exist P ∈ Rn

+,
such that AP > 0 or P TA > 0 ” is equivalent to the statement ” there exist
P1, P2 ∈ Rn

+, such that AP1 > 0 and P T
2 A > 0 ”.

Lemma 2.6 ([25]). Let B = (bij) ∈ Rn×n, and bij ≤ 0 for i ̸= j, i, j ∈ N . If
B ≥ A and A is a M-matrix, then B is a M-matrix.

At the end of this section, we list some assumptions which will be used in
the main results of system (2).

(H1) For each i ∈ N , ai(s) > 0, for s ∈ R.
(H

′
1) For each i ∈ N , there exist positive real numbers αi and αi such that

αi ≤ ai(s) ≤ αi, for s ∈ R.

(H2) For each i ∈ N , bi is global left Lipschitz continuous, i.e. there exists
a positive constant βi > 0 such that

bi(s)− bi(t)

s− t
≥ βi, for s, t ∈ R and s ̸= t.

(H3) For each i ∈ N , fi is global Lipschitz continuous, i.e. there exists a
positive constant Li such that

|fi(s)− fi(t)| ≤ Li|s− t|, for s, t ∈ R.

3. Main results

In this section, a new criteria on uniqueness of equilibrium of system (2) is
firstly proposed and proved. The remainder is mainly concerned with the global
exponential stability.

On the existence of equilibrium of system (2), we refer to the powerful result
initially proposed recently in K. Lu, D. Xu and Z. Yang ([14]).

Theorem 3.1 ([14]). Assume that (H1) holds, and there are nonnegative con-
stants such that

bi(s) ≥ β0
i |s| − ξi, |fi(s)| ≤ L0

i |s|+ µi, for s ∈ R, i ∈ N.

If

(3) M0 , B0 − |W +W d|L0

is a M-matrix, where B0 = diag{β0
1 , . . . , β

0
n} and L0 = diag{L0

1, . . . , L
0
n}, then

System (2) has at least a equilibrium x∗. Furthermore, |x∗| ≤ M−1
0 (|W+W d|ξ+

µ+ |I|), where ξ = (ξ1, . . . , ξn)
T , and µ = (µ1, . . . , µn)

T .
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Now, we propose and prove our result on uniqueness of equilibrium of system
(2).

Theorem 3.2. Assume that (H1), (H2), (H3) hold. If

(4) M , B − |W +W d|L

is a M-matrix, where B = diag{β1, . . . , βn} and L = diag{L1, . . . , Ln}, then
System (2) has a unique equilibrium x∗. Furthermore, for any x ∈ Rn, let
y = x− x∗, we have |y| ≤ M−1J(x), where J : Rn → Rn is defined by

Ji(x) =

n∑
j=1

|wij + wd
ij ||fj(xj)|+ |Ii − bi(xi)|, for i ∈ N.

In particular, |x∗| ≤ M−1J(0).

Proof. By (H1), x
∗ is an equilibrium of System (2) if and only if x = x∗ is a

solution of equations

(5) Fi(x) , −bi(xi) +

n∑
j=1

(wij + wd
ij)fj(xj) + Ii = 0, for i ∈ N.

Using (4), there exists P ∈ Rn
+ such that P TM > 0, i.e.

(6) Piβi −
n∑

j=1

Pj |wji + wd
ji|Li > 0, for i ∈ N.

Define F : Rn → Rn by F (x) = (P1F1(x), . . . , PnFn(x))
T ,∀x ∈ Rn. Then

x∗ is an equilibrium of System (2) if and only if F (x∗) = 0.

We now prove that mRn(F ) < 0. For all x, y ∈ Rn, Using (H2) and (H3),

⟨F (x)− F (y), sign(x− y)⟩

=
n∑

i=1

Pi{−(bi(xi)− bi(yi)) +
n∑

j=1

|wij + wd
ij |(fj(xj)− fj(yj))}sign(xi − yi)

≤
n∑

i=1

Pi(−βi|xi − yi|+
n∑

j=1

|wij + wd
ij |Lj |xj − yj |)

= −
n∑

i=1

(Piβi −
n∑

j=1

Pj |wji + wd
ji|Li)|xi − yi|

≤ −min
i∈N

{Piβi −
n∑

j=1

Pj |wji + wd
ji|Li}

n∑
i=1

|xi − yi|.
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Therefore, by means of (6),

mRn(F ) ≤ −min
i∈N

{Piβi −
n∑

j=1

Pj |wji + wd
ji|Li} < 0.

According to lemma 2.1, F is a homeomorphism of Rn, which indicates that
F (x) = 0 has a unique solution x∗, and thus system (2) has a unique equilibrium
x∗. To estimate the existence region of x∗, for ∀x ∈ Rn and i ∈ N , using (H2) ,
(H3) and (5), we can obtain

βi|x∗i − xi| ≤ (bi(x
∗
i )− bi(xi))sign(x

∗
i − xi)

= (

n∑
j=1

(wij + wd
ij)fj(x

∗
j ) + Ii − bi(xi))sign(x

∗
i − xi)

≤ |
n∑

j=1

(wij + wd
ij)fj(x

∗
j ) + Ii − bi(xi)|

≤ |
n∑

j=1

|wij + wd
ij |Lj |x∗j − xi|+

n∑
j=1

|wij + wd
ij ||fj(xj)|+ |Ii − bi(xi)|,

namely, M |y| ≤ J(x). Utilizing lemma 2.4, M−1 ≥ 0, then we have |y| ≤
M−1J(x). In particular, Let x = 0, |x∗| ≤ M−1J(0). The proof is completed.�
Remark 3.3. As far as existence of equlibrium concerned, theorem 3.2 is just a
direct corollary of theorem 3.1. But theorem 3.1 can not ensure the uniqueness
of equilibrium. To the best of our knowledge, there are few results about the
uniqueness of equilibrium ([21]), most of the existing results in the previous
literature just deal with the existence ([18], [16]). Moreover, our estimate of the
existence region of equilibrium can be used many times by setting different x to
obtain more exact estimation.

For the global exponential stability of equilibrium of system (2), we have the
following main result.

Theorem 3.4. Assume that all the conditions in theorem 3.1 hold. Moreover,
(H

′
1),(H2) and (H3) hold. If there exist r ≥ 1, P = (P1, . . . , Pn)

T ∈ Rn
+, and

real numbers hij , lij , h
∗
ij , l

∗
ij , for i, j ∈ N , such that

(7) Mr,P,h,l,h∗,l∗ , (mij)

is a M-matrix, where for i, j ∈ N ,

mii = {rαi

αi
βiPi − (r − 1)

n∑
k=1

(|wik|
r−hik
r−1 L

r−lik
r−1

k + |wd
ik|

r−h∗ik
r−1 L

r−l∗ik
r−1

k )Pk

− (|wii|hiiLlii
i + |wd

ii|h
∗
iiL

l∗ii
i )Pi},

mij = −(|wij |hijL
lij
j + |wd

ij |
h∗
ijL

l∗ij
j )Pj , i ̸= j,

then System (2) has a unique equilibrium, which is globally exponentially stable.
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Proof. From theorem 3.1, system (2) has at least one equilibrium, say x∗.
Uniqueness of equilibrium can be induced directly from the global exponential
stability of x∗. So we just need to prove the global exponential stability of x∗.
Let y(t) = x(t)−x∗, substitute x(t) = y(t)+x∗ into system (2), for each i ∈ N ,

(8) ẏi(t) = Ai(yi(t)){−Bi(yi(t)) +

n∑
j=1

wijgj(yj(t)) +

n∑
j=1

wd
ijgj(yj(t− dij(t)))}.

Here, for each i, j ∈ N , Ai(yi(t)) = ai(yi(t) + x∗i ), Bi(yi(t)) = bi(yi(t)) −
bi(x

∗
i ), gj(yj(t)) = fj(yj(t) + x∗j )− fj(x

∗
j ).

We will show that y(t) = 0 is globally exponentially stable. Firstly, using
(H

′
1), (H2) and (H3),

(9) αi ≤ Ai(s) ≤ αi,
Bi(s)

s
≥ βi, |gi(s)| ≤ Li|s|, for s ∈ R, i ∈ N.

Using (7), let A=diag{α1, . . ., αn}, there exists Q∈Rn
+ such that Mr,P,h,l,h∗,l∗AQ

> 0, i.e.

rαiβiPiQi − (r − 1)αi

n∑
j=1

(|wij |
r−hij
r−1 L

r−lij
r−1

j + |wd
ij |

r−h∗ij
r−1 L

r−l∗ij
r−1

j )PjQi

−
n∑

j=1

|wij |hijL
lij
j αjPjQj −

n∑
j=1

|wd
ij |

h∗
ijL

l∗ij
j αjPjQj > 0, for i ∈ N.(10)

So, we can choose a real number 0 < λ ≪ 1 such that

rαiβiPi0Qi − (r − 1)αi

n∑
j=1

(|wij |
r−hij
r−1 L

r−lij
r−1

j + |wd
ij |

r−h∗ij
r−1 L

r−l∗ij
r−1

j )PjQi

−
n∑

j=1

|wij |hijL
lij
j αjPjQj −

n∑
j=1

|wd
ij |

h∗
ijL

l∗ij
j αjPjQje

λd − PiQiλ > 0,(11)

for i ∈ N.

Let yi(t) = Pizi(t), Ui(t) =
∣∣∣∫ zi(t)

0
|s|r−1

Ai(Pis)
ds
∣∣∣. It follows From (9) that

(12)
|zi(t)|r

rαi
≤ Ui(t) ≤

|zi(t)|r

rαi

For any ε > 0, let V (t) = m
∑n

j=1(sups∈[−d,0] |zj(s)|r + ε)e−λt, Vi(t) =

QiV (t), where m ≫ 1 is a constant such that mQie
−λt > 1

rαi
, for t ∈ [−d, 0] i ∈

N . Then Ui(t) < Vi(t), for t ∈ [−d, 0], i ∈ N . We claim that

(13) Ui(t) < Vi(t), for i ∈ N, t ∈ [−d,∞).
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Contrarily, there must exist i0 ∈ N and t0 > 0 such that

(14) Ui0(t0) = Vi0(t0), and Uj(t) < Vj(t), forj ∈ N, t ∈ [−d, t0),

and we have

(15) D−Ui0(t0) ≥ V̇i0(t0) = −λVi0(t0).

Now, By (8), (9), and (12), for each i ∈ N , we estimate D−Ui(t). Noting

that |s|r−1

Ai(Pis)
> 0, for each i ∈ N , we have

D−Ui(t) = D−{sign(zi(t))
∫ zi(t)

0

|s|r−1

Ai(Pis)
dx}

≤ 1

Pi
|zi(t)|r−1{−Bi(Pizi(t)) +

n∑
j=1

wijgj(Pjzj(t))

+
n∑

j=1

wd
ijgj(Pjzj(t− dij(t)))}sign(zj(t))

≤ 1

Pi
{−βiPi|zi(t)|r +

n∑
j=1

|wij |PjLj |zj(t)||zi(t)|r−1

+

n∑
j=1

|wd
ij |PjLj |zj(t− dij(t))||zi(t)|r−1}

According to the Young inequality (lemma 2.2), for i, j ∈ N and r > 1,

|wij |Lj |zj(t)||zi(t)|r−1

= {|wij |
r−hij
r−1 L

r−lij
r−1

j |zi(t)|r}
r−1
r {|wij |hijL

lij
j |zj(t)|r}

1
r

≤ r − 1

r
|wij |

r−hij
r−1 L

r−lij
r−1

j |zi(t)|r +
1

r
|wij |hijL

lij
j |zj(t)|r,

similarly,

|wd
ij |Lj |zj(t− dij(t))||zi(t)|r−1

≤ r − 1

r
|wd

ij |
r−h∗ij
r−1 L

r−l∗ij
r−1

j |zi(t)|r +
1

r
|wd

ij |
h∗
ijL

l∗ij
j |zj(t− dij(t))|r.

We regulate it that 0 · ∞ = 0,then the preceding two inequality hold trivially
for r = 1. Thus, for each i ∈ N ,

D−Ui(t) ≤
1

Pi
{−βiPi|zi(t)|r

+
r − 1

r

n∑
j=1

(|wij |
r−hij
r−1 L

r−lij
r−1

j + |wd
ij |

r−h∗ij
r−1 L

r−l∗ij
r−1

j )Pj |zi(t)|r(16)

+
1

r

n∑
j=1

|wij |hijL
lij
j Pj |zj(t)|r +

1

r

n∑
j=1

|wd
ij |

h∗
ijL

l∗ij
j Pj |zj(t− dij(t))|r}.
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In light of (14) and (16), we estimate D−Ui0(t0)− V̇i(t0) as follows.

D−Ui0(t0)− V̇i(t0) ≤ D−Ui0(t0)− V̇i(t0)

≤ 1

Pi0

{−βi0Pi0 |zi0(t)|r +
r − 1

r

n∑
j=1

(|wi0j |
r−hi0j
r−1 L

r−li0j
r−1

j

+ |wd
i0j |

r−h∗i0j
r−1 L

r−l∗i0j
r−1

j )Pj |zi0(t)|r +
1

r

n∑
j=1

|wi0j |hi0jL
li0j
j Pj |zj(t)|r

+
1

r

n∑
j=1

|wd
i0j |

h∗
i0jL

l∗i0j
j Pj |zj(t− di0j(t))|r}+ λVi0(t0)

≤ 1

Pi0

{−βi0Pi0rαi0Ui0(t0) + (r − 1)

n∑
j=1

(|wi0j |
r−hi0j
r−1 L

r−li0j
r−1

j

+ |wd
i0j |

r−h∗i0j
r−1 L

r−l∗i0j
r−1

j )Pjαi0Ui0(t0) +

n∑
j=1

|wi0j |hi0jL
li0j
j PjαjUj(t0)

+

n∑
j=1

|wd
i0j |

h∗
i0jL

l∗i0j
j PjαjUj(t0 − di0j(t0)) + Pi0λVi0(t0)}

≤ 1

Pi0

{−βi0Pi0rαi0Vi0(t0) + (r − 1)
n∑

j=1

(|wi0j |
r−hi0j
r−1 L

r−li0j
r−1

j

+ |wd
i0j |

r−h∗i0j
r−1 L

r−l∗i0j
r−1

j )Pjαi0Vi0(t0) +

n∑
j=1

|wi0j |hi0jL
li0j
j PjαjVj(t0)

+

n∑
j=1

|wd
i0j |

h∗
i0jL

l∗i0j
j PjαjVj(t0 − di0j(t0)) + Pi0λVi0(t0)}

≤ 1

Pi0

{−βi0Pi0rαi0Vi0(t0) + (r − 1)

n∑
j=1

(|wi0j |
r−hi0j
r−1 L

r−li0j
r−1

j

+ |wd
i0j |

r−h∗i0j
r−1 L

r−l∗i0j
r−1

j )Pjαi0Vi0(t0) +
n∑

j=1

|wi0j |hi0jL
li0j
j PjαjVj(t0)

+
n∑

j=1

|wd
i0j |

h∗
i0jL

l∗i0j
j PjαjVj(t0 − d) + Pi0λVi0(t0)}

= − 1

Pi0

{rαi0βi0Pi0Qi0 − (r − 1)αi0

n∑
j=1

(|wi0j |
r−hi0j
r−1 L

r−li0j
r−1

j

+ |wd
i0j |

r−h∗i0j
r−1 L

r−l∗i0j
r−1

j )PjQi0 −
n∑

j=1

|wi0j |hi0jL
li0j
j αjPjQj

−
n∑

j=1

|wd
i0j |

h∗
i0jL

l∗i0j
j αjPjQje

λd − Pi0Qi0λ}V (t0).
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Using (11), we obtain that D−Ui0(t0) < V̇i(t0), which contradicts (15).
Hence, (13) holds. With the help of (12),

|yi(t)| = Pi|zi(t)| < (rαiVi(t))
1
r

= (mrαiQi)
1
r (

n∑
j=1

( sup
s∈[−d,0]

|yj(s)|r + ε))
1
r e−

λ
r
t, for i ∈ N.

For the arbitrariness of ε, it follows that

(17) |yi(t)| ≤ Pi(mrαiQi)
1
r (

n∑
j=1

sup
s∈[−d,0]

|yj(s)|r)
1
r e−

λ
r
t.

Noting that all norms in Rn are equivalent, then there exist Cr > 0 such that,

(18) ∥x∥r = (

n∑
j=1

|xj |r)
1
r ≤ Cr∥x∥1 = Cr

n∑
j=1

|xj |, for x ∈ Rn

By virtue of (17) and (18), we can obtain that

|yi(t)| ≤ C

n∑
j=1

sup
s∈[−d,0]

|yj(s))|e−
λ
r
t, for i ∈ N,

where C = maxi∈N{Pi(mαiQi)
1
rCr}. Namely, system(8) and thus system(2) is

globally exponentially stable.

Remark 3.5. From the proof of theorem 3.4, (H2) and (H3) are only use to

ensure that ”Bi(s)
s ≥ βi, |gi(s)| ≤ Li|s|, for s ∈ R, i ∈ N” in (9). If we have

known the equlibrium x∗ of system (2), the global left Lipschitz continuity of
bi(t) and the global Lipschitz continuity of fi(t) can be relaxed to the so called
global left quasi-Lipschtiz continuity and global quasi-Lipschtiz continuity at x∗i ,
respectively. Namely,

bi(s)−bi(x
∗
i )

s−x∗
i

≥ βi, |fi(s)− fi(x
∗
i )| ≤ Li|s− x∗i |for s ̸= x∗i ∈ R, i ∈ N.

Remark 3.6. When theorem 3.4 ensures global exponential stability of system
(2), it really ensures the robust global exponential stability in the following
meaning: changing the involved system parameters ( namely, all the parameters
in theorem 3.4 except r, P , and hij , lij , h

∗
ij , l

∗
ij , for i, j ∈ N ) small enough has

no harm on the global exponential stability. This can be infered by lemma 2.4
(2) and the well-known fact that the determinant of every matrix in Rn×n is a
continuous function of its elements.

By letting P = (1, . . . , 1)T in theorem 3.4, we can obtain the following result.
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Corollary 3.7. Assume that all the conditions in theorem 3.1 hold. Moreover,
(H

′
1),(H2) and (H3) hold. If there exist r ≥ 1, real numbers hij , lij , h

∗
ij , l

∗
ij , for

i, j ∈ N , such that

(19) Mr,h,l , (mij)

is a M-matrix, where for i, j ∈ N ,

mii = {rαi

αi
βi − (r − 1)

n∑
k=1

(|wik|
r−hik
r−1 L

r−lik
r−1

k + |wd
ik|

r−h∗ik
r−1 L

r−l∗ik
r−1

k )

− (|wii|hiiLlii
i + |wd

ii|h
∗
iiL

l∗ii
i ) },

mij = −(|wij |hijL
lij
j + |wd

ij |
h∗
ijL

l∗ij
j ), i ̸= j,

then System (2) has a unique equilibrium, which is globally exponentially stable.

Remark 3.8. Because coditions in theorem 3.1 are always satisfied by letting
L0 = diag{0, . . . , 0} and µ = (sups∈R f1(s) . . . , sups∈R fn(s))

T for bounded ac-
tivation functions. Corollary 3.7 contains the corresponding results in [22]. In
[22] the activation functions are assumed to be bounded, and (H2) is replaced
by the assumption (H

′
2): ”For each i ∈ N , bi ∈ C1(R,R), ḃi(·) > 0, bi(·) and

b−1
i (·) is global Lipschtiz continuous.” Obviously, we have relaxed this condi-
tion. Moreover, Corollary 3.7 can be used when the activation functions are
unbounded.

Corollary 3.9. Assume that all the conditions in theorem 3.1 hold. Moreover,
(H

′
1),(H2) and (H3) hold. If there exist r ≥ 1 and P = (P1, . . . , Pn)

T ∈ Rn
+

such that

(20) Mr,P , (mij)

is a M-matrix, where for i, j ∈ N ,

mii = r{αiβi
αiLi

− (|wii|+ |wd
ii|)}Pi − (r − 1)

n∑
k=1,k ̸=i

(|wik|+ |wd
ik|)Pk,

mij = −(|wij |+ |wd
ij |)Pj , i ̸= j,

then System (2) has a unique equilibrium, which is globally exponentially stable.

Proof. Let P = LP
′
with L = diag{L1, . . . , Ln}, then we can see that Mr,LP ′ is

the same as Mr,P ′ ,h,l,h∗,l∗ in theorem 3.4 with hij = lij = h∗ij = l∗ij = 1, for i, j ∈
N . Using (20), Mr,P ′ ,h,l,h∗,l∗ is also a M-matrix. Thus, according to theorem
3.4, corollary 3.9 is proved. �
Corollary 3.10. Assume that (H

′
1), (H2) and (H3) hold. If

(21) M1 , A− (|W |+ |W d|)

is a M-matrix, where A = diag{ α1β1

α1L1
, . . . ,

αnβn

αnLn
}, then System (2) has a unique

equilibrium, which is globally exponentially stable.
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Proof. From (21), M1L is a M-matrix. Noting that M ≥ M1L with L =
diag{L1, . . . , Ln}, by lemma 2.6, M is a M-matrix, too. Then theorem 3.2
ensures a unique equilibrium. In the corollary 3.9, let r = 1 and P = (1, . . . , 1)T ,
we immediately get the result. �

Remark 3.11. Corollary 3.10 contains the corresponding results in [17]. But
in [17], (H2) is replaced by (H

′
2).
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