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1. Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Gähler [10] in the
mid of 1960’s, while that of n-normed spaces one can see in Misiak [20]. Since
then, many others have studied this concept and obtained various results, see
Gunawan ([11], [12]) and Gunawan and Mashadi [13] and many others. Let
n ∈ N and X be a linear space over the real field R of dimension d, where
d ≥ n ≥ 2. A real valued function ∥·, . . . , ·∥ on Xn satisfying the following four
conditions:

1. ∥x1, x2, . . . , xn∥ = 0 if and only if x1, x2, . . . , xn are linearly dependent in
X;

2. ∥x1, x2, . . . , xn∥ is invariant under permutation;

3. ∥αx1, x2, . . . , xn∥ = |α| ∥x1, x2, . . . , xn∥ for any α ∈ R, and

4. ∥x+ x′, x2, . . . , xn∥ ≤ ∥x, x2, . . . , xn∥+ ∥x′, x2, . . . , xn∥

is called an n-norm on X, and the pair (X, ∥·, · · · , ·∥) is called an n-normed
space over the field R.

∗. Corresponding author
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For example, we may take X = Rn being equipped with the n-norm ∥x1, x2,
. . . , xn∥E = the volume of the n-dimensional parallelopiped spanned by the
vectors x1, x2, . . . , xn which may be given explicitly by the formula

∥x1, x2, · · · , xn∥E = | det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n, where script E
denotes Euclidean space. Let (X, ∥·, · · · , ·∥) be an n-normed space of dimension
d ≥ n ≥ 2 and {a1, a2, . . . , an} be linearly independent set in X. Then the
following function ∥·, · · · , ·∥∞ on Xn−1 defined by

∥x1, x2, · · · , xn−1∥∞ = max{∥x1, x2, . . . , xn−1, ai∥ : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, . . . , an}.
A sequence (xk) in a n-normed space (X, ∥·, · · · , ·∥) is said to converge to

some L ∈ X if

lim
k→∞

∥xk − L, z1, · · · , zn−1∥ = 0, for every z1, . . . , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ∥·, · · · , ·∥) is said to be Cauchy if

lim
k,i→∞

∥xk − xi, z1, · · · , zn−1∥ = 0, for every z1, . . . , zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to
be n-Banach space.

The notions of statistical convergence and convergence in density for se-
quences has been in the literature, under different guises, since the early part of
the last century. Over the years and under different names, statistical conver-
gence has been discussed in the theory of Fourier analysis, ergodic theory and
number theory. Statistical convergence was recently investigated by Fast [9] and
Schoenberg [29] independently.

The concept of ideal convergence was first introduced by P. Kostyrko et
al. [16] as a generalization of statistical convergence which was further studied
in topological spaces by Das et al. [1]. More applications of ideals can be
seen in ([1], [2]). We continue in this direction and introduce I-convergence of
generalized sequences in more general setting.

A family I ⊂ 2X of subsets of a non empty set X is said to be an ideal in
Xif

1. ϕ ∈ I;

2. A,B ∈ I imply A ∪B ∈ I;

3. A ∈ I, B ⊂ A imply B ∈ I, while an admissible ideal I of X further
satisfies {x} ∈ I for each x ∈ X (see [14]).
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A sequence (xn)n∈N in X is said to be I-convergent to x ∈ X, if for each ϵ > 0
the set A(ϵ) = {n ∈ N : ∥xn − x∥ ≥ ϵ} belongs to I (see [13]). A non empty
family of sets F ⊆ 2X is said to be filter on X if and only if Φ /∈ F, for A,B ∈ F
we have A ∩ B ∈ F and for each A ∈ F and A ⊆ B implies B ∈ F. An ideal
I ⊆ 2X is called non trivial if I ̸= 2X . A non-trivial ideal I ⊆ 2X is called
admissible if {{x} : x ∈ X} ⊆ I. A non-trivial ideal is maximal if there cannot
exist any non-trivial ideal J ̸= I containing I as a subset. Further details on
ideals of 2X can be found in [16].

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞ as
x → ∞.

Lindenstrauss and Tzafriri [18] used the idea of Orlicz function to define the
following sequence space,

ℓM =
{
(xk) ∈ w :

∞∑
k=1

M
( |xk|

ρ

)
< ∞, for some ρ > 0

}
which is called as an Orlicz sequence space. Also ℓM is a Banach space with the
norm

∥(xk)∥ = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|

ρ

)
≤ 1

}
.

Also, it was shown in [18] that every Orlicz sequence space ℓM contains a sub-
space isomorphic to ℓp(p ≥ 1). An Orlicz function M satisfies ∆2−condition
if and only if for any constant L > 1 there exists a constant K(L) such that
M(Lu) ≤ K(L)M(u) for all values of u ≥ 0.

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz func-
tion see ([19], [24]).

A Musielak-Orlicz function (Mk) is said to satisfy ∆2-condition if there exist
constants a,K > 0 and a sequence c = (ck)

∞
k=1 ∈ ℓ1+ (the positive cone of ℓ1)

such that the inequality

Mk(2u) ≤ KMk(u) + ck

holds for all k ∈ N and u ∈ R+ whenever Mk(u) ≤ a.
The notion of difference sequence spaces was introduced by Kızmaz [17],

who studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion
was further generalized by Et and Çolak [8] by introducing the spaces l∞(∆n),
c(∆n) and c0(∆

n). Let w be the space of all complex or real sequences x = (xk)
and let m, n be non-negative integers, then for Z = l∞, c, c0 we have sequence
spaces

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z},
where ∆m

n x = (∆m
n xk) = (∆m−1

n xk −∆m−1
n xk+1) and ∆0

nxk = xk for all k ∈ N,
which is equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v
(

m
v

)
xk+nv.
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Taking n = 1, we get the spaces which were studied by Et and Çolak [8]. Taking
m = n = 1, we get the spaces which were introduced and studied by Kızmaz
[17].For more details about sequence spaces (see [3], [4], [5], [6], [7], [21], [22],
[23], [25], [26], [27], [28], [30], [31]) and reference therein.

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix
of real or complex numbers ank, where n, k ∈ N. Then we say that A defines
a matrix mapping from X into Y if for every sequence x = (xk)

∞
k=0 ∈ X, the

sequence Ax = {An(x)}∞n=0, the A-transform of x, is in Y , where

An(x) =
∞∑
k=0

ankxk (n ∈ N).

By (X,Y ), we denote the class of all matrices A such that A : X → Y . Thus,
A ∈ (X,Y ) if and only if the series on the right-hand side of above equention
converges for each n ∈ N and every x ∈ X.

The matrix domain XA of an infinite matrix A in a sequence space X is
defined by

XA = {x = (xk) : Ax ∈ X}.

A sequence space E is said to be solid(or normal) if (xk) ∈ E implies (αkxk) ∈ E
for all sequences of scalars (αk) with |αk| ≤ 1 and for all k ∈ N.
Let I be an admissible ideal of N, let p = (pk) be a bounded sequence of positive
real numbers and A = (ank) be an infinite matrix. LetM = (Mk) be a Musielak-
Orlicz function, u = (uk) be a sequence of strictly positive real numbers and
(X, ∥., ..., .∥) be an n-normed space. Suppose Λ = (λn) is a non-decreasing
sequence of positive real numbers such that λn+1 ≤ λn + 1, λ1 = 1, λn → ∞ as
n → ∞. Further w(n−x) denotes the space of all X-valued sequences. For every
z1, z2, ..., zn−1 ∈ X, for each ϵ > 0 and for some ρ > 0 we define the following
sequence spaces:

W I
[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]

=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,{

n ∈ N :
1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk − L

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
∈ I,

for L ∈ X and s ≥ 0

}
,

W I
0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ
}
∈ I, for s ≥ 0

}
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and

W I
∞
[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : ∃ K > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥K
}
∈I, for s ≥ 0

}
,

where In = [n − λn + 1, n]. Some special cases of the above defined sequence
spaces are arises: If m = 0, then we obtain the spaces as follows:

W I
[
Λ, A,M, u, p, ∥., ..., .∥

]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,{

n ∈ N :
1

λn

∑
k∈In

ank

[
k−sMk

(
∥ukxk − L

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
∈ I,

for L ∈ X and s ≥ 0

}
,

W I
0

[
Λ, A,M, u, p, ∥., ..., .∥

]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥ukxk

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
∈ I, for s ≥ 0

}
and

W I
∞
[
Λ, A,M, u, p, ∥., ..., .∥

]
=

{
x = (xk) ∈ w(n− x) : ∃ K > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥ukxk

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ K

}
∈ I, for s ≥ 0

}
.

If m = n = 1, then the above spaces are as follows:

W I
[
Λ,∆, A,M, u, p, ∥., ..., .∥

]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,{

n ∈ N :
1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆xk − L

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
∈ I,

for L ∈ X and s ≥ 0

}
,

W I
0

[
Λ,∆, A,M, u, p, ∥., ..., .∥

]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆xk

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
∈ I, for s ≥ 0

}
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and

W I
∞
[
Λ,∆, A,M, u, p, ∥., ..., .∥

]
=

{
x = (xk) ∈ w(n− x) : ∃ K > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆xk

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ K

}
∈ I, for s ≥ 0

}
.

If s = 0 and M(x) = x for all x ∈ [0,∞), then we have

W I
[
Λ,∆m

n , A, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,{

n ∈ N :
1

λn

∑
k∈In

ank

(
∥uk∆

m
n xk − L

ρ
, z1, z2, ..., zn−1∥

)pk
≥ ϵ

}
∈ I,

for L ∈ X and s ≥ 0

}
,

W I
0

[
Λ,∆m

n , A, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)pk

≥ ϵ
}
∈ I, for s ≥ 0

}

and

W I
∞
[
Λ,∆m

n , A, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : ∃ K > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)pk

≥ K
}
∈ I, for s ≥ 0

}
.

If p = (pk) = 1 for all k, then the above spaces are as follows

W I
[
Λ, A,∆m

n ,M, u, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,{

n ∈ N :
1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk − L

ρ
, z1, z2, ..., zn−1∥

)]
≥ ϵ

}
∈ I, for L ∈ X and s ≥ 0

}
,

W I
0

[
Λ,∆m

n , A,M, u, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,



40 KULDIP RAJ and CHARU SHARMA

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]

≥ ϵ
}
∈ I, for s ≥ 0

}

and

W I
∞
[
Λ,∆m

n , A,M, u, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : ∃ K > 0,

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]

≥ K
}
∈ I, for s ≥ 0

}
.

If A = (C, 1), the Cesàro matrix, then the above spaces are as follows:

W I
[
Λ,∆m

n ,M, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,{

n ∈ N :
1

λn

∑
k∈In

[
k−sMk

(
∥uk∆

m
n xk − L

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
∈ I,

for L ∈ X and s ≥ 0

}
,

W I
0

[
Λ,∆m

n ,M, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : for given ϵ > 0,

{
n ∈ N :

1

λn

∑
k∈In

[
k−sMk

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ
}
∈ I, for s ≥ 0

}

and

W I
∞
[
Λ,∆m

n ,M, u, p, ∥., ..., .∥
]
=

{
x = (xk) ∈ w(n− x) : ∃ K > 0,

{
n ∈ N :

1

λn

∑
k∈In

[
k−sMk

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ K
}
∈ I, for s ≥ 0

}
.

By a lacunary sequence θ = (kr); r = 0, 1, 2, ... where k0 = 0, we shall mean an
increasing sequence of non-negative integers with kr−kr−1 → ∞ as r → ∞. The
intervals determined by θ will be denoted by Ir = (kr−1, kr] and hr = kr − kr−1.
We finally arrived, let

ank =


1

hr
, if kr−1 < k < kr

0, otherwise.
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Then the above classes of sequences are denoted byW I
[
Λ, θ,∆m

n ,M, p, ∥., ..., .∥
]
,

W I
0

[
Λ, θ, ∆m

n ,M, p, ∥., ..., .∥
]
and W I

∞
[
Λ, θ,∆m

n ,M, p, ∥., ..., .∥
]
.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤
sup pk = G, D = max(1, 2G−1) then

(1) |ak + bk|pk ≤ D{|ak|pk + |bk|pk},

for all k and ak, bk ∈ R. Also |a|pk ≤ max(1, |a|G) for all a ∈ R.
The main aim of this paper is to introduce some generalized difference se-

quence spaces defined by ideal convergence, Musielak-Orlicz function and an
infinite matrix. We have also make an effort to study some inclusion relations
and their topological properties.

2. Main results

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers and u = (uk) be a sequence of strictly
positive real numbers. Then W I

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
,W I

0

[
Λ,∆m

n , A,M, u,
p, ∥., ..., .∥

]
and W I

∞
[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
are linear spaces over the real

field R.

Proof. We shall prove the result for the space W I
0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
.

Let x = (xk) and y = (yk) be two elements of W I
0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
.

Then there exists ρ1 > 0 and ρ2 > 0 and for z1, z2, ..., zn−1 ∈ X such that

A ϵ
2
=

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk

ρ1
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

2

}
∈ I

and

B ϵ
2
=

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n yk

ρ2
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

2

}
∈ I.

Let α, β ∈ R. Since ∥., ..., .∥ is a n-norm, ∆m
n is linear and the contributing of

M = (Mk), the following inequality holds:

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n (αxk + βyk)

|α|ρ1 + |β|ρ2
, z1, z2, ..., zn−1∥

)]pk
≤ D

1

λn

∑
k∈In

ank

[ |α|
|α|ρ1 + |β|ρ2

k−sMk

(
∥uk∆

m
n xk

ρ1
, z1, z2, ..., zn−1∥

)]pk
+D

1

λn

∑
k∈In

ank

[ |β|
|α|ρ1 + |β|ρ2

k−sMk

(
∥uk∆

m
n yk

ρ2
, z1, z2, ..., zn−1∥

)]pk
≤ DK

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk

ρ1
, z1, z2, ..., zn−1∥

)]pk
+DK

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n yk

ρ2
, z1, z2, ..., zn−1∥

)]pk
,
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where K = max{1, |α|
|α|ρ1+|β|ρ2 ,

|β|
|α|ρ1+|β|ρ2 }.

From the above relation, we get{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n (αxk + βyk)

|α|ρ1 + |β|ρ2
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
⊆

{
n ∈ N : DK

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk

ρ1
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

2

}
∪
{
n ∈ N : DK

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n yk

ρ2
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

2

}
.

Since both the sets on the R.H.S of above relation are belongs to I, so the set
on the L.H.S of the inclusion relation belongs to I. Similarly we can prove other
cases. This completes the proof of the theorem.

Theorem 2.2. Let M′ = (M ′
k) and M′′ = (M ′′

k ) be two Musielak-orlicz func-
tions. Then we have W I

0

[
Λ,∆m

n , A,M′, u, p, ∥., ..., .∥
]
∩ W I

0

[
Λ,∆m

n , A,M′′, u,
p, ∥., ..., .∥

]
⊆ W I

0

[
Λ,∆m

n , A,M′ +M′′, u, p, ∥., ..., .∥
]
.

Proof. Let x = (xk) ∈ W I
0

[
Λ,∆m

n , A,M′, u, p, ∥., ..., .∥
]
∩W I

0

[
Λ,∆m

n , A,M′′, u,
p, ∥., ..., .∥

]
. Then we get the result by the following inequality:

1

λn

∑
k∈In

ank

[
k−s(M ′

k +M ′′
k )
(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≤ D
1

λn

∑
k∈In

ank

[
k−sM ′

k

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

+D
1

λn

∑
k∈In

ank

[
k−sM ′′

k

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

.

Hence,{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−s(M ′

k +M ′′
k )
(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ
}

⊆
{
n ∈ N : D

1

λn

∑
k∈In

ank

[
k−sM ′

k

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ

2

}
∪
{
n ∈ N : D

1

λn

∑
k∈In

ank

[
k−sM ′′

k

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ

2

}
.

Since both the sets on the R.H.S of above relation are belongs to I, so the set
on the L.H.S of the inclusion relation belongs to I. This completes the proof of
the theorem.

Theorem 2.3. The inclusions Z
[
Λ,∆m−1

n , A, M, u, p, ∥., ..., .∥
]
⊆ Z

[
Λ,∆m

n , A,
M, u, p, ∥., ..., .∥

]
are strict for m ≥ 1. In general Z

[
Λ,∆m−1

n ,M, u, p, ∥., ..., .∥
]
⊆

Z
[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
, for m = 0, 1, 2, ... where Z = W I ,W I

0 ,W
I
∞.
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Proof. We give the proof forW I
0

[
Λ,∆m−1

n , A,M, u, p, ∥., ..., .∥
]
only. The others

can be proved by similar argument. Let x = (xk) be any element in the space
W I

0

[
Λ,∆m−1

n , A,M, u, p, ∥., ..., .∥
]
. Let ϵ > 0 be given. Then there exists ρ > 0

such that the set{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m−1
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ
}
∈ I.

Since M = (Mk) is non-decreasing and convex for every k, it follows that

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk

2ρ
, z1, z2, ..., zn−1∥

)]pk
=

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m−1
n xk+1 − uk∆

m−1
n xk

2ρ
, z1, z2, ..., zn−1∥

)]pk
≤ D

1

λn

∑
k∈In

ank

[1
2
k−sMk

(
∥uk∆

m−1
n xk+1

ρ
, z1, z2, ..., zn−1∥

)]pk
+D

1

λn

∑
k∈In

ank

[1
2
k−sMk

(
∥uk∆

m−1
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≤ DH
1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m−1
n xk+1

ρ
, z1, z2, ..., zn−1∥

)]pk
+DH

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m−1
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

,

where H = max
{
1, (12)

G
}
. Thus we have{

n ∈ N :
1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk

2ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
⊆

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m−1
n xk+1

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

2

}
∪
{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m−1
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ

2

}
.

Since both the sets in right hand side of the above relation belongs to I, therefore
we get the set{

n ∈ N :
1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n xk
ρ

, z1, z2, ..., zn−1∥
)]pk

≥ ϵ
}
∈ I.

This inclusion is strict follows from the following example.

Example. Let Mk(x) = x, for all k ∈ N, uk = pk = 1 for all k ∈ N, s = 0,
λn = 1 and A = (C, 1), the Cesaro matrix. Now consider a sequence x =
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(xk) = (kt). Then for n = 1, x = (xk) belongs to W I
0

[
Λ,∆m

n ,M, u, p, ∥., ..., .∥
]

but does not belongs to W I
0

[
Λ,∆m−1

n ,M, u, p, ∥., ..., .∥
]
, because ∆m

n xk = 0 and
∆m−1

n xk = (−1)m−1(m− 1)!.

Theorem 2.4. For any two sequences p = (pk) and q = (qk) of positive real
numbers and for any two n-norms ∥., ..., .∥1 and ∥., ..., .∥2 on X, we have the
following Z

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥1
]
∩ Z

[
Λ,∆m

n , A,M, u, q, ∥., ..., .∥2
]
̸= ϕ

where Z = W I ,W I
0 and W I

∞.

Proof. Since the zero element belongs to both the classes of sequences, so the
intersection is non-empty.

Theorem 2.5. The sequence spaces W I
0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
and W I

∞
[
Λ,

∆m
n , A,M, u, p, ∥., ..., .∥

]
are normal as well as monotone.

Proof. We shall prove the theorem for W I
0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
. Let

x = (xk) ∈ W I
0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
and α = (αk) be a sequence of

scalars such that |αk| ≤ 1 for all k ∈ N. Then for given ϵ > 0, we have{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n (αkxk)

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
⊆

{
n ∈ N :

1

λn

∑
k∈In

ank

[
k−sMk

(
∥uk∆

m
n (xk)

ρ
, z1, z2, ..., zn−1∥

)]pk
≥ ϵ

}
∈ I.

Hence, αkxk ∈ W I
0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
. Thus, the space W I

0

[
Λ,∆m

n ,
A,M, u, p, ∥., ..., .∥

]
is normal. Therefore, W I

0

[
Λ,∆m

n , A,M, u, p, ∥., ..., .∥
]
is

monotone also (see [15]). Similarly, we can prove the theorem for other case.
This completes the proof of the theorem.
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