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Abstract. We present some inequalities of unitarily invariant norms for matrices by
using majorization, Fan dominance principle and some existing inequalities of singu-
lar values and unitarily invariant norms for matrices. Our results are refinements or
generalizations of ones shown by Audenaert, Al-khlyleh, and Kittaneh.
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1. Introduction

Let Mn be the space of n × n complex matrices and suppose that s1(A) ≥
· · · ≥ sn(A) ≥ 0 are the singular values of A, which is the eigenvalues of the
positive semidefinite matrix |A| = (A∗A)1/2, arranged in decreasing order and
repeated according to multiplicity. Let ∥ · ∥ denote any unitarily invariant norm
on Mn. For A ∈ Mn , by singular value decomposition of A, we know that
the trace norm ∥A∥1 =

∑n
j=1 sj(A) = tr|A| and the Frobenius norm ∥A∥F =

(
∑n

j=1 s
2
j (A))

1/2 = (tr|A|2)1/2 are both unitarily invariant.
Let A,B ∈ Mn. Recently, Audenaert proved in [1] that if v ∈ [0, 1], then

(1.1) ∥AB∗∥2 ≤ ∥vA∗A+ (1− v)B∗B∥ ∥(1− v)A∗A+ vB∗B∥ ,

which is unity of the arithmetic-geometric mean and Cauchy-Schwarz inequali-
ties for unitarily invariant norms.

Let A,X,B ∈ Mn. Zou proved in [2] that if v ∈ [0, 1], then

(1.2) ∥AXB∗∥2 ≤ ∥vA∗AX + (1− v)XB∗B∥ ∥(1− v)A∗AX + vXB∗B∥ ,

which is a generalization of inequality (1.1).
Let A,X,B ∈ Mn. Very recently, Al-Manasrah and Kittaneh proved in [3]

that if v ∈ [0, 1], then

∥AXB∗∥2F ≤
(
∥vA∗AX + (1− v)XB∗B∥2F − v20 ∥A∗AX −XB∗B∥2F

)1/2
×
(
∥(1− v)A∗AX + vXB∗B∥2F − v20 ∥A∗AX −XB∗B∥2F

)1/2
,(1.3)
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where v0 = min {v, 1− v}. Inequality (1.3) is a refinement of inequality (1.2)
for the Frobenius norm.

Lin [4] gave a new proof of inequality (1.1). The authors of [5, 6] showed
some generalizations of inequality (1.2).

In this short note, following the idea of Lin [4], Al-Manasrah and Kittaneh
[3], we first present an improvement of inequality (1.1) for the trace norm.
Meanwhile, we also give a generalization of inequality (1.3).

2. Main results

In this section, we will show the main results of this paper. To do this, we need
the following lemmas.

Lemma 2.1 ([7]). Let A ∈ Mn. Then for any k = 1, · · · , n, we have

k∏
j=1

|λj (A)| ≤
k∏

j=1

sj (A).

Lemma 2.2 ([7]). Let A,B ∈ Mn. Then for any k = 1, · · · , n, we have

k∏
j=1

sj (AB) ≤
k∏

j=1

sj (A) sj (B).

Lemma 2.3 ([8]). Let A,B ∈ Mn be positive semidefinite. If v ∈ [0, 1], then

∥∥AvB1−v
∥∥
1
≤ ∥vA+ (1− v)B∥1 − v0

(√
∥A∥1 −

√
∥B∥1

)2

,

where v0 = min {v, 1− v}.

Lemma 2.4 ([9]). Let A,X,B ∈ Mn such that A,B are positive semidefinite.
If v ∈ [0, 1], then∥∥AvXB1−v

∥∥
F
≤
(
∥vAX + (1− v)XB∥pF

−vp0

(
∥AX +XB∥pF − 2p

∥∥∥A1/2XB1/2
∥∥∥p
F

))1/p
,

where v0 = min {v, 1− v}.

Theorem 2.1. Let A,B ∈ Mn. If v ∈ [0, 1], then

∥AB∗∥21 ≤

(
∥vA∗A+ (1− v)B∗B∥ − v0

(√
∥A∗A∥1 −

√
∥B∗B∥1

)2
)

×

(
∥(1− v)A∗A+ vB∗B∥ − v0

(√
∥A∗A∥1 −

√
∥B∗B∥1

)2
)
,(2.1)

where v0 = min {v, 1− v}.
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Proof. By Lemmas 2.1 and 2.2, we know that for any k = 1, · · · , n, we have

k∏
j=1

s2j (AXB∗) =

k∏
j=1

λj (BX∗A∗AXB∗)

=

k∏
j=1

λj (A
∗AXB∗BX∗)

=

k∏
j=1

λj

(
(A∗A)v X (B∗B)1−v (B∗B)v X∗ (A∗A)1−v

)

≤
k∏

j=1

sj

(
(A∗A)v X (B∗B)1−v (B∗B)v X∗ (A∗A)1−v

)

≤
k∏

j=1

sj

(
(A∗A)v X (B∗B)1−v

)
sj

(
(B∗B)v X∗ (A∗A)1−v

)
.

That is

(2.2)

k∏
j=1

sj(AXB∗) ≤
k∏

j=1

s
1/2
j ((A∗A)vX(B∗B)1−v)s

1/2
j ((B∗B)vX∗(A∗A)1−v).

Let

Y1 = diag
(
s
1/2
1

(
(A∗A)v X (B∗B)1−v

)
, · · · , s1/2n

(
(A∗A)v X (B∗B)1−v

))
,

Y2 = diag
(
s
1/2
1

(
(B∗B)v X∗ (A∗A)1−v

)
, · · · , s1/2n

(
(B∗B)v X∗ (A∗A)1−v

))
.

Then, it follows from (2.2) that

k∏
j=1

sj (AXB∗) ≤
k∏

j=1

sj (Y1) sj (Y2) =
k∏

j=1

sj (Y1Y2).

Since weak log-majorization implies weak majorization, we obtain

(2.3)
k∑

j=1

sj (AXB∗) ≤
k∑

j=1

sj (Y1Y2).

By Fan’s dominance principle [7], we know that inequality (2.3) is equivalent to

(2.4) ∥AXB∗∥ ≤ ∥Y1Y2∥ .

Putting X = I and v = 0 or v = 1 in inequality (1.1), we get

∥Y1Y ∗
2 ∥

2 ≤ ∥Y ∗
1 Y1∥ ∥Y ∗

2 Y2∥ .
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It follows from (2.4) and this last inequality that

(2.5) ∥AXB∗∥2 ≤
∥∥∥(A∗A)v X (B∗B)1−v

∥∥∥ ∥∥∥(B∗B)v X∗ (A∗A)1−v
∥∥∥ .

Since trace is unitarily invariant, we have

∥AB∗∥21 ≤
∥∥∥(A∗A)v (B∗B)1−v

∥∥∥
1

∥∥∥(B∗B)v (A∗A)1−v
∥∥∥
1
.

Lemma 2.3 and the above inequality complete the proof. �
Remark 2.1. Obviously, inequality (2.1) is a refinement of inequality (1.1).

Remark 2.2. Putting X = I in (2.2), we have

(2.6)

k∏
j=1

s2j (AB
∗) ≤

k∏
j=1

sj

(
(A∗A)v (B∗B)1−v

)
sj

(
(B∗B)v (A∗A)1−v

)
.

Ando proved in [10] that if v ∈ [0, 1], then

sj
(
AvB1−v

)
≤ sj (vA+ (1− v)B) , j = 1, · · · , n.

Combining inequality (2.6) with Ando’s result, we get

k∏
j=1

s2j (AB
∗) ≤

k∏
j=1

sj (vA
∗A+ (1− v)B∗B)sj ((1− v)A∗A+ vB∗B) ,

which implies inequality (1.1).

Next, we shall give a generalization of inequality (1.3).

Theorem 2.2. Let A,X,B ∈ Mn. If v ∈ [0, 1], then

(2.7)
∥AXB∗∥2F ≤

(
∥vA∗AX + (1− v)XB∗B∥pF − vp0f (A,X,B, p)

)1/p
×

(
∥(1− v)A∗AX + vXB∗B∥pF − vp0f (A,X,B, p)

)1/p
,

where
v0 = min {v, 1− v} ,

f (A,X,B, p) = ∥A∗AX +XB∗B∥pF − 2p
∥∥∥(A∗A)1/2X (B∗B)1/2

∥∥∥p
F
.

Proof. Note that for any Y ∈ Mn , we have ∥Y ∥ = ∥Y ∗∥. Since Frobenius
norm is unitarily invariant, it follows from inequality (2.5) and Lemma 2.5, we
obtain

∥AXB∗∥2F ≤
∥∥∥(A∗A)v X (B∗B)1−v

∥∥∥
F

∥∥∥(B∗B)v X∗ (A∗A)1−v
∥∥∥
F

=
∥∥∥(A∗A)v X (B∗B)1−v

∥∥∥
F

∥∥∥(A∗A)1−v X (B∗B)v
∥∥∥
F

≤
(
∥vA∗AX + (1− v)XB∗B∥pF − vp0f (A,X,B, p)

)1/p
×
(
∥(1− v)A∗AX + vXB∗B∥pF − vp0f (A,X,B, p)

)1/p
,
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where
v0 = min {v, 1− v} ,

f (A,X,B, p) = ∥A∗AX +XB∗B∥pF − 2p
∥∥∥(A∗A)1/2X (B∗B)1/2

∥∥∥p
F
.

This completes the proof. �

Remark 2.3. Putting p = 2 in inequality (2.7), we obtain

(2.8)
∥AXB∗∥2F ≤

(
∥vA∗AX + (1− v)XB∗B∥2F − v20f (A,X,B, 2)

)1/2
×

(
∥(1− v)A∗AX + vXB∗B∥2F − v20f (A,X,B, 2)

)1/2
.

Note that

∥A∗AX +XB∗B∥2F = ∥A∗AX −XB∗B∥2F + 4
∥∥∥(A∗A)1/2X (B∗B)1/2

∥∥∥2
F
,

then, we can rewrite inequality (2.8) as follows

∥AXB∗∥2F ≤
(
∥vA∗AX + (1− v)XB∗B∥2F − v20 ∥A∗AX −XB∗B∥2F

)1/2
×

(
∥(1− v)A∗AX + vXB∗B∥2F − v20 ∥A∗AX −XB∗B∥2F

)1/2
.

This is inequality (1.3) and so we know that inequality (2.7) is a generalization
of inequality (1.3).

Acknowledgements

The author wishes to express her heartfelt thanks to the referees for their de-
tailed and helpful suggestions for revising the manuscript.

Competing interests

The author declares that there is no conflict of interests regarding the publication
of this paper.

References

[1] K.M.R. Audenaert, Interpolating between the arithmetic-geometric mean
and Cauchy-Schwarz matrix norm inequalities, Oper. Matrices, 9 (2015),
475-479.

[2] L. Zou, Y. Jiang, A note on interpolation between the arithmetic-geometric
mean and Cauchy-Schwarz matrix norm inequalities, J. Math. Inequal., 10
(2016), 1119-1122.

[3] M. Al-khlyleh, F. Kittaneh, Interpolating inequalities related to a recent
result of Audenaert, Linear Multilinear Algebra, 65 (2017), 922-929.



INEQUALITIES OF UNITARILY INVARIANT NORMS FOR MATRICES 33

[4] M. Lin, Remarks on two recent results of Audenaert, Linear Algebra Appl.,
489 (2016), 24-29.

[5] M. Bakherad, R. Lashkaripour, M. Hajmohamadi, Extensions of interpo-
lation between the arithmetic-geometric mean inequality for matrices, J.
Inequal. Appl, 2017 (2017), 209.

[6] M. Alakhrass, A note on Audenaert interpolation inequality, Linear Multi-
linear Algebra. In Press, doi: 10.1080/03081087.2017.1376614.

[7] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.

[8] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for ma-
trices, J. Math. Anal. Appl., 361 (2010), 262-269.

[9] Y. Al-Manasrah, F. Kittaneh, Further Generalizations, Refinements, and
Reverses of the Young and Heinz Inequalities, Results in Mathematics, 71
(2017), 1063-1072.

[10] T. Ando, Matrix Young inequality, Oper. Theory Adv. Appl., 75 (1995),
33-38.

Accepted: 21.01.2016


