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Abstract. We present some inequalities of unitarily invariant norms for matrices by
using majorization, Fan dominance principle and some existing inequalities of singu-
lar values and unitarily invariant norms for matrices. Our results are refinements or
generalizations of ones shown by Audenaert, Al-khlyleh, and Kittaneh.
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1. Introduction

Let M, be the space of n x n complex matrices and suppose that s1(A) >
-+ > sp(A) > 0 are the singular values of A, which is the eigenvalues of the
positive semidefinite matrix |[A| = (A*A)'/2, arranged in decreasing order and
repeated according to multiplicity. Let || - || denote any unitarily invariant norm
on M,. For A € M, , by singular value decomposition of A, we know that
the trace norm [[Ally = 377, s;(A) = tr[A| and the Frobenius norm [|Al|p =
(51 5]2.(14))1/2 = (tr|AJ?>)Y/? are both unitarily invariant.
Let A, B € M,,. Recently, Audenaert proved in [1] that if v € [0, 1], then

(1.1) |AB*||® < |[vA*A + (1 — v) B*B||||(1 — v) A*A + vB*B],

which is unity of the arithmetic-geometric mean and Cauchy-Schwarz inequali-
ties for unitarily invariant norms.
Let A, X, B € M,,. Zou proved in [2] that if v € [0, 1], then

(1.2)  ||AXB*|]? < [vA*AX + (1 —v) XB*B| ||(1 — v) A*"AX + vXB*B||,

which is a generalization of inequality (1.1).
Let A, X, B € M,,. Very recently, Al-Manasrah and Kittaneh proved in [3]
that if v € [0, 1], then

1/2
|AXB*||% < (HUA*AX +(1—v) XB*B|% — 02 ||ATAX — XB*B||§)

1/2
(1.3) x (\\(1 — V) A*AX + vXB*B|% — 2 | AAX — XB*BH%) ,
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where vgp = min {v, 1 —v}. Inequality (1.3) is a refinement of inequality (1.2)
for the Frobenius norm.

Lin [4] gave a new proof of inequality (1.1). The authors of [5, 6] showed
some generalizations of inequality (1.2).

In this short note, following the idea of Lin [4], Al-Manasrah and Kittaneh
[3], we first present an improvement of inequality (1.1) for the trace norm.
Meanwhile, we also give a generalization of inequality (1.3).

2. Main results

In this section, we will show the main results of this paper. To do this, we need
the following lemmas.

Lemma 2.1 ([7]). Let A € M,,. Then for any k=1,--- ,n, we have

k k
TT 1< ] s5(A).
j=1 j=1

Lemma 2.2 ([7]). Let A,B € M,,. Then for any k=1,--- ,n, we have
k k
55 (AB) < [ 55 (4) 5 (B).

J

Lemma 2.3 ([8]). Let A, B € M, be positive semidefinite. If v € [0,1], then

1

|4"B* (|, < [loA+ (1 = v) Bll; = v WHAHI - WBnl)z,

where vp = min {v, 1 —v}.

Lemma 2.4 ([9]). Let A, X, B € M, such that A, B are positive semidefinite.
If v €[0,1], then

1A°XB|| - < (lvAX 4+ (1 —v) XBJ[},
B B 1/2 v pi/2][P \\ /7
o (|;AX+XBH§; 9P HA XB HF)) ,

where vp = min {v, 1 —v}.

Theorem 2.1. Let A,B € M,. Ifv € [0,1], then

2
|AB [} < (uvA*A +-088] -~ (ylaal, - Iz 5, ) )

1)  x <||<1—v>A*A+vB*B||—vO(WA*Aul—WrB*Brrl)Q),

where vy = min{v, 1 — v}.
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Proof. By Lemmas 2.1 and 2.2, we know that for any k = 1,--- ,n, we have

\; (BX*A*AX B¥)

=
S
N

.

%

I
=

<
I
—

<.
I
—

Il

\; (A*AX B*BX*)

<
Il
-

I

)‘j ((A*A)UX (B*B)lfv (B*B)v X* (A*A)17v>

<
Il
—

IN

5 <<A*A)UX (B*B>1—v (B*B)U X+ (A*A)l—v>

<
Il
-

5 <(A*A)” X (B*B)lfv)sj ((B*B)” X (A*A)l’”) .

IN

j=1
That is
k k
(2~2) HSj(AXB H UX(B*B)I—U) 1/2((B B)vX (A*A)l_v),
Jj=1 j=1
Let
_dzag( 1/2 ((A*A)UX(B*B)l_v>,--~ 1/2 ((A*A) (B*B)l_y)> ’

Y, = diag (31/2 ((B*B)” X* (A*A)1*v> e s ((B*B)” X (A*A)l—v>) |
Then, it follows from (2.2) that

k k
i (AXB) <[] s; M) s; (Va) = [ ] 55 (1 Y2).
o e

Mj»

Since weak log-majorization implies weak majorization, we obtain

k
(2.3) s; (AX B¥)
j=1 ]:1

Sj YiYQ

M»

By Fan’s dominance principle [7], we know that inequality (2.3) is equivalent to
(2.4) [AXB*|| < [[Y1Ya][.
Putting X = I and v =0 or v = 1 in inequality (1.1), we get

Y1 Y5 " < (1Y Yal| Y3 Yall
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It follows from (2.4) and this last inequality that

(2.5) HAXB*HZSH(A*A)” (B*B)*~

’ (B*B)" X* (A*A)*~

Since trace is unitarily invariant, we have

lAB |} < || (4 a)” (B*B)

1 H(B*B)v (A*A)

Lemma 2.3 and the above inequality complete the proof. O

Remark 2.1. Obviously, inequality (2.1) is a refinement of inequality (1.1).
Remark 2.2. Putting X = [ in (2.2), we have

(2.6) ﬁ 52 (AB¥) ﬁsj ((A*A)”(B*B)l_”)sj ((B*B)”(A*A)l_”).
j=1 j=1

Ando proved in [10] that if v € [0, 1], then
sj(A”Bl ”) j(WA+(1—-v)B),j=1,--- ,n.

Combining inequality (2.6) with Ando’s result, we get
k k
H s7 (AB*) < H (vA*A+ (1 —v) B*B)s; (1 —v) A*A+vB*B),

which implies inequality (1.1).
Next, we shall give a generalization of inequality (1.3).
Theorem 2.2. Let A, X,B € M,,. Ifv € |[0,1], then
* * * 1
o MAXBE < (Jod"AX + (1 =) XB*Blly — o] (A, X, B,p)
(I(1 = v) A*AX + vX B*B|[f = off (A, X, B.p))"",

where
vo =min{v, 1 — v},

p
F(A,X,B,p) = |A"AX + XB*B|%. — 27 || (4*4)/2 x (B*B)WHF

Proof. Note that for any Y € M, , we have ||Y| = ||[Y*|. Since Frobenius
norm is unitarily invariant, it follows from inequality (2.5) and Lemma 2.5, we
obtain

|AX B[} < || (44" X (B°B)'

H (B*B)’ X* (A*A)lfv

F

- H(A*A)“X (B*B)'™"|| [(A*A)"" X (B*B)"

< (JvA*AX + (1 —v) XB*B|lb — vb f (A, X, B,p)) /"
x ((1 = v) A*AX +vXB*B|% — o} f (A, X, B,p)) /",
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where
vo =min{v, 1 — v},

p
F(A,X,B,p) = |A*AX + XB*BJ%. — 2° ((A*A)WX (B*B)WHF.

This completes the proof. O
Remark 2.3. Putting p = 2 in inequality (2.7), we obtain

1/2
JAXB |7 < (JwA"AX + (1 =) XB*Bll} — v}/ (A, X, B,2)

(2.8) , 1/2
x (”(1 — ) A*AX + vXB*B|% — v3f (A, X, B, 2)) .
Note that
2
IA*AX + XB*B|% = |A*AX — XB*BJ|[% + 4 H(A*A)1/2 X (B*B)1/2HF ,

then, we can rewrite inequality (2.8) as follows

1/2
JAXB*|% < (||vA*AX +(1—v) XB*B|% — 2 || A*AX — XB*BH%)
1/2
x (”(1 — ) A*AX + vXB*B|% — v} | A*AX — XB*BH%) .
This is inequality (1.3) and so we know that inequality (2.7) is a generalization
of inequality (1.3).
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