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Abstract. In this paper we introduce the class of D-division near-rings as a subclass
of near-rings with a defect D and that one of division near-rings. We introduce the
notion of D-division near-ring and we state necessary and sufficient condition under
which a near-ring with defect of distributivity D is a D-division near-ring.
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1. Introduction and preliminaries

The interest in near-rings and near-fields started at the beginning of the 20th

century when Dickson wanted to know if the list of axioms for skew fields id re-
dundant. He found in [3] that there do exist ”near-fields” which fulfill all axioms
for skew fields except one distributive law. Since 1950, the theory of near-rings
had applications to several domains, for instance in area of dynamical systems,
graphs, homological algebra, universal algebra, category theory, geometry and
so on.

A comprehensive review of the theory of near-rings and its applications ap-
pears in Pilz [10], Meldrun [8], Clay [1], Wahling [14], Scot [12], Ferrero [4],
Vukovic [13], and Satyanarayana and Prasad [11].

Let (R,+, ·) be a left near-ring, i.e. (R,+) is a group (not necessarily commu-
tative) with the unit element 0, (R, ·) is a semigroup and the left distributivity
holds: x · (y + z) = x · y + x · z for any x, y, z ∈ R. It is clear that x · 0 = 0,
for any x ∈ R, while it might exists y ∈ R such that 0 · y ̸= 0. If 0 is a bi-
laterally absorbing element, that is 0 · x = x · 0 = 0, for any x ∈ R, then R is
called a zero-symmetric near-ring. Obviously, if (R,+, ·) is a left near-ring then
x · (−y) = −(xy) for any x, y ∈ R .
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A normal subgroup I of (R,+) is called an ideal of a near-ring (R,+, ·) if:
1) RI = {r · i|r ∈ R, i ∈ I} ⊆ I.
2) (r + i)r′ − r · r′ ∈ I , for all r, r′ ∈ R and i ∈ I.
Obviously, if I is an ideal of zero-symmetric near-ring R, then IR ⊆ I and

RI ⊆ I . In particular, if (R,+, ·) is a left near-ring that contains a multiplicative
semigroup S, whose elements generate (R,+) and satisfy (x+y) ·s = x ·s+y ·s,
for all x, y ∈ R and s ∈ S, then we say that R is a distributively generated
near-ring (d.g. near-ring). Regarding the classical example of a near-ring, that
one represented by the set of the functions from an additive group G into itself
with the pointwise addition and the natural composition of functions, if S is the
multiplicative semigroup of the endomorphisms of G and R′ is the subnear-ring
generated by S, then R′ is a d.g. near-ring. Other examples of d.g. near-
rings may be found in [5]. A near-ring containing more than one element is
called a division near-ring, if the set R\{0} is a multiplicative group [7]. Several
examples of division near-rings are given in [5]. It is well known that every
division ring is a division near-ring, while there are division nearrings which are
not division rings.

Ligh [7] give necessary and sufficient condition for a d.g. near-ring to be a
division ring.

Lemma 1.1 ([7]). If R is a d.g. near-ring, then 0 · x = 0, for all x ∈ R.

Theorem 1.1 ([7]). A necessary and sufficient condition for a d.g. near-ring
with more than one element to be division ring is that for all non-zero elements
a ∈ R, it holds a ·R = R.

Lemma 1.2 ([7]). The additive group (R,+) of a division near-ring R is abelian.

Another example of division ring is given by the following result.

Lemma 1.3. Every d.g. division near-ring R is a division ring.

Proof. By Lemma 1.2, the additive group (R,+) of a division near-ring is
abelian. It follows ([5], p.93) that every element of R is right distributive, i.e.
(x+ y) · z = x · z + y · z, for all x, y, z ∈ R. Thereby, if R is d.g. near-ring, then
R is a division near-ring if and only if R is a division ring. �

In [2] Dasic introduced the notion of a near-ring with defect of distributivity
as a generalization of d.g. near-ring.

Definition 1.1 ([2]). Let R be a zero-symmetric (left) near-ring. A set S of
generators of R is a multiplicative subsemigroup (S, ·) of the semigroup (R, ·),
whose elements generate (R,+). The normal subgroup D of the group (R,+)
which is generated by the set DS = {d ∈ R|d = −(x · s+ y · s)+ (x+ y) · s, x, y ∈
R, s ∈ S} is called the defect of distributivity of the near-ring R.

In other words, if s ∈ S, then for all x, y ∈ R, there exists d ∈ D such that
(x+ y) · s = x · s+ y · s+ d. This expresses the fact that the elements of S are
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distributive with the defect D. When we want to stress the set S of generators,
we will denote the near-ring by the couple (R,S). In particular, if D = 0, then
R is a distributively generated near-ring. The following lemma is easy to verify.

Lemma 1.4. Let (R,S) be a near-ring with the defect D.

i) If s ∈ S and x ∈ R, then there exists d ∈ D such that (−x)s = −(xs) + d.

ii) If s ∈ S, and x, y ∈ R,then there exists d ∈ D such that that (x− y) · s =
x · s− y · s+ d.

The main properties of this kind of near-rings are summarized in the follow-
ing results [2].

Theorem 1.2. i) Every homomorphic image of a near-ring with the defect D
is a near-ring with the defect f(D), when f is a homomorphism of near-rings.

ii) Every direct sum of a family of near-rings Ri with the defects Di, respec-
tively, is a near-ring whose defect is a direct sum of the defects Di.

iii) The defect D of the near-ring R is an ideal of R.

iv) Let R be a near-ring with the defect D and A be an ideal of R. The
quotient near-ring R/A has the defect D = {d + A|d ∈ D}. Moreover, R/A is
distributively generated if and only if D ⊆ A.

Following this idea, Jancic Rasovic and Cristea [6], introduce the concept of
hypernear-ring with a defect of distributivity, and present several properties of
this class of hypernear-rings, in connection with their direct product, hyperho-
momorphisms, or factor hypernear-rings.

In this paper we introduce the class of D−division near-rings as a subclass
of near-rings with a defect D and that one of division near-rings. Then we
state necessary and sufficient condition under which a near-ring with defect of
distributivity D is a D− division near-ring. On the end, we show that Ligh’s
theorem proved for distributively generated near-rings is a corollary of our result.

2. D-division near-rings

Definition 2.1. Let (R,S) be a near-ring with the defect of distributivity D ̸= R.
The structure (R\D, ·) is a D− multiplicative group of the near -ring R if:

i) The set R\D is closed under the multiplication.

ii) There exists e ∈ R\D such that, for each x ∈ R it holds x · e = x + d1
and e · x = x+ d2, for some d1, d2 ∈ D . A such element e is called the identity
element.

iii) For each x ∈ R\D there exists x′ ∈ R\D and d1, d2 ∈ D, such that:
x · x′ = e+ d1 and x′ · x = e+ d2 .

Definition 2.2. Let (R,S) be a near-ring with the defect of distributivity D ̸=
R. We say that R is a D−division near-ring (a near-ring of D− fractions) if
(R\D, ·) is a D−multiplicative group.
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Obviously, if (R,S) is a near-ring with defect of distributivity D ̸= R, such
that (R\D, ·) is a multiplicative group, then (R\D, ·) is a D−multiplicative
group. Also, if R is a distributively generated such that R is a division near-
ring, then R is an example of D−division near ring with defect of distributivity
D = {0} .

Now we present another examples of D−division near-rings.

Example 2.1. Let (R,+) = (Z6,+), be the additive group of integers modulo
6, and define on R the multiplication as follows:

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 5 4 3 2 1

2 0 1 2 3 4 5

3 0 0 0 0 0 0

4 0 5 4 3 2 1

5 0 1 2 3 4 5

It is simple to check that the multiplication is associative, so (R, ·) is a semi-
group, having 0 as two-sided absorbing element. Moreover, the multiplication
distributes over addition, so for any x, y, z ∈ R, we have x · (y+ z) = x · y+x · z
(we let these part to the reader as a simple exercice). For example, 1 · (4+ 2) =
1 ·0 = 0(0 = 2+4 = 1 ·4+1 ·2.) Take S = {0, 2, 3} a system of generators of the
hypergroup (R,+). We also notice that (S, ·) is a subsemigroup of (R, ·). Now
we determine the set DS : DS = {d ∈ R|d = −(x · s+ y · s) + (x+ y) · s, x, y ∈
R, s ∈ S} = {−(x·0+y ·0)+(x+y)·0|x, y ∈ R}∪{−(x·2+y ·2)+(x+y)·2|x, y ∈
R} ∪ {−(x · 3 + y · 3) + (x+ y) · 3|x, y ∈ R} = {0} ∪ {0} ∪ {0, 3} = {0, 3}. The
table of the hypercomposition x · 3 + y · 3 is the following one:

0 1 2 3 4 5

0 0 3 3 0 3 3

1 3 0 0 3 0 0

2 3 0 0 3 0 0

3 0 3 3 0 3 3

4 3 0 0 3 0 0

5 3 0 0 3 0 0

It follows that the table of −(x · 3 + y · 3) is:
0 1 2 3 4 5

0 0 3 3 0 3 3

1 3 0 0 3 0 0

2 3 0 0 3 0 0

3 0 3 3 0 3 3

4 3 0 0 3 0 0

5 3 0 0 3 0 0

Similarly, the table of the hypercomposition (x+ y) · 3 is:
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0 1 2 3 4 5

0 0 3 3 0 3 3

1 3 3 0 3 3 0

2 3 0 3 3 0 3

3 0 3 3 0 3 3

4 3 3 0 3 3 0

5 3 0 3 3 0 3

We obtain that A = {−(x · 3 + y · 3) + (x+ y) · 3|x, y ∈ R} = {0, 3}.
It follows that the defect of distributivity of the near-ring R is D = {0, 3}.
It can be easily verified that (R\D, ·) is a D−multiplicative group. Indeed,

R\D = {1, 2, 4, 5} is closed under the multiplication. Moreover, e = 2 is the
identity element. Finally, for any a ∈ R\D, there exists d ∈ D such that
a · a = 2 + d, meaning that the inverse of each element a ∈ R\D is a itself. So
(R,S) is a D−division near-ring.

Example 2.2. Let (R,+) = (Z4,+) be the additive group of the integers mod-
ulo 4 and define on R the multiplication as follows:

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 0 0 0

3 0 3 2 1

Then, (R, ·) is a semigroup, having 0 as a bilaterally absorbing element. It
can be veried that, for any x, y, z ∈ R, it holds x · (y+ z) = x · y+x · z, meaning
that (R,+, ·) is a near-ring. Take S = {1}. Obviously, S is a subsemigroup of
(R, ·) and it generates (R,+). Since the set DS = {−(x·1+y ·1)+(x+y)·1|x, y ∈
R} = {0, 2}, we conclude that the the defect of distributivity of the near-ring R
is D = {0, 2}.

We can see that the multiplicative structure(R\D, ·) is a group, so R\D is
a D−multiplicative group, i.e. (R,S) is a D−division near-ring.

Definition 2.3. Let (R,S) be a near-ring with the defect of distributivity D. We
say that (R,S) is a near-ring without D− divisors if, for all x, y ∈ R, x · y ∈ D
implies that x ∈ D or y ∈ D. Otherwise, we say that R has D−divisors if there
exist x, y ∈ R\D such that x · y ∈ D.

Proposition 2.1. Let (R,S) be a near-ring with the defect of distributivity
D ̸= R. If a · (R\D) +D = R\D +D, for all a ∈ R\D, then R is a near-ring
without D−divisors.

Proof. Suppose there exist x, y ∈ R\D such that x · y ∈ D. Since x ∈ R\D ⊆
R\D+D = x ·(R\D)+D, it follows that there exists x′ ∈ R\D and d1 ∈ D such
that x = x · x′ + d1. Moreover, from x′ ∈ R\D ⊆ R\D +D = y · (R\D) +D, it
follows that there exist y′ ∈ R\D and d2 ∈ D such that x′ = y·y′+d2. Therefore,
x = x · (y · y′ + d2) + d1 = x · y · y′ + x · d2 + d1. Since D is an ideal of R, and R
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is a zero-symmetric near-ring, then (x · y) · y′ ∈ D as x · y ∈ D, and x · d2 ∈ D,
as d2 ∈ D. It follows that (x · y) · y′ + x · d2 + d1 ∈ D, i.e. x ∈ D. It contradicts
the initial assumption. Therefore, R is a near-ring without D−divisors. �

Corollary 2.1. If (R,S) is a near-ring with the defect of distributivity D ̸= R,
such that a · (R\D) + D = R\D + D, for all a ∈ R\D, then the set R\D is
closed under the multiplication.

Proof. It follows immediately from the previous proposition. �

Theorem 2.1. Let (R,S) be a near-ring with the defect D ̸= R. A necessary
and sufficient condition for the near-ring R to be a D−division near-ring is that
a · (R\D) +D = R\D +D, for all a ∈ R\D.

Proof. Sufficiency. Let a · (R\D) + D = R\D + D, for all a ∈ R\D. By
Corollary 2.1, it follows that the set R\D is closed under the multiplication.
Note that there exists s ∈ R\D such that s ∈ S. To the contrary, if S ⊆ D,
then R = ⟨S⟩ ⊆ D, meaning that R = D, which contradicts our assumption.
Thus, let s ∈ R\D such that s ∈ S. Since s ∈ (R\D) + D = s · (R\D) + D,
it follows that there exists e ∈ R\D and d1 ∈ D such that s = s · e + d1.
Hence, s · (e · s − s) = (s · e) · s − s · s = (s − d1) · s − s · s ∈ D, since D is
an ideal in R. By Proposition 2.1, R is a near-ring without D−divisors and
since s ∈ R\D, we get e · s − s ∈ D, i.e. e · s ∈ D + s = s + D, and so there
exists d2 ∈ D such that es = s+ d2. If x ∈ R\D, then for some d3 ∈ D it holds:
(x ·e−x) ·s = x ·(e ·s)−x ·s+d3 = x ·(s+d2)−x ·s+d3 = x ·s+x ·d2−x ·s+d3 ∈
x · s+D−x · s+D ⊆ D+D = D. Since s /∈ D, we have x · e−x ∈ D, meaning
that x · e ∈ D + x = x + D. So, there exists d4 ∈ D such that xe = x + d4 .
Besides, s ·(e ·x−x) = (s ·e) ·x−s ·x = (s−d1) ·x−s ·x ∈ D, since D is an ideal.
Again, since s /∈ D, we obtain e ·x−x ∈ D, implying that e ·x ∈ D+x = x+D.
Thus, there exists d5 ∈ D such that ex = x + d5 .Thereby e is the identity
element.

Suppose now that a ∈ R\D. Since e ∈ R\D ⊆ R\D +D = a · (R\D) +D,
then there exist a′ ∈ R\D and d ∈ D such that e = a · a′ + d. Besides,
a ·(a′ ·a−e) = (a ·a′) ·a−a ·e = (e−d) ·a−(a+d1), for some d1 ∈ D. Since D is
an ideal of R, we have (e−d) ·a− e ·a ∈ D, i.e. (e−d) ·a ∈ D+ e ·a = e ·a+D.
Therefore, a·(a′·a−e) ∈ e·a+D−(a+d1) = e·a+D−d1−a. Besides, e·a = a+d2,
for some d2 ∈ D and thus a · (a′ · a− e) ∈ a+ d2 +D− d1 − a ⊆ a+D− a ⊆ D.
Since a /∈ D, it follows that a′ · a− e ∈ D, meaning that a′ · a ∈ D + e = e+D
i.e a′ · a = e + d4 for some d4 ∈ D. Hence, we have shown that R\D is a
D−multiplicative group, implying that (R,S) is a D−division near-ring.

Necessity. Let R\D be a D−multiplicative group with the identity element
e. Let a ∈ R\D. Obviously, a · (R\D) + D ⊆ R\D + D. We prove now the
other inclusion R\D +D ⊆ a · (R\D) +D. Suppose x ∈ R\D. Since R\D is a
D−multiplicative group, it follows that there exist a′ ∈ R\D and d1 ∈ D such
that a · a′ = e + d1. Besides there exists d2 ∈ D such that x = e · x + d2 =
(a ·a′−d1) ·x+d2. Since D is an ideal of R, we have (aa′−d1) ·x−(a ·a′) ·x ∈ D,
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and therefore (a ·a′−d1) ·x = (aa′−d1) ·x−(a ·a′) ·x+(a ·a′) ·x ∈ D+(a ·a′) ·x.
It follows that x ∈ D+a ·(a′ ·x)+d2 = a ·(a′ ·x)+D ⊆ a ·(R\D)+D. Therefore,
R\D ⊆ a · (R\D) +D, i.e. R\D +D ⊆ a · (R\D) +D. �

Now we will show that Theorem 1.1 [7] follows from the previous theorem.

Corollary 2.2. A necessary and sufficient condition for a d.g. near-ring with
more than one element to be division ring is that for all non-zero elements a ∈ R,
it holds a ·R = R.

Proof. If R is a d.g. near-ring, then by Lemma 1.1, R is a zero symmetric near-
ring, with the defect of disrtributivity D = {0}. From the previous theorem, it
follows that a necessary and sucient condition for a d.g. near-ring R with more
than one element to be a division near-ring is that a · (R\{0}) = R\{0}, for
all a ∈ R\{0}. Now we prove that if R is a d.g. near-ring with more than one
element, then a · R = R, for all a ∈ R\{0}, if and only if a · (R\{0}) = R\{0},
for all a ∈ R\{0}. Obviously, a · (R\{0}) = R\{0}, for all a ∈ R\{0} implies
that a ·R = R, for all a ∈ R\{0}.

Suppose now that we have a ·R = R, for all a ∈ R\{0}. First we prove that
a ·R\{0} ⊆ R\{0}, for a ̸= 0. If there exist a ̸= 0, b ̸= 0, such that a ·b = 0, then
since a·R = R and b·R = R it follows that there exist x, y ∈ R such that a = a·x
and x = b · y. Therefore, by Lemma 1.1, we have 0 = 0 · y = a · b · y = a · x = a,
which is a contradiction. Thus a · R\{0} ⊆ R\{0}. On the other side, for all
a ∈ R\{0}, it holds R\{0} ⊆ a · R = R and since a · 0 = 0 it follows that
R\{0} ⊆ a · (R\{0}). Therefore, a · (R\{0}) = R\{0}, for all a ∈ R\{0}. Thus,
from Lemma 1.3, we obtain Corollary 2.2. �

3. Conclusion and future work

In our future research we intend to extend to the case of hypernear-rings the no-
tions that were studied in this paper. Jancic- Rasovic and Cristea have recently
started [6] the study of hypernear-rings with a defect of distributivity D. Our
aim is to continue in the same direction, introducing the class of D−division
hypernear-rings as a subclass of hypernear-rings with a defect D, and that one
of division hypernear-rings. Another aim is to state a necessary and sufficient
condition under which a hypernear-ring with a defect of distributivity D is a
D−division hypernear-ring.
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