MORE PROPERTIES OF AN OPERATION ON SEMI-GENERALIZED OPEN SETS

Nazihah Ahmad

School of Quantitative Sciences College of Arts and Sciences Universiti Utara Malaysia 06010 Sintok, Kedah Malaysia nazihah@uum.edu.my

Baravan A. Asaad*

Department of Computer Science College of Science Cihan University-Duhok Kurdistan-region Iraq and Department of Mathematics Faculty of Science University of Zakho Kurdistan-region Iraq baravan.asaad@uoz.edu.krd

Abstract. The paper continues studying properties of an operation on τ_{sg} . The notions of $sg\gamma$ -generalized closed sets and some of its properties are investigated. It also introduces $sg-\gamma-T_{\frac{1}{2}}$ space via $sg\gamma$ -generalized closed set and $sg-\gamma$ -closed set. Some basic characterization of $sg-(\gamma,\beta)$ -irresolute functions with $sg-\beta$ -closed graphs have been obtained. It studies the concept of $sg-\gamma_0$ -closed space. Finally, it gives some properties of $sg-\gamma^*$ -regular and $sg-\gamma^*$ -normal spaces by using sg-open and sg-closed sets.

Keywords: $sg-\gamma$ -open sets, $sg\gamma g$ -closed sets, $sg-\gamma-T_i$ spaces $(i \in \{0, \frac{1}{2}, 1, 2\})$, $sg-(\gamma, \beta)$ -irresolute functions, $sg-\beta$ -closed graphs, $sg-\gamma_0$ -closed space, $sg-\gamma^*$ -regular and $sg-\gamma^*$ -normal spaces.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various modified forms of continuity, separation axioms, compactness etc. by utilizing general-

^{*.} Corresponding author

ized open sets. Levine [9] introduced the concept of semi-open sets and semicontinuity in topological spaces. In 1987, Battacharyya and Lahiri [4] used semi-open sets to define the notion of semi-generalized closed sets.

Kasahara [10] introduced the notion of an α operation approaches on a class τ of sets and studied the concept of α -continuous functions with α -closed graphs and α -compact spaces. After this, Jankovic [8] introduced the concept of α -closure of a set in X via α -operation and investigated further characterizations of function with α -closed graph. Later, Ogata [13] defined and studied the concept of γ -open sets, and applied it to investigate operation-functions and operation-separation axioms.

Recently, several researchers developed many concepts of operation γ in a space (X, τ) . Krishnan, Ganster and Balachandran [11] introduced and studied the concept of the operation γ on the class of all semi-open sets of (X, τ) , and defined the notion of semi γ -open sets and investigated some of their properties. An, Cuong and Maki [1] defined and investigated an operation γ on the class of all preopen sets of (X, τ) and introduced the notion of pre- γ -open sets, and developed some of their properties. Tahiliani [14] defined an operation γ on the class of all β -open sets of (X, τ) , and described the notion of β - γ -open sets. Carpintero, Rajesh and Rosas [5] studied the operation γ on the class of all b-open sets of (X, τ) , and defined the notion of b- γ -open sets. Asaad [2] defined the notion of an operation γ on the class of all generalized open sets in (X, τ) and study some of its applications. Asaad and Ahmad [3] introduced the concept of an operation γ on the collection of all semi-generalized open sets (i.e. τ_{sq}) in (X, τ) . By using this operation, they defined the concept of sg- γ -open sets and studied some of their properties. Also, they introduced and investigated $sg-\gamma-T_i$ spaces for $i \in \{0, 1, 2\}$.

The aim of this study is to introduce the concept of $sg\gamma$ -generalized closed sets by utilizing the operation γ on τ_{sg} and then investigate some of its properties. In addition, $sg_{-}\gamma_{-}T_{\frac{1}{2}}$ spaces are introduced and investigated. Some basic properties of $sg_{-}(\gamma,\beta)$ -irresolute functions with $sg_{-}\beta$ -closed graphs have been obtained. We study the concept of $sg_{-}\gamma_{0}$ -closed space and some of its properties. Finally, we give some spaces called $sg_{-}\gamma^{*}$ -regular and $sg_{-}\gamma^{*}$ -normal by using sg-open and sg-closed sets and study some of their properties.

2. Preliminaries

In this study, the spaces (X, τ) and (Y, σ) (or simply X and Y) represent nonempty spaces on which no separation axioms are assumed, unless otherwise mentioned, and they are simply written as X and Y, respectively, when no confusion arises. The closure and the interior of a set S of a space X are denoted by Cl(S) and Int(S), respectively. A subset S of a space X is said to be semi-open [9] if $S \subseteq Cl(Int(S))$. The complement of a semi-open set is said to be semi-closed [6]. We denote by SO(X) the set of all semi-open sets in (X, τ) . The semi-closure of S is defined as the intersection of all semi-closed sets containing S and it is denoted by sCl(S) [6]. A subset S of a space (X, τ) is said to be semi-generalized closed (in short sg-closed) [4] if $sCl(S) \subseteq U$ whenever $S \subseteq U$ and U is a semi-open set in X. The complement of an sg-closed set of X is sg-open. The family of all sg-open subsets of a space (X, τ) is denoted by τ_{sg} . In general, every semi-closed set of a space X is sg-closed. A space (X, τ) is semi- $T_{\underline{1}}$ [4] if every sg-closed subset of X is semi-closed.

An operation γ on SO(X) on X is a mapping $\gamma: SO(X) \to P(X)$ such that $U \subseteq \gamma(U)$ for each $U \in SO(X)$, where P(X) is the power set of X and $\gamma(U)$ denotes the value of γ at U. A non-empty subset S of a space (X, τ) with an operation γ on SO(X) is said to be semi γ -open [11] if for each $x \in S$, there exists a semi-open set U containing x such that $\gamma(U) \subseteq S$. The complement of a semi γ -open subset of a space X as semi γ -closed. The family of all semi γ -open sets of a space (X, τ) is denoted by $SO(X)_{\gamma}$. A point $x \in X$ is in the semi γ -closure [11] of a set $S \subseteq X$ if $\gamma(U) \cap S \neq \phi$ for each semi-open set U containing x. The set of all semi γ -closure points of S is called semi γ -closure of S and is denoted by $sCl_{\gamma}(S)$. A subset S of (X, τ) with an operation γ on SO(X) is said to be semi γ -g.closed [11] if $sCl_{\gamma}(S) \subseteq U$ whenever $S \subseteq U$ and U is a semi γ -open set in (X, τ) .

Definition 2.1 ([3]). An operation γ on τ_{sg} is a mapping $\gamma: \tau_{sg} \to P(X)$ such that $U \subseteq \gamma(U)$ for every $U \in \tau_{sg}$. From this, for any operation $\gamma: \tau_{sg} \to P(X)$, we have $\gamma(X) = X$. A non-empty set S of X is said to be sg- γ -open if for each $x \in S$, there exists an sg-open set U such that $x \in U$ and $\gamma(U) \subseteq S$. The complement of an sg- γ -open set of X is sg- γ -closed. Assume that the empty set ϕ is also sg- γ -open set for any operation $\gamma: \tau_{sg} \to P(X)$. The family of all sg- γ -open subsets of a space (X, τ) is denoted by $\tau_{sg\gamma}$.

The union of any collection of sg- γ -open sets in a topological space X is sg- γ -open. While, the intersection of any two sg- γ -open sets in (X, τ) is generally not an sg- γ -open set. The relation between the concept of sg-open set and sg- γ -open set are independent [3].

Definition 2.2. Let S be any subset of a space (X, τ) . Then the class of all sg- γ -open sets in S is defined in a natural way as: $\tau_{sg\gamma_S} = \{G \cap S : \text{ for all } G \in \tau_{sg\gamma}\}$ That is H is sg- γ -open in S if and only if $H = G \cap S$, where $G \in \tau_{sg\gamma}$.

Definition 2.3 ([3]). The point $x \in X$ is in the sg-closure_{γ} of a set S if $\gamma(U) \cap S \neq \phi$ for each sg-open set U containing x. The set of all sg-closure_{γ} points of S is called sg-closure_{γ} of S and is denoted by $sgCl_{\gamma}(S)$.

Definition 2.4 ([3]). Let S be any subset of a topological space (X, τ) and γ be an operation on τ_{sg} . The sg- γ -closure of S is defined as the intersection of all sg- γ -closed sets of X containing S and it is denoted by $sg_{\gamma}Cl(S)$. That is,

$$sg_{\gamma}Cl(S) = \bigcap \{F : S \subseteq F, X \setminus F \in \tau_{sq\gamma} \}.$$

Theorem 2.5 ([3]). Let S be any subset of a topological space (X, τ) and γ be an operation on τ_{sg} . Then $x \in sg_{\gamma}Cl(S)$ if and only if $S \cap U \neq \phi$ for every sg_{γ} -open set U of X containing x.

Lemma 2.6 ([3]). The following statements are true for any subsets S and T of a topological space (X, τ) with an operation γ on τ_{sq} .

- 1. $sg_{\gamma}Cl(S)$ is $sg_{\gamma}-closed$ set in X and $sgCl_{\gamma}(S)$ is $sg_{\gamma}-closed$ set in X.
- 2. $S \subseteq sgCl_{\gamma}(S) \subseteq sg_{\gamma}Cl(S)$.
- 3. (a) S is sg-γ-closed if and only if sg_γCl(S) = S and,
 (b) S is sg-γ-closed if and only if sgCl_γ(S) = S.
- 4. If $S \subseteq T$, then $sg_{\gamma}Cl(S) \subseteq sg_{\gamma}Cl(T)$ and $sgCl_{\gamma}(S) \subseteq sgCl_{\gamma}(T)$.
- 5. (a) $sg_{\gamma}Cl(S \cap T) \subseteq sg_{\gamma}Cl(S) \cap sg_{\gamma}Cl(T)$ and, (b) $sgCl_{\gamma}(S \cap T) \subseteq sgCl_{\gamma}(S) \cap sgCl_{\gamma}(T)$.
- 6. (a) $sg_{\gamma}Cl(S) \cup sg_{\gamma}Cl(T) \subseteq sg_{\gamma}Cl(S \cup T)$ and, (b) $sgCl_{\gamma}(S) \cup sgCl_{\gamma}(T) \subseteq sgCl_{\gamma}(S \cup T)$.
- 7. $sg_{\gamma}Cl(sg_{\gamma}Cl(S)) = sg_{\gamma}Cl(S).$

Theorem 2.7 ([3]). Let S be any subset of a topological space (X, τ) and γ be an operation on τ_{sq} . Then the following statements are equivalent:

- 1. S is sg- γ -open set.
- 2. $sgCl_{\gamma}(X \setminus S) = X \setminus S$.
- 3. $sg_{\gamma}Cl(X \setminus S) = X \setminus S.$
- 4. $X \setminus S$ is sg- γ -closed set.

Theorem 2.8 ([4]). A topological space (X, τ) is semi- $T_{\frac{1}{2}}$ if and only if $\tau_{sg} = SO(X)$.

Lemma 2.9 ([3]). If the space (X, τ) is semi- $T_{\frac{1}{2}}$, then $\tau_{sg\gamma} = SO(X)_{\gamma}$.

3. $sg\gamma$ -generalized closed sets and $sg-\gamma-T_{\frac{1}{2}}$ spaces

Definition 3.1. A subset S of a topological space (X, τ) with an operation γ on τ_{sg} is said to be $sg\gamma$ -generalized closed (in short $sg\gamma g$ -closed) if $sgCl_{\gamma}(S) \subseteq U$ whenever $S \subseteq U$ and U is an $sg-\gamma$ -open set in X.

Lemma 3.2. Let (X, τ) be a topological space and γ be an operation on τ_{sg} . A set S in (X, τ) is $sg\gamma g$ -closed if and only if $S \cap sg_{\gamma}Cl(\{x\}) \neq \phi$ for every $x \in sgCl_{\gamma}(S)$. **Proof.** Suppose S is $sg\gamma g$ -closed set in X and suppose (if possible) that there exists an element $x \in sgCl_{\gamma}(S)$ such that $S \cap sg_{\gamma}Cl(\{x\}) = \phi$. This follows that $S \subseteq X \setminus sg_{\gamma}Cl(\{x\})$. Since $sg_{\gamma}Cl(\{x\})$ is sg- γ -closed implies $X \setminus sg_{\gamma}Cl(\{x\})$ is sg- γ -open and S is $sg\gamma g$ -closed set in X. Then, we have that $sgCl_{\gamma}(S) \subseteq X \setminus sg_{\gamma}Cl(\{x\})$. This means that $x \notin sgCl_{\gamma}(S)$. This is a contradiction. Hence $S \cap sg_{\gamma}Cl(\{x\}) \neq \phi$.

Conversely, let $U \in \tau_{sg\gamma}$ such that $S \subseteq U$. To show that $sgCl_{\gamma}(S) \subseteq U$. Let $x \in sgCl_{\gamma}(S)$. Then by hypothesis, $S \cap sg_{\gamma}Cl(\{x\}) \neq \phi$. So there exists an element $y \in S \cap sg_{\gamma}Cl(\{x\})$. Thus $y \in S \subseteq U$ and $y \in sg_{\gamma}Cl(\{x\})$. By Theorem 2.5, $\{x\} \cap U \neq \phi$. Hence $x \in U$ and so $sgCl_{\gamma}(S) \subseteq U$. Therefore, S is $sg\gamma g$ -closed set in (X, τ) .

Theorem 3.3. Let S be a subset of topological space (X, τ) and γ be an operation on τ_{sg} . If S is $sg\gamma g$ -closed, then $sgCl_{\gamma}(S)\backslash S$ does not contain any non-empty $sg-\gamma$ -closed set.

Proof. Let F be a non-empty sg- γ -closed set in X such that $F \subseteq sgCl_{\gamma}(S) \setminus S$. Then $F \subseteq X \setminus S$ implies $S \subseteq X \setminus F$. Since $X \setminus F$ is sg- γ -open set and S is $sg\gamma g$ -closed set, then $sgCl_{\gamma}(S) \subseteq X \setminus F$. That is $F \subseteq X \setminus sgCl_{\gamma}(S)$. Hence $F \subseteq X \setminus sgCl_{\gamma}(S) \cap sgCl_{\gamma}(S) \setminus S \subseteq X \setminus sgCl_{\gamma}(S) \cap sgCl_{\gamma}(S) = \phi$. This shows that $F = \phi$. This is contradiction. Therefore, $F \not\subseteq sgCl_{\gamma}(S) \setminus S$.

Recall that an operation γ on τ_{sg} is said to be sg-open [3] if for each $x \in X$ and for every sg-open set U containing x, there exists an sg- γ -open set W containing x such that $W \subseteq \gamma(U)$.

Theorem 3.4 ([3]). Let S be any subset of a topological space (X, τ) . If γ is an sg-open operation on τ_{sg} , then $sgCl_{\gamma}(S) = sg_{\gamma}Cl(S)$, $sgCl_{\gamma}(sgCl_{\gamma}(S)) = sgCl_{\gamma}(S)$ and $sgCl_{\gamma}(S)$ is $sg-\gamma$ -closed set in X.

Theorem 3.5. If $\gamma: \tau_{sg} \to P(X)$ is an sg-open operation, then the converse of the Theorem 3.3 is true.

Proof. Let U be an sg- γ -open set in (X, τ) such that $S \subseteq U$. Since $\gamma: \tau_{sg} \to P(X)$ is an sg-open operation, then by Theorem 3.4, $sgCl_{\gamma}(S)$ is sg- γ -closed set in X. Thus, we have $sgCl_{\gamma}(S) \cap X \setminus U$ is an sg- γ -closed set in (X, τ) . Since $X \setminus U \subseteq X \setminus S$, $sgCl_{\gamma}(S) \cap X \setminus U \subseteq sgCl_{\gamma}(S) \setminus S$. Using the assumption of the converse of the Theorem 3.3, $sgCl_{\gamma}(S) \subseteq U$. Therefore, S is $sg\gamma g$ -closed set in (X, τ) .

Corollary 3.6. Let S be an $sg\gamma g$ -closed subset of topological space (X, τ) and let γ be an operation on τ_{sg} . Then S is sg- γ -closed if and only if $sgCl_{\gamma}(S)\backslash S$ is sg- γ -closed set.

Proof. Let S be an sg- γ -closed set in (X, τ) . Then by Lemma 2.6 (3b), $sgCl_{\gamma}(S) = S$ and hence $sgCl_{\gamma}(S) \setminus S = \phi$ which is sg- γ -closed set.

Conversely, suppose $sgCl_{\gamma}(S) \setminus S$ is $sg-\gamma$ -closed and S is $sg\gamma g$ -closed. Then by Theorem 3.3, $sgCl_{\gamma}(S) \setminus S$ does not contain any non-empty $sg-\gamma$ -closed set and since $sgCl_{\gamma}(S) \setminus S$ is $sg-\gamma$ -closed subset of itself, then $sgCl_{\gamma}(S) \setminus S = \phi$ implies $sgCl_{\gamma}(S) \cap X \setminus S = \phi$. Hence $sgCl_{\gamma}(S) = S$. This follows from Lemma 2.6 (3b) that S is $sg-\gamma$ -closed set in (X, τ) .

Theorem 3.7. Let (X, τ) be a topological space and γ be an operation on τ_{sg} . If a subset S of X is $sg\gamma g$ -closed and $sg \gamma$ -open, then S is $sg \gamma$ -closed.

Proof. Since S is $sg\gamma g$ -closed and $sg-\gamma$ -open set in X, then $sgCl_{\gamma}(S) \subseteq S$ and hence by Lemma 2.6 (3b), S is $sg-\gamma$ -closed.

Theorem 3.8. In any topological space (X, τ) with an operation γ on τ_{sg} . For an element $x \in X$, the set $X \setminus \{x\}$ is $sg\gamma g$ -closed or sg- γ -open.

Proof. Suppose that $X \setminus \{x\}$ is not sg- γ -open. Then X is the only sg- γ -open set containing $X \setminus \{x\}$. This implies that $sgCl_{\gamma}(X \setminus \{x\}) \subseteq X$. Thus $X \setminus \{x\}$ is an $sg\gamma g$ -closed set in X.

Corollary 3.9. In any topological space (X, τ) with an operation γ on τ_{sg} . For an element $x \in X$, either the set $\{x\}$ is sg- γ -closed or the set $X \setminus \{x\}$ is sg γ g-closed.

Proof. Suppose $\{x\}$ is not sg- γ -closed, then $X \setminus \{x\}$ is not sg- γ -open. Hence by Theorem 3.8, $X \setminus \{x\}$ is $sg\gamma g$ -closed set in X.

Definition 3.10. Let S be any subset of a topological space (X, τ) and γ be an operation on τ_{sg} . Then the $\tau_{sg\gamma}$ -kernel of S is denoted by $\tau_{sg\gamma}$ -ker(S) and is defined as follows:

$$\tau_{sq\gamma}$$
-ker $(S) = \cap \{U : S \subseteq U \text{ and } U \in \tau_{sq\gamma}\}$

In other words, $\tau_{sg\gamma}$ -ker(S) is the intersection of all sg- γ -open sets of (X, τ) containing S.

Theorem 3.11. Let $S \subseteq (X, \tau)$ and γ be an operation on τ_{sg} . Then S is $sg\gamma g$ -closed if and only if $sgCl_{\gamma}(S) \subseteq \tau_{sg\gamma}$ -ker(S).

Proof. Suppose that S is $sg\gamma g$ -closed. Then $sgCl_{\gamma}(S) \subseteq U$, whenever $S \subseteq U$ and U is $sg-\gamma$ -open. Let $x \in sgCl_{\gamma}(S)$. Then by Lemma 3.2, $S \cap sg_{\gamma}Cl(\{x\}) \neq \phi$. So there exists a point z in X such that $z \in S \cap sg_{\gamma}Cl(\{x\})$ implies that $z \in S \subseteq U$ and $z \in sg_{\gamma}Cl(\{x\})$. By Theorem 2.5, $\{x\} \cap U \neq \phi$. Hence we show that $x \in \tau_{sg\gamma}$ -ker(S). Therefore, $sgCl_{\gamma}(S) \subseteq \tau_{sg\gamma}$ -ker(S). Conversely, let $sgCl_{\gamma}(S) \subseteq \tau_{sg\gamma}$ -ker(S). Let U be any $sg-\gamma$ -open set containing S. Let x be a point in X such that $x \in sgCl_{\gamma}(S)$. Then $x \in \tau_{sg\gamma}$ -ker(S). Namely, we have $x \in U$, because $S \subseteq U$ and $U \in \tau_{sg\gamma}$ }. That is $sgCl_{\gamma}(S) \subseteq \tau_{sg\gamma}$ -ker $(S)\subseteq U$. Therefore, S is $sg\gamma g$ -closed set in X. **Definition 3.12.** A topological space (X, τ) is said to be:

- 1. $sg-\gamma-T_0$ [3] (resp., semi $\gamma-T_0$ [11]) if for any two distinct points x, y in X, there exists an sg-open (resp., a semi-open) set U such that $x \in U$ and $y \notin \gamma(U)$ or $y \in U$ and $x \notin \gamma(U)$.
- 2. $sg-\gamma-T_1$ [3] (resp., semi $\gamma-T_1$ [11]) if for any two distinct points x, y in X, there exist two sg-open (resp., semi-open) sets U and V containing x and y respectively such that $y \notin \gamma(U)$ and $x \notin \gamma(V)$.
- 3. $sg-\gamma-T_2$ [3] (resp., semi $\gamma-T_2$ [11]) if for any two distinct points x, y in X, there exist two sg-open (resp., semi-open) sets U and V containing x and y respectively such that $\gamma(U) \cap \gamma(V) = \phi$.
- 4. semi $\gamma\text{-}T_{\frac{1}{2}}$ [11] if every semi $\gamma\text{-}g.\text{closed set in }X$ is semi $\gamma\text{-closed.}$

Definition 3.13. A topological space (X, τ) with an operation γ on τ_{sg} is said to be $sg-\gamma-T_{\frac{1}{2}}$ if every $sg\gamma g$ -closed set in X is $sg-\gamma$ -closed set.

Theorem 3.14. For any topological space (X, τ) with an operation γ on τ_{sg} . Then (X, τ) is $sg-\gamma-T_{\frac{1}{2}}$ if and only if for each element $x \in X$, the set $\{x\}$ is $sg-\gamma$ -closed or $sg-\gamma$ -open.

Proof. Let X be an $sg_{-\gamma}-T_{\frac{1}{2}}$ space and let $\{x\}$ is not $sg_{-\gamma}$ -closed set in (X, τ) . By Corollary 3.9, $X \setminus \{x\}$ is $sg_{\gamma}g_{-}$ closed. Since (X, τ) is $sg_{-\gamma}-T_{\frac{1}{2}}$, then $X \setminus \{x\}$ is $sg_{-\gamma}$ -closed set which means that $\{x\}$ is $sg_{-\gamma}$ -open set in X.

Conversely, let F be any $sg\gamma g$ -closed set in the space (X, τ) . We have to show that F is $sg-\gamma$ -closed (that is $sgCl_{\gamma}(F) = F$ (by Lemma 2.6 (3b))). It is sufficient to show that $sgCl_{\gamma}(F) \subseteq F$. Let $x \in sgCl_{\gamma}(F)$. By hypothesis $\{x\}$ is $sg-\gamma$ -closed or $sg-\gamma$ -open for each $x \in X$. So we have two cases:

Case (1): If $\{x\}$ is sg- γ -closed set. Suppose $x \notin F$, then $x \in sgCl_{\gamma}(F) \setminus F$ contains a non-empty sg- γ -closed set $\{x\}$. A contradiction since F is $sg\gamma g$ -closed set and according to the Theorem 3.3. Hence $x \in F$. This follows that $sgCl_{\gamma}(F) \subseteq F$ and hence $sgCl_{\gamma}(F) = F$. This means from by Lemma 2.6 (3b) that F is sg- γ -closed set in (X, τ) . Thus (X, τ) is sg- γ - $T_{\frac{1}{2}}$ space.

Case (2): If $\{x\}$ is sg- γ -open set. Then by Theorem 2.5, $F \cap \{x\} \neq \phi$ which implies that $x \in F$. So $sgCl_{\gamma}(F) \subseteq F$. Thus by Lemma 2.6 (3b), F is sg- γ -closed. Therefore, (X, τ) is sg- γ - $T_{\frac{1}{2}}$ space.

Theorem 3.15. For any topological space (X, τ) and any operation γ on τ_{sg} , the following properties hold.

- 1. Every $sg-\gamma-T_2$ space is $sg-\gamma-T_1$, and every $sg-\gamma-T_1$ space is $sg-\gamma-T_0$ [3].
- 2. Every sg- γ -T₁ space is sg- γ -T_{$\frac{1}{2}$}.
- 3. Every $sg-\gamma-T_{\frac{1}{2}}$ space is $sg-\gamma-T_0$.

Remark 3.16. The following diagram of implications follows directly from Theorem 3.15, Remark 3.5 in [11] and Remark 4.12 in [11], we obtain the following diagram of implications.

Where $S \to T$ represents S implies T.

In the sequel, we shall show that none of the implications that concerning $sg-\gamma-T_{\frac{1}{2}}$ space in the above diagram is reversible.

Example 3.17. Consider the space (X, τ) as in Example 3.6 in [3]. Then the space (X, τ) is $sg-\gamma-T_{\frac{1}{2}}$, but (X, τ) is not semi $\gamma-T_{\frac{1}{2}}$.

Example 3.18. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\} = SO(X)$. Then $\tau_{sg} = P(X)$. Let $\gamma: \tau_{sg} \to P(X)$ be an operation on τ_{sg} defined as follows: For every set $S \in \tau_{sg}$

$$\gamma(S) = \begin{cases} S, & \text{if } b \in S \\ Cl(S), & \text{if } b \notin S \end{cases}$$

Thus, $\tau_{sg\gamma} = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, and the sets $\{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ are $sg\gamma g$ -closed. Then the space (X, τ) is $sg-\gamma-T_0$, but it is not $sg-\gamma-T_{\frac{1}{2}}$. Since $\{a, b\}$ is $sg\gamma g$ -closed set in (X, τ) , but $\{a, b\}$ is not $sg-\gamma$ -closed set in (X, τ) .

Example 3.19. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then $\tau_{sg} = \tau$. Let $\gamma: \tau_{sg} \to P(X)$ be an operation on τ_{sg} defined as follows: For every set $S \in \tau_{sg}$

$$\gamma(S) = \begin{cases} S, & \text{if } a \in S \\ Cl(S), & \text{if } a \notin S \end{cases}$$

Thus, $\tau_{sg\gamma} = \tau$. Therefore, the space (X, τ) is $sg_{\gamma}-T_{\frac{1}{2}}$, but it is not $sg_{\gamma}-T_{1}$.

4. sg- (γ, β) -irresolute functions with sg- β -closed graphs

Let (X, τ) and (Y, σ) be two topological spaces and let $\gamma: \tau_{sg} \to P(X)$ and $\beta: \sigma_{sg} \to P(Y)$ be operations on τ_{sg} and σ_{sg} respectively. In this section, we introduce a new class of functions called sg- (γ, β) -irresolute. Some characterizations and properties of this function are investigated.

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be sg- (γ, β) -irresolute if for each $x \in X$ and each sg-open set V containing f(x), there exists an sg-open set U containing x such that $f(\gamma(U)) \subseteq \beta(V)$.

Theorem 4.2. Let $f: (X, \tau) \to (Y, \sigma)$ be an sg- (γ, β) -irresolute function, then,

- 1. $f(sgCl_{\gamma}(S)) \subseteq sgCl_{\beta}(f(S)), \text{ for every } S \subseteq (X, \tau).$
- 2. $f^{-1}(F)$ is sg- γ -closed set in (X, τ) , for every sg- β -closed set F of (Y, σ) .

Proof. (1) Let $y \in f(sgCl_{\gamma}(S))$ and V be any sg-open set containing y. Then by hypothesis, there exists $x \in X$ and sg-open set U containing x such that f(x) = y and $f(\gamma(U)) \subseteq \beta(V)$. Since $x \in sgCl_{\gamma}(S)$, we have $\gamma(U) \cap S \neq \phi$. Hence $\phi \neq f(\gamma(U) \cap S) \subseteq f(\gamma(U)) \cap f(S) \subseteq \beta(V) \cap f(S)$. This implies that $y \in sgCl_{\beta}(f(S))$. Therefore, $f(sgCl_{\gamma}(S)) \subseteq sgCl_{\beta}(f(S))$.

(2) Let F be any sg- β -closed set of (Y, σ) . By using (1), we have

$$f(sgCl_{\gamma}(f^{-1}(F))) \subseteq sgCl_{\beta}(F) = F.$$

Therefore, $sgCl_{\gamma}(f^{-1}(F)) = f^{-1}(F)$. Hence $f^{-1}(F)$ is sg- γ -closed set in (X, τ) .

Recall that a topological space (X, τ) with an operation γ on τ_{sg} is said to be $sg-\gamma$ -regular [3] if for each $x \in X$ and for each sg-open set U containing x, there exists an sg-open set W such that $x \in W$ and $\gamma(W) \subseteq U$. The space (X, τ) is an sg- γ -regular if and only if $\tau_{sg} \subseteq \tau_{sg\gamma}$ [3].

Theorem 4.3. In Theorem 4.2, the properties of sg- (γ, β) -irresoluteness of f, (1) and (2) are equivalent to each other if either the space (Y, σ) is sg- β -regular or the operation β is sg-open.

Proof. It follows from the proof of Theorem 4.2 that we know the following implications: "sg- (γ, β) -irresoluteness of f" \Rightarrow $(1) \Rightarrow$ (2). Thus, when the space (Y, σ) is sg- β -regular, we prove the implication: $(2) \Rightarrow sg$ - (γ, β) -irresoluteness of f. Let $x \in X$ and let $V \in \sigma_{sg}$ such that $f(x) \in V$. Since (Y, σ) is an sg- β -regular space, then $V \in \sigma_{g\beta}$. By using (2) of Theorem 4.2, $f^{-1}(V) \in \tau_{sg\gamma}$ such that $x \in f^{-1}(V)$. So there exists an sg-open set U such that $x \in U$ and $\gamma(U) \subseteq f^{-1}(V)$. This implies that $f(\gamma(U)) \subseteq V \subseteq \beta(V)$. Therefore, f is sg- (γ, β) -irresolute.

Now, when β is an sg-open operation, we show the implication: (2) \Rightarrow sg- (γ, β) -irresoluteness of f. Let $x \in X$ and let $V \in \sigma_{sg}$ such that $f(x) \in V$. Since β is an sg-open operation, then there exists $W \in \sigma_{g\beta}$ such that $f(x) \in W$ and $W \subseteq \beta(V)$. By using (2) of Theorem 4.2, $f^{-1}(W) \in \tau_{sg\gamma}$ such that $x \in f^{-1}(W)$. So there exists an sg-open set U such that $x \in U$ and $\gamma(U) \subseteq f^{-1}(W) \subseteq f^{-1}(\beta(V))$. This implies that $f(\gamma(U)) \subseteq \beta(V)$. Hence f is sg- (γ, β) -irresolute.

Definition 4.4. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

- sg-(γ, β)-closed if the image of each sg-γ-closed set of X is sg-β-closed in Y.
- 2. $sg-\beta$ -closed if the image of each sg-closed set of X is $sg-\beta$ -closed in Y.

Theorem 4.5. Suppose that a function $f: (X, \tau) \to (Y, \sigma)$ is both $sg(\gamma, \beta)$ -irresolute and $sg\beta$ -closed, then:

- 1. For every $sg\gamma g$ -closed set S of (X, τ) , the image f(S) is $sg\beta g$ -closed in (Y, σ) .
- 2. If (X, τ) is semi- $T_{\frac{1}{2}}$, then the inverse set $f^{-1}(T)$ is $sg\gamma g$ -closed in (X, τ) , for every $sg\beta g$ -closed set T of (Y, σ) .

Proof. (1) Let G be any sg- β -open set in (Y, σ) such that $f(S) \subseteq G$. Since f is sg- (γ, β) -irresolute function, then by using Theorem 4.2 (2), $f^{-1}(G)$ is sg- γ -open set in (X, τ) . Since S is $sg\gamma g$ -closed and $S \subseteq f^{-1}(G)$, we have $sgCl_{\gamma}(S) \subseteq f^{-1}(G)$, and hence $f(sgCl_{\gamma}(S)) \subseteq G$. Thus, by Lemma 2.6 (1), $sgCl_{\gamma}(S)$ is sg-closed set and since f is sg- β -closed, then $f(sgCl_{\gamma}(S))$ is sg- β -closed set in Y. Therefore, $sgCl_{\beta}(f(S)) \subseteq sgCl_{\beta}(f(sgCl_{\gamma}(S))) = f(sgCl_{\gamma}(S)) \subseteq G$. This implies that f(S) is $sg\beta g$ -closed in (Y, σ) .

(2) Let H be any sg- γ -open set of a semi- $T_{\frac{1}{2}}$ space (X, τ) such that $f^{-1}(T) \subseteq H$. Let $C = sgCl_{\gamma}(f^{-1}(T)) \cap (X \setminus H)$, then by Theorem 2.7, $C = sgCl_{\gamma}(f^{-1}(T)) \cap sgCl_{\gamma}(X \setminus H)$ and hence by Lemma 2.6 (1) and Theorem 2.8, C is sg-closed set in (X, τ) . Since f is sg- β -closed function. Then f(C) is sg- β -closed in (Y, σ) . Since f is sg- (γ, β) -irresolute function, then by using Theorem 4.2 (1), we have $f(C) = f(sgCl_{\gamma}(f^{-1}(T))) \cap f(X \setminus H) \subseteq sgCl_{\beta}(T) \cap f(X \setminus H) \subseteq sgCl_{\beta}(T) \cap (Y \setminus T) = sgCl_{\beta}(T) \setminus T$. Since T is an $sg\beta g$ -closed set of (Y, σ) . Thus, this implies from Theorem 3.3 that $f(C) = \phi$, and hence $C = \phi$. So $sgCl_{\gamma}(f^{-1}(T)) \subseteq H$. Therefore, $f^{-1}(T)$ is $sg\gamma g$ -closed in (X, τ) .

Theorem 4.6. Let $f: (X, \tau) \to (Y, \sigma)$ be injection, $sg \cdot (\gamma, \beta)$ -irresolute and $sg \cdot \beta$ -closed function. If (Y, σ) is $sg \cdot \beta \cdot T_{\frac{1}{2}}$, then (X, τ) is $sg \cdot \gamma \cdot T_{\frac{1}{2}}$.

Proof. Let G be any $sg\gamma g$ -closed set of (X, τ) . Since f is sg- (γ, β) -irresolute and sg- β -closed function. Then by Theorem 4.5 (1), f(G) is $sg\beta g$ -closed in (Y, σ) . Since (Y, σ) is sg- β - $T_{\frac{1}{2}}$, then f(G) is sg- β -closed in Y. Again, since f is sg- (γ, β) -irresolute, then by Theorem 4.2 (2), $f^{-1}(f(G))$ is sg- γ -closed in X. Hence G is sg- γ -closed in X since f is injection. Therefore, (X, τ) is an sg- γ - $T_{\frac{1}{2}}$ space.

Theorem 4.7. Let a function $f: (X, \tau) \to (Y, \sigma)$ be surjection, $sg_{-}(\gamma, \beta)$ -irresolute and $sg_{-}\beta$ -closed. If (X, τ) is $sg_{-}\gamma_{-}T_{\frac{1}{2}}$, then (Y, σ) is $sg_{-}\beta_{-}T_{\frac{1}{2}}$.

Proof. Let H be an $sg\beta g$ -closed set of (Y, σ) . Since f is $sg-(\gamma, \beta)$ -irresolute and $sg-\beta$ -closed function. Then by Theorem 4.5 (2), $f^{-1}(H)$ is $sg\gamma g$ -closed in (X, τ) . Since (X, τ) is $sg-\gamma-T_{\frac{1}{2}}$, then we have, $f^{-1}(H)$ is $sg-\gamma$ -closed set in X. Again, since f is $sg-\beta$ -closed function, then $f(f^{-1}(H))$ is $sg-\beta$ -closed in Y. Therefore, H is $sg-\beta$ -closed in Y since f is surjection. Hence (Y, σ) is $sg-\beta-T_{\frac{1}{2}}$ space. \Box **Theorem 4.8.** If $f: (X, \tau) \to (Y, \sigma)$ is injection $sg_{-}(\gamma, \beta)$ -irresolute function and the space (Y, σ) is $sg_{-}\beta_{-}T_2$, then the space (X, τ) is $sg_{-}\gamma_{-}T_2$.

Proof. Let x_1 and x_2 be any distinct points of a space (X, τ) . Since f is injection function and (Y, σ) is sg- β - T_2 . Then there exist two sg-open sets U_1 and U_2 in Y such that $f(x_1) \in U_1$, $f(x_2) \in U_2$ and $\beta(U_1) \cap \beta(U_2) = \phi$. Since f is sg- (γ, β) -irresolute, there exist sg-open sets V_1 and V_2 in X such that $x_1 \in V_1$, $x_2 \in V_2$, $f(\gamma(V_1)) \subseteq \beta(U_1)$ and $f(\gamma(V_2)) \subseteq \beta(U_2)$. Therefore $\beta(U_1) \cap \beta(U_2) = \phi$. Hence (X, τ) is sg- γ - T_2 .

Theorem 4.9. If $f: (X, \tau) \to (Y, \sigma)$ is injection $sg_{-}(\gamma, \beta)$ -irresolute function and the space (Y, σ) is $sg_{-}\beta_{-}T_i$, then the space (X, τ) is $sg_{-}\gamma_{-}T_i$ for $i \in \{0, 1\}$.

Proof. The proof is similar to Theorem 4.8.

Definition 4.10. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $sg_{-}(\gamma, \beta)$ -homeomorphism if f is bijection, $sg_{-}(\gamma, \beta)$ -irresolute and f^{-1} is $sg_{-}(\beta, \gamma)$ -irresolute.

Theorem 4.11. Suppose that the function $f: (X, \tau) \to (Y, \sigma)$ is bijection sg- (γ, β) -irresolute and β be an sg-open operation. Then f is sg- (γ, β) -open (resp., sg- (γ, β) -closed) if and only if f^{-1} is sg- (β, γ) -irresolute.

Proof. Obvious.

Theorem 4.12. Assume that a function $f: (X, \tau) \to (Y, \sigma)$ is $sg-(\gamma, \beta)$ -homeomorphism. If (X, τ) is $sg-\gamma-T_{\frac{1}{2}}$, then (Y, σ) is $sg-\beta-T_{\frac{1}{2}}$.

Proof. Let $\{y\}$ be any singleton set of (Y, σ) . Then there exists an element x of X such that y = f(x). So by hypothesis and Theorem 3.14, we have $\{x\}$ is sg- γ -closed or sg- γ -open set in X. By using Theorem 4.2, $\{y\}$ is sg- β -closed or sg- β -open set. Hence the space by Theorem 3.14, (Y, σ) is sg- β - $T_{\frac{1}{2}}$.

For a function $f: (X, \tau) \to (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\}$ of the product space $(X \times Y, \tau \times \sigma)$ is called the graph of f and is denoted by G(f)[7]. In this section, we further investigate general operator approaches of closed graphs of functions. Let $\lambda: (\tau \times \sigma)_{sg} \to P(X \times Y)$ be an operation on $(\tau \times \sigma)_{sg}$.

Definition 4.13. The graph G(f) of $f: (X, \tau) \to (Y, \sigma)$ is called sg- β -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist sg-open sets $U \subseteq X$ and $V \subseteq Y$ containing x and y, respectively, such that $(U \times \beta(V)) \cap G(f) = \phi$.

The proof of the following lemma follows directly from the above definition.

Lemma 4.14. A function $f: (X, \tau) \to (Y, \sigma)$ has $sg -\beta$ -closed graph if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \tau_{sg}$ containing x and $V \in \sigma_{sg}$ containing y such that $f(U) \cap \beta(V) = \phi$.

Definition 4.15. An operation $\lambda: (\tau \times \sigma)_{sg} \to P(X \times Y)$ is said to be *sg*-associated with γ and β if $\lambda(U \times V) = \gamma(U) \times \beta(V)$ holds for each $U \in \tau_{sg}$ and $V \in \sigma_{sg}$.

Recall that an operation γ on τ_{sg} is said to be sg-regular [3] if for each $x \in X$ and for every pair of sg-open sets U_1 and U_2 such that both containing x, there exists an sg-open set W containing x such that $\gamma(W) \subseteq \gamma(U_1) \cap \gamma(U_2)$.

Definition 4.16. The operation $\lambda : (\tau \times \sigma)_{sg} \to P(X \times Y)$ is said to be sgregular with respect to γ and β if for each $(x, y) \in X \times Y$ and each sg-open set W containing (x, y), there exist sg-open sets U in X and V in Y such that $x \in U, y \in V$ and $\gamma(U) \times \beta(V) \subseteq \lambda(W)$.

Theorem 4.17. Let $\lambda: (\tau \times \tau)_{sg} \to P(X \times X)$ be an sg-associated operation with γ and γ . If $f: (X, \tau) \to (Y, \sigma)$ is an $sg-(\gamma, \beta)$ -irresolute function and (Y, σ) is an $sg-\beta-T_2$ space, then the set $S = \{(x, y) \in X \times X : f(x) = f(y)\}$ is an $sg-\lambda$ -closed set of $(X \times X, \tau \times \tau)$.

Proof. We want to prove that $sgCl_{\lambda}(S) \subseteq S$. Let $(x, y) \in (X \times X) \setminus S$. Since (Y, σ) is $sg-\beta-T_2$. Then there exist two sg-open sets U and V in (Y, σ) such that $f(x) \in U$, $f(y) \in V$ and $\beta(U) \cap \beta(V) = \phi$. Moreover, for U and V there exist sg-open sets G and H in (X, τ) such that $x \in G$, $y \in H$ and $f(\gamma(G)) \subseteq \beta(U)$ and $f(\gamma(H)) \subseteq \beta(V)$ since f is $sg-(\gamma, \beta)$ -irresolute. Therefore we have $(x, y) \in \gamma(G) \times \gamma(H) = \lambda(G \times H) \cap S = \phi$ because $G \times H \in (\tau \times \tau)_{sg}$. This shows that $(x, y) \notin sgCl_{\lambda}(S)$.

Corollary 4.18. Suppose $\lambda: (\tau \times \tau)_{sg} \to P(X \times X)$ is sg-associated operation with γ and γ , and it is sg-regular with γ and γ . A space (X, τ) is sg- γ - T_2 if and only if the diagonal set $\Delta = \{(x, x) : x \in X\}$ is sg- λ -closed of $(X \times X, \tau \times \tau)$.

Theorem 4.19. Let $\lambda: (\tau \times \sigma)_{sg} \to P(X \times Y)$ be an sg-associated operation with γ and β . If $f: (X, \tau) \to (Y, \sigma)$ is $sg-(\gamma, \beta)$ -irresolute and (Y, σ) is $sg-\beta$ - T_2 , then the graph of $f, G(f) = \{(x, f(x)) \in X \times Y\}$ is an $sg-\lambda$ -closed set of $(X \times Y, \tau \times \sigma)$.

Proof. The proof is similar to Theorem 4.17.

Definition 4.20. Let (X, τ) be a topological space and γ be an operation on τ_{sg} . A subset S of X is said to be sg- γ -compact if for every sg-open cover $\{U_i, i \in \mathbb{N}\}$ of S, there exists a finite subfamily $\{U_1, U_2, ..., U_n\}$ such that $S \subseteq \gamma(U_1) \cup \gamma(U_2) \cup ... \cup \gamma(U_n)$.

Theorem 4.21. Suppose that γ is sg-regular and $\lambda: (\tau \times \sigma)_{sg} \to P(X \times Y)$ is sg-regular with respect to γ and β . Let $f: (X, \tau) \to (Y, \sigma)$ be a function whose graph G(f) is sg- λ -closed in $(X \times Y, \tau \times \sigma)$. If a subset S is sg- β -closed in (Y, σ) , then $f^{-1}(S)$ is sg- γ -closed in (X, τ) . **Proof.** Suppose that $f^{-1}(S)$ is not sg- γ -closed then there exist a point x such that $x \in sgCl_{\gamma}(f^{-1}(S))$ and $x \notin f^{-1}(S)$. Since $(x,s) \notin G(f)$ and each $s \in S$ and $sgCl_{\lambda}(G(f)) \subseteq G(f)$, there exists an sg-open set W of $(X \times Y, \tau \times \sigma)$ such that $(x,s) \in W$ and $\beta(W) \cap G(f) = \phi$. By sg-regularity of λ , for each $s \in S$ we can take two sg-open sets U(s) and V(s) in (Y,σ) such that $x \in U(s), s \in V(s)$ and $\gamma(U(s)) \times \beta(V(s)) \subseteq \lambda(W)$. Then we have $f(\gamma(U(s))) \cap \beta(V(s)) = \phi$. Since $\{V(s) : s \in S\}$ is sg-open cover of S, then by sg- γ -compactness there exists a finite number $s_1, s_2, ..., s_n \in S$ such that $S \subseteq \beta(V(s_1)) \cup \beta(V(s_2)) \cup ... \cup \beta(V(s_n))$. By the sg-regularity of γ , there exist an sg-open set U such that $x \in U, \gamma(U) \subseteq \gamma(U(s_1)) \cap \gamma(U(s_2)) \cap ... \cap \gamma(U(s_n))$. Therefore, we have $\gamma(U) \cap f^{-1}(S) \subseteq U(s_i) \cap f^{-1}(\beta(V(s_i))) = \phi$. This shows that $x \notin sgCl_{\gamma}(f^{-1}(S))$. This is a contradiction. Therefore, $f^{-1}(S)$ is sg- γ -closed.

Theorem 4.22. Suppose that the following condition hold:

- 1. $\gamma: \tau_{sq} \to P(X)$ is sg-open
- 2. $\beta: \sigma_{sq} \to P(Y)$ is sg-regular, and
- 3. $\lambda: (\tau \times \sigma)_{sg} \to P(X \times Y)$ is associated with γ and β , and λ is sg-regular with respect to γ and β .

Let $f: (X, \tau) \to (Y, \sigma)$ be a function whose graph G(f) is $sg-\lambda$ -closed in $(X \times Y, \tau \times \sigma)$. If every cover of S by $sg-\gamma$ -open sets of (X, τ) has finite sub cover, then f(S) is $sg-\beta$ -closed in (Y, σ) .

Proof. Similar to Theorem 4.21.

5. sg- γ_0 -closed spaces

Definition 5.1. A space X is said to be sg- γ_0 -closed if for every cover $\{U_i : i \in I\}$ of X by sg- γ -open sets of X, there exists a finite subset I_0 of I such that $X = \bigcup_{i \in I_0} sgCl_{\gamma}(U_i)$.

Theorem 5.2. A space X is $sg-\gamma_0$ -closed if and only if every class of $sg-\gamma$ -open and $sg-\gamma$ -closed sets with empty intersection has a finite subclass with empty intersection.

Proof. Obvious.

Lemma 5.3. Let $f: (X, \tau) \to (Y, \sigma)$ be a function and β be an sg-open operation. Then f is sg- (γ, β) -irresolute if and only if $f^{-1}(V)$ is sg- γ -open set in X, for every sg- β -open set V of Y.

Proof. Obvious.

Theorem 5.4. Let $f: (X, \tau) \to (Y, \sigma)$ be an sg- (γ, β) -irresolute function from an sg- γ_0 -closed X onto a space Y and β be an sg-open operation. Then Y is sg- β_0 -closed.

Proof. Let $\{V_i : i \in I\}$ be a cover of Y by sg- β -open sets of Y. Since f is sg- (γ, β) -irresolute and β is an sg-open operation. Then by Lemma 5.3, the cover $\{U_i : U_i = f^{-1}(V_i) : i \in I\}$ of X is an sg- γ -open sets of X. Since X is sg- γ_0 -closed, then there exists a finite subset I_0 of I such that $X = \bigcup_{i \in I_0} sgCl_{\gamma}(U_i)$. This gives that

$$\begin{split} Y &= f(X) = f(\bigcup_{i \in I_0} sgCl_{\gamma}(U_i)) \\ &= \bigcup_{i \in I_0} f(sgCl_{\gamma}(U_i)) \ (by \ Theorem \ 4.2) \\ &\subseteq \bigcup_{i \in I_0} sgCl_{\beta}(f(U_i)) = \bigcup_{i \in I_0} sgCl_{\beta}(V_i). \end{split}$$

Therefore, the space Y is $sg-\beta_0$ -closed.

Definition 5.5. A subset S of a topological space (X, τ) is said to be sg- γ_0 closed if for every cover $\{U_i : i \in I\}$ of S by sg- γ -open sets of X, there exists a finite subset I_0 of I such that $S \subseteq \bigcup_{i \in I_0} sgCl_{\gamma}(U_i)$.

Theorem 5.6. Suppose that $f: (X, \tau) \to (Y, \sigma)$ is injection $sg_{-}(\gamma, \beta)$ -irresolute function and the operation β is sg-open. If S is an $sg_{-}\gamma_{0}$ -closed subspace of a space X. Then f(S) is $sg_{-}\beta_{0}$ -closed subspace of a space Y.

Proof. Let $\{V_i : i \in I\}$ be a cover of f(S) by sg- β -open sets of Y. Then $V_i = f(S) \cap U_i$, where U_i is an sg- β -open sets in Y. Since f is sg- (γ, β) -irresolute and β is an sg-open operation. Then by Lemma 5.3, $f^{-1}(U_i)$ is sg- γ -open sets in X. Therefore, we have $f^{-1}(V_i) = S \cap f^{-1}(U_i)$ and hence the cover $\{f^{-1}(V_i) : i \in I\}$ of S is an sg- γ -open sets of X. Since S is sg- γ_0 -closed, then there exists a finite subset I_0 of I such that $S \subseteq \bigcup_{i \in I_0} sgCl_{\gamma}(f^{-1}(V_i))$. This gives that

$$\begin{split} f(S) &\subseteq f(\bigcup_{i \in I_0} sgCl_{\gamma}(f^{-1}(V_i))) \\ &= \bigcup_{i \in I_0} f(sgCl_{\gamma}(f^{-1}(V_i))) \subseteq \bigcup_{i \in I_0} sgCl_{\beta}(f(f^{-1}(V_i))) \text{ (by Theorem 4.2)} \\ &= \bigcup_{i \in I_0} sgCl_{\beta}(V_i). \end{split}$$

Hence, f(S) is $sg-\beta_0$ -closed subspace of a space Y.

Theorem 5.7. If γ is an sg-regular operation. Then each sg- γ -closed subset of an sg- γ_0 -closed space X is sg- γ_0 -closed.

Proof. Let F be an sg- γ -closed subset of an sg- γ_0 -closed space X, and let $\{V_i : i \in I\}$ be a cover of F by sg- γ -open sets of X. Then for sg- γ -open set V_i in F, we have $V_i = F \cap U_i$, where U_i is an sg- γ -open sets in X. Since X is sg- γ_0 -closed

space, then there exists a finite subset I_0 of I such that $X = \bigcup_{i \in I_0} sgCl_{\gamma}(U_i)$. Since γ is an sg-regular operation. Therefore, we have

$$F = F \cap X$$

= $sgCl_{\gamma}(F) \cap \bigcup_{i \in I_0} sgCl_{\gamma}(U_i) \ (by \ Lemma \ 2.6)$
= $\bigcup_{i \in I_0} (sgCl_{\gamma}(F) \cap sgCl_{\gamma}(U_i))$
 $\subseteq \bigcup_{i \in I_0} (sgCl_{\gamma}(F \cap U_i))$
 $\subseteq \bigcup_{i \in I_0} (sgCl_{\gamma}(V_i)).$

Thus, the set F is $sg-\gamma_0$ -closed.

Definition 5.8. An operation γ on τ_{sg} is said to be sg- γ -open if $\gamma(U)$ is sg- γ -open for each sg- γ -open set U.

Theorem 5.9. Let γ be both sg-regular and sg- γ -open operation, and let X be an sg- γ - T_2 space. Suppose that F is an sg- γ_0 -closed subset of X and $x \in X \setminus F$. Then there are sg-open sets U_x and V_x in X such that $x \in \gamma(U_x)$, $F \subseteq \gamma(V_x)$ and $\gamma(U_x) \cap \gamma(V_x) = \phi$.

Proof. Suppose that F is an $sg-\gamma_0$ -closed subset of X and $x \in X \setminus F$. For every $y \in F$, $y \neq x$. Since the space X is $sg-\gamma-T_2$, there exist sg-open sets U_x and V_y containing x and y respectively such that $\gamma(U_x) \cap \gamma(V_y) = \phi$. Now, let $\{\gamma(V_y) \cap F : y \in F\}$ be a cover of F by $sg-\gamma$ -open sets of X. Therefore, this cover has a finite subset $\{\gamma(V_{y_1}) \cap F, \gamma(V_{y_2}) \cap F, ..., \gamma(V_{y_n}) \cap F\}$ such that $F = \bigcup_{i=1}^n sgCl_\gamma(\gamma(V_{y_i}) \cap F)$. Let $\gamma(U_{y_1}), \gamma(U_{y_2}), ..., \gamma(U_{y_n})$ be the corresponding $sg-\gamma$ -open sets containing x. Take

$$\gamma(U_x) = \bigcap_{i=1}^n sgCl_\gamma(\gamma(U_{y_i})) \text{ and } \gamma(V_x) = \bigcup_{i=1}^n sgCl_\gamma(\gamma(V_{y_i}))$$

Then $x \in \gamma(U_x)$ and $F \subseteq \gamma(V_x)$, where $\gamma(U_x)$ and $\gamma(V_x)$ are sg- γ -closed since γ is sg-regular. Also,

$$\gamma(U_x) \cap \gamma(V_x) = \bigcap_{i=1}^n sgCl_\gamma(\gamma(U_{y_i})) \cap \bigcup_{i=1}^n sgCl_\gamma(\gamma(V_{y_i}))$$
$$= \bigcap_{i=1}^n \bigcup_{i=1}^n sgCl_\gamma(\gamma(U_{y_i})) \cap sgCl_\gamma(\gamma(V_{y_i}))$$
$$= \bigcap_{i=1}^n \bigcup_{i=1}^n sgCl_\gamma[\gamma(U_{y_i}) \cap \gamma(V_{y_i})] \ (\gamma \ is \ sg-regular)$$
$$= \bigcap_{i=1}^n \bigcup_{i=1}^n sgCl_\gamma(\phi) = \phi.$$

This completes the proof.

Theorem 5.10. Let γ be both sg-regular and sg- γ -open operation, and let X be an $sq-\gamma-T_2$ space. Then each $sq-\gamma_0$ -closed subset of X is $sq-\gamma$ -closed.

Proof. The proof is similar to Theorem 5.9.

Theorem 5.11. Let the operations γ be sq-regular, and β be sq-regular, sq- β -open and sq-open. If the function $f: (X, \tau) \to (Y, \sigma)$ is injection sq- (γ, β) irresolute from an $sg-\gamma_0$ -closed X into an $sg-\beta-T_2$ space Y. Then it is $sg-(\gamma,\beta)$ closed.

Proof. Let X be an sg- γ_0 -closed space and S be an sg- γ -closed subset of X. Since γ is sg-regular, then by Theorem 5.7, S is sg- γ_0 -closed subset of X. Since β is sq-open and f is injection $sq_{\gamma}(\gamma,\beta)$ -irresolute, then by Theorem 5.6, f(S)is sq- β_0 -closed subset of Y. Since Y is sq- β - T_2 , and β is sq-regular and sq- β -open. Thus, by Theorem 5.10, f(S) is $sg-\beta$ -closed in Y. Therefore, f is sg- (γ, β) -closed.

The proof of the following theorem is immediate:

Theorem 5.12. Let the operations γ be sg-regular, and β be sg-regular, sg- β -open and sg-open. If the function $f: (X, \tau) \to (Y, \sigma)$ is bijection sg- (γ, β) irresolute from an $sg-\gamma_0$ -closed space X onto an $sg-\beta-T_2$ space Y. Then it is sg- (γ, β) -homeomorphism.

Theorem 5.13. Let γ be sq-regular and sq-open operation. If S and T are $sg-\gamma_0$ -closed subsets of X such that $X = sgCl_{\gamma}(S) \cup sgCl_{\gamma}(T)$, then X is sg- γ_0 -closed.

Proof. The proof is easy and hence it is omitted.

6. $sg-\gamma^*$ -regular and $sg-\gamma^*$ -normal spaces

Definition 6.1. A space (X, τ) is said to be sg- γ^* -regular if for each sg-closed set F of X not containing $x \in X$, there exist sg-open sets G and H such that $x \in G, F \subseteq H \text{ and } \gamma(G) \cap \gamma(H) = \phi.$

Example 6.2. Consider the space $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then $\tau_{sq} = P(X)$. Define an operation $\gamma: \tau_{sq} \to P(X)$ by $\gamma(S) = S$ for all $S \in \tau_{sq}$. Hence it is easy to show that X is $sg-\gamma^*$ -regular space.

Example 6.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\} = SO(X)$. Then $\tau_{sg} = \tau$. Let $\gamma \colon \tau_{sg} \to P(X)$ be an operation on τ_{sg} defined as follows: For every set $S \in \tau_{sq}$

$$\gamma(S) = \begin{cases} S, & \text{if } b \in S \\ Cl(S), & \text{if } b \notin S \end{cases}$$

Clearly, the space X is not $sq-\gamma^*$ -regular.

Theorem 6.4. If γ is sg-regular, then every subspace of sg- γ^* -regular space X is sg- γ^* -regular.

Proof. Let S be a subspace of an sg- γ^* -regular space X. We show that S is sg- γ^* -regular. Suppose F is sg-closed set in S and $a \in S$ such that $a \notin F$. Then $F = E \cap S$, where E is sg-closed in X. Then $a \notin E$. Since X is sg- γ^* -regular space, then there exist sg-open sets G, H in X such that $a \in G$, $E \subseteq H$ and $\gamma(G) \cap \gamma(H) = \phi$. Then $G \cap S$ and $H \cap S$ are sg-open sets in S containing a and F respectively, also since γ is sg-regular, so we have

$$\begin{split} \gamma(G \cap S) \cap \gamma(H \cap S) &\subseteq (\gamma(G) \cap \gamma(S)) \cap (\gamma(H) \cap \gamma(S)) \\ &= (\gamma(G) \cap \gamma(H)) \cap \gamma(S) = \phi \cap \gamma(S) = \phi. \end{split}$$

Therefore, S is $sg-\gamma^*$ -regular.

Definition 6.5. A space (X, τ) is said to be $sg-\gamma^*$ -normal if for each disjoint sg-closed sets E, F of X, there exist sg-open sets G and H such that $E \subseteq G$, $F \subseteq H$ and $\gamma(G) \cap \gamma(H) = \phi$.

Example 6.6. It is obvious from Example 6.3 that the space (X, τ) is $sg-\gamma^*$ -normal.

Example 6.7. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Then $SO(X) = \{\phi, \{a\}, \{a, b\}\{a, c\}, X\} = \tau_{sg}$. Let $\gamma \colon \tau_{sg} \to P(X)$ be an operation on τ_{sg} defined as follows:

For every set $S \in \tau_{sg}$

$$\gamma(S) = \begin{cases} S, & \text{if } a \in S \\ Cl(S), & \text{if } a \notin S \end{cases}$$

Obviously, the space X is not $sg-\gamma^*$ -normal.

Theorem 6.8. If γ is sg-regular, then every sg-closed subspace of sg- γ^* -normal space X is sg- γ^* -normal.

Proof. Let S be an sg-closed subspace of an $sg-\gamma^*$ -normal space X. We show that S is $sg-\gamma^*$ -normal space. Suppose E_1 and E_2 are disjoint sg-closed sets of S. Then there exist $sg-\gamma$ -closed sets F_1 and F_2 in X such that $E_1 = F_1 \cap S$ and $E_2 = F_2 \cap S$. Since S is sg-closed in X, thus E_1 and E_2 are sg-closed sets in X. Since X is $sg-\gamma^*$ -normal space, then there exist sg-open sets G, H in X such that $E_1 \subseteq G$, $E_2 \subseteq H$ and $\gamma(G) \cap \gamma(H) = \phi$. Then $G \cap S$ and $H \cap S$ are sg-open sets in S such that $E_1 \subseteq G \cap S$ and $E_2 \subseteq H \cap S$, also since γ is sg-regular, therefore we have

$$\gamma(G \cap S) \cap \gamma(H \cap S) \subseteq (\gamma(G) \cap \gamma(S)) \cap (\gamma(H) \cap \gamma(S))$$
$$= (\gamma(G) \cap \gamma(H)) \cap \gamma(S) = \phi \cap \gamma(S) = \phi.$$

This means that, S is $sg-\gamma^*$ -normal.

 \square

Theorem 6.9. Let γ be both sg-regular and sg- γ -open operation. Then each sg- γ_0 -closed and sg- γ - T_2 space is sg- γ^* -normal.

Proof. Let X be an sg- γ_0 -closed and sg- γ - T_2 space and let E and F be disjoint sg-closed sets of X. Then E and F are sg- γ -closed sets because γ is sg-regular. Since X is sg- γ_0 -closed space, then by Theorem 5.7, E and F are sg- γ_0 -closed. Since X is sg- $\gamma_{-}T_2$, then by Theorem 5.9, for sg- γ_0 -closed F and $x \in X \setminus F$. Then there are sg-open sets U_x and V_x in X such that $x \in \gamma(U_x)$, $F \subseteq \gamma(V_x)$ and $\gamma(U_x) \cap \gamma(V_x) = \phi$. Let $\{\gamma(U_x) : x \in E\}$ be a cover of E by sg- γ -open and sg- γ -closed sets of X (since by Theorem 5.10, E is sg- γ -closed). Therefore, there are finite number of elements $x_1, x_2, ..., x_n$ such that $E \subseteq \bigcup_{i=1}^n sgCl_\gamma(\gamma(U_{x_i})) = \bigcup_{i=1}^n \gamma(U_{x_i})$. Hence

$$\gamma(\bigcup_{i=1}^n \gamma(U_{x_i}) \cap \bigcap_{i=1}^n \gamma(V_{x_i})) = \gamma(\phi) = \phi$$

Which implies that X is $sg-\gamma^*$ -normal.

Definition 6.10. An operation γ on τ_{sg} is said to be strongly sg-regular if for each $x \in X$ and for every pair of sg-open sets U_1 and U_2 such that both containing x, there exists an sg-open set W containing x such that $\gamma(W) = \gamma(U_1) \cap \gamma(U_2)$.

Theorem 6.11. Let γ be both strongly sg-regular and sg- γ -open operation. If for each sg-closed set F in X and each sg-open set G containing F, there exists an sg-open set H containing F such that $sgCl_{\gamma}(\gamma(H)) \subseteq \gamma(G)$, then X is sg- γ^* -normal.

Proof. Let *E* and *F* be two *sg*-closed sets in *X* such that $E \cap F = \phi$. Then $F \subseteq X \setminus E$, where $X \setminus E$ is *sg*-open set in *X*. By hypothesis, there exists an *sg*-open set *H* containing *F* such that $sgCl_{\gamma}(\gamma(H)) \subseteq \gamma(X \setminus E)$. This gives that $\gamma(E) \subseteq \gamma(X \setminus sgCl_{\gamma}(H))$ and $H \cap X \setminus sgCl_{\gamma}(\gamma(H)) = \phi$. Thus, $F \subseteq H$, $E \subseteq X \setminus sgCl_{\gamma}(\gamma(H))$ and $\gamma(H) \cap \gamma(X \setminus sgCl_{\gamma}(\gamma(H))) = \phi$. Consequently, *X* is $sg-\gamma^*$ -normal space.

Definition 6.12 ([12]). A topological space (X, τ) is said to be semi generalized- T_1 (in short sg- T_1) if for any two distinct points x, y in X, there exist two sg-open sets, one containing x but not y, and the other containing y but not x.

Theorem 6.13 ([12]). The space (X, τ) is sg-T₁ if and only if for every point $x \in X$, $\{x\}$ is an sg-closed set.

Now we prove the following theorem.

Theorem 6.14. Every $sg-\gamma^*$ -normal and $sg-T_1$ space (X,τ) is $sg-\gamma^*$ -regular.

Proof. Let F be an sg-closed set in X and $x \in X$ does not belong to F. Since X is sg- T_1 . Then by Theorem 6.13, $\{x\}$ is sg-closed. So $\{x\}$ and F are two disjoint sg-closed sets of X. Since X is sg- γ^* -normal, then there exist sg-open sets G and H such that $x \in \{x\} \subseteq G$, $F \subseteq H$ and $\gamma(G) \cap \gamma(H) = \phi$. Hence X is sg- γ^* -regular.

7. Conclusion

This paper continues studied properties of an operation on τ_{sg} . The notions of $sg\gamma$ -generalized closed sets and some of its properties have been investigated. It has been introduced $sg-\gamma-T_{\frac{1}{2}}$ space via $sg\gamma$ -generalized closed set and $sg-\gamma$ -closed set. Some basic characterization of $sg-(\gamma,\beta)$ -irresolute functions with $sg-\beta$ -closed graphs have been obtained. It has been studied the concept of $sg-\gamma_0$ -closed space. Finally, some properties of $sg-\gamma^*$ -regular and $sg-\gamma^*$ -normal spaces by using sg-open and sg-closed sets have been given.

References

- T.V. An, D.X. Cuong and H. Maki, On operation-preopen sets in topological spaces, Scientiae Mathematicae Japonicae Online, 68 (2008), 11-30, (e-2008), 241-260.
- [2] B.A. Asaad, Some Applications of Generalized Open Sets via Operations, New Trends in Mathematical Sciences, 5 (2017), 145-157.
- B.A. Asaad and N. Ahmad, Operation on Semi Generalized Open Sets with its Separation Axioms, AIP Conference Proceedings 1905, 020001 (2017); https://doi.org/10.1063/1.5012141.
- [4] P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (1987), 375-382.
- [5] C. Carpintero, N. Rajesh and E. Rosas, Operation approaches on b-open sets and applications, Bulletin of Parana's Mathematical Society, 30 (2012), 21-33.
- [6] S.G. Crossley and S.K. Hildebrand, *Semi-closure*, Texas Journal of Science, 22 (1971), 99-112.
- [7] T. Husain, Topology and Maps, Plenum press, New York, 1977.
- [8] D. S. Jankovic, On functions with α-closed graphs, Glasnik Matematicki, 18 (1983), 141-148.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [10] S. Kasahara, Operation compact spaces, Math. Japonica, 24 (1979), 97-105.
- [11] G. S. S. Krishnan, M. Ganster and K. Balachandran, Operation approaches on semi-open sets and applications, Kochi Journal of Mathematics, 2 (2007), 21-33.
- [12] G. Navalagi, Semi-generalized separation axioms in topology, International Journal of Mathematics and Computing Applications, 3 (2011), 17-25.

- [13] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 (1991), 175-184.
- [14] S. Tahiliani, Operation approach to β-open sets and applications, Mathematical Communications, 16 (2011), 577-591.

Accepted: 30.10.2017