THE HECKE ALGEBRA $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ AND ITS RELATION TO THE CROSSED PRODUCT $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$

Mamoon Ahmed* Fida Moh'd

Princess Sumaya University for Technology Amman Jordan m.ahmed@psut.edu.jo f.mohammad@psut.edu.jo

Abstract. The algebra $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$ arose in number theory has been studied by Bost and Connes in [2]. In [1] a related Hecke algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ is considered wherein it is shown to be a universal *-algebra generated by the elements $\{\mu_n : n \in \mathbb{N}^*\}$, $\{e(r): r \in \mathbb{Q}/\mathbb{Z}\}$ and an element $u = \left[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right]$. The goal of this paper is to study the relationship between the Hecke algebra of Bost and Connes and the Hecke algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$. By showing the existence of a *-automorphism α of $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$, we construct a covariant representation (ι, U) of $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$ on $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$. This leads to our main result that $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ is realized as the crossed product $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$. **Keywords:** Hecke algebras, the Hecke algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$, *-automorphism, *-isomorphism, covariant representation.

1. Introduction

A Hecke pair (G, S) consists of a discrete group G and a subgroup S of G such that every double coset consists of finitely many left cosets.

The Hecke algebra $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$ first arose in Bost and Connes' study [2] and they have proved that it is a universal *-algebra generated by elements $\{\mu_n : n \in \mathbb{N}^*\}$ and $\{e(r) : r \in \mathbb{Q}/\mathbb{Z}\}$ subject to six relations.

In [1] we introduced a new Hecke pair $(P_{\mathbb{Q}}, P_{\mathbb{Z}})$, where

$$P_{\mathbb{Q}} = \left\{ \left(\begin{array}{cc} 1 & a \\ 0 & r \end{array} \right) : a, r \in \mathbb{Q}, r \neq 0 \right\}.$$

Then we showed that this closely related Hecke algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ is a universal *-algebra generated by elements $\{\mu_n : n \in \mathbb{N}^*\}, \{e(r) : r \in \mathbb{Q}/\mathbb{Z}\}$ and an element

$$u = \left[\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right].$$

^{*.} Corresponding author

We begin with a preliminaries section in which we define Hecke algebras, set up our notation and give information about the Hecke algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$. Then we review dynamical systems and their covariant representations and recall the basic properties. In section 3, we show the existence of a *-automorphism α of $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$. In section 4, we show the existence of a *-homomorphism ϕ from $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ into $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$. We then construct a covariant representation (ι, U) of $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$ on $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$. This enables us to show our main theorem that $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ is realized as the crossed product $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$.

2. Preliminaries

In this section we give the background required for this paper, give the necessary information about the Hecke algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$, and setup our notations.

Definition 2.1. Let G be a discrete group and S a subgroup of G. The pair (G, S) is called a Hecke pair if each double coset StS can be written as a finite union of left cosets.

The following Proposition can be found in [1, Proposition 2.2].

Proposition 2.2. Let (G, S) be a Hecke pair. Then the set

$$H(G,S) = \{f: S \setminus G/S \longrightarrow \mathbb{C} : f \text{ has finite support}\}$$

is a *-algebra with

(2.1)
$$(f*g)(StS) = \sum_{rS \in G/S} f(SrS)g(Sr^{-1}tS)$$

and

$$f^*(StS) = \overline{f(St^{-1}S)}.$$

This *-algebra is called a Hecke algebra.

Bost and Connes defined

$$P_{\mathbb{Q}}^{+} = \Big\{ \left(\begin{array}{cc} 1 & a \\ 0 & r \end{array} \right) : a, r \in \mathbb{Q}, r > 0 \Big\},$$

and

$$P_{\mathbb{Z}} = \Big\{ \left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array} \right) : n \in \mathbb{Z} \Big\}.$$

Then they showed that $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$ is the universal *-algebra generated by the elements $\{\mu_n : n \in \mathbb{N}^*\}$ and $\{e(r) : r \in \mathbb{Q}/\mathbb{Z}\}$ subject to the following four relations according to the improvement of their theorem given by Laca and Raeburn in [4]:

(a)
$$\mu_n^* \mu_n = 1$$
 for all $n \in \mathbb{N}^*$.
(b) $\mu_{mn} = \mu_m \mu_n$ for all m, n .
(c) $e(r)^* = e(-r)$, $e(r_1 + r_2) = e(r_1)e(r_2)$ for all $r_1, r_2 \in \mathbb{Q}/\mathbb{Z}$.
(d) $\mu_n e(r) \mu_n^* = (1/n) \sum_{j=1}^n e(r/n + j/n)$ for all n and all r .

Where,

$$\mu_n = n^{-1/2} \left[\begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix} \right], \text{ and } e(r) = \left[\begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} \right].$$

In [1] we defined the group

$$P_{\mathbb{Q}} = \left\{ \left(\begin{array}{cc} 1 & a \\ 0 & r \end{array} \right) : a, r \in \mathbb{Q}, r \neq 0 \right\},\$$

and the subgroup

$$P_{\mathbb{Z}} = \Big\{ \left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array} \right) : n \in \mathbb{Z} \Big\}.$$

Then we proved the following theorem.

Theorem 2.3 (Theorem 7.4 of [1]). $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ is the universal *-algebra generated by elements $\{\mu_n : n \in \mathbb{N}^*\}, \{e(r) : r \in \mathbb{Q}/\mathbb{Z}\}, and u = \left[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right]$ subject to the relations

(a) $\mu_n^* \mu_n = 1$ for all $n \in \mathbb{N}^*$. (b) $\mu_{mn} = \mu_m \mu_n$ for all m, n. (c) $e(r)^* = e(-r)$, $e(r_1 + r_2) = e(r_1)e(r_2)$ for all $r_1, r_2 \in \mathbb{Q}/\mathbb{Z}$. (d) $\mu_n e(r) \mu_n^* = (1/n) \sum_{j=1}^n e(r/n + j/n)$ for all n and all r. (e) $u^* = u$, $u^2 = 1$. (f) $u\mu_n = \mu_n u$ for all $n \in \mathbb{N}^*$. (g) e(r)u = ue(-r) for all $r \in \mathbb{Q}/\mathbb{Z}$.

Remark 2.4. An action of a group G on a *-algebra A is a homomorphism $\beta : G \longrightarrow \operatorname{Aut}(A)$, where $\operatorname{Aut}(A)$ is the group of *-automorphisms of A. The pair (A, G) is referred to as a dynamical system. We usually write $\beta_s(a)$ for $\beta(s)(a)$.

Background 2.5. Let A be a unital *-algebra, G a group and β an action of the group G on A. A covariant representation of the dynamical system (A, G, β) on a unital *-algebra B is a pair (π, U) consisting of a unital *-algebra homomorphism $\pi : A \longrightarrow B$ and a unitary homomorphism $U : G \longrightarrow u(B)$, such that

$$\pi(\beta_t(a)) = U_t \pi(a) U_t^* \text{ for all } a \in A, t \in G.$$

Let (A, G, β) be a dynamical system; we shall assume that A has an identity 1_A . Define the crossed product $A \times_{\beta} G$ to be k(G, A), which is the vector space of finitely supported functions $f : G \longrightarrow A$, with operations given by

 $(\lambda f + \gamma h)(s) = \lambda f(s) + \gamma h(s)$. By [4, Lemma 42] k(G, A) is a *-algebra with multiplication and involution given by

$$f *_{\beta} h(t) := \sum_{s \in G} f(s) \beta_s \left(h(s^{-1}t) \right)$$

and

$$f^*(s) := \beta_s(f(s^{-1})).$$

Also if (π, U) is a covariant representation of (A, G, β) on a unital *-algebra B, then there is a unital *-representation $\pi \times U$ of k(G, A) on B such that

(2.2)
$$\pi \times U(f) = \sum_{s \in G} \pi(f(s)) U_s \text{ for } f \in k(G, A).$$

To go from representations of k(G, A) to covariant representations of the system, we define $i_G : G \longrightarrow k(G, A)$ by $i_G(s) := \delta_s 1_A$, i.e.

$$i_G(s)(t) = \begin{cases} 1_A, & \text{if } s = t \\ 0, & \text{otherwise,} \end{cases}$$

and $i_A : A \longrightarrow k(G, A)$ by $i_A(a) := \delta_e a$. By [4, proposition 44] i_G is a homomorphism of G into the group u(k(G, A)) of unitary elements in the *-algebra k(G, A), and i_A is a *-homomorphism of A into k(A, G).

3. The automorphism of $H(P_{\mathbb{O}}^+, P_{\mathbb{Z}})$

Lemma 3.1. There is a *-automorphism α of $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$ such that

(i) $\alpha(\mu_n) = \mu_n$ for all $n \in \mathbb{N}^*$. (ii) $\alpha(e(r)) = e(-r)$ for all $r \in \mathbb{Q}/\mathbb{Z}$. (iii) $\alpha^2 = id$.

Proof. Define $\{\tilde{\mu}_n = \mu_n : n \in \mathbb{N}^*\}$ and $\{\tilde{e}(r) = e(-r) : r \in \mathbb{Q}/\mathbb{Z}\}$, then these elements are in $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$. If these elements satisfy the relations (a)-(d) of Theorem 5.1 in [1], then the proof follows.

Parts (a) and (b) are trivially true because $\tilde{\mu}_n = \mu_n$. For (c), let us start with

$$\tilde{e}(r)^* = e(-r)^* = e(r) = \tilde{e}(-r)$$

and for the second part of (c) we have that

$$\tilde{e}(r_1 + r_2) = e(-(r_1 + r_2)) = e(-r_1)e(-r_2) = \tilde{e}(r_1)\tilde{e}(r_2).$$

For (d),

$$\begin{split} \tilde{\mu}_n \tilde{e}(r) \tilde{\mu}_n^* &= \mu_n e(-r) \mu_n^* \\ &= \frac{1}{n} \sum_{j=1}^n e(-r/n + j/n) \\ &= \frac{1}{n} \sum_{j=1}^n e(-(r/n - j/n)) \\ &= \frac{1}{n} \sum_{j=1}^n \tilde{e}(r/n - j/n) \\ &= \frac{1}{n} \sum_{j=1}^n \tilde{e}(r/n + j/n) \text{ since we are summing over } 1 \le j \le n. \end{split}$$

Thus by [1, Theorem 5.1], there exists a *-homomorphism $\alpha : H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \longrightarrow H(P_{\mathbb{D}}^+, P_{\mathbb{Z}})$ satisfying the relations (i) and (ii).

To show part (iii), notice that α is a *-homomorphism and $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$ is generated by elements μ_n and e(r). So to show that $\alpha^2 = id$ it is enough to check the equality for μ_n and e(r).

$$\alpha^{2}(\mu_{n}) = \alpha(\alpha(\mu_{n})) = \alpha(\mu_{n}) = \mu_{n}$$
$$\alpha^{2}(e(r)) = \alpha(\alpha(e(r))) = \alpha(e(-r)) = e(r).$$

and for e(r)

Proposition 3.2. Let G be a group, A a unital *-algebra and $\beta : G \longrightarrow Aut(A)$ be an action of the group G on A. Then k(G, A) is the universal *-algebra generated by elements $\{i_A(a) : a \in A\}$ and $\{i_G(s) : s \in G\}$ such that

- (a) i_A is a unital *-homomorphism.
- (b) i_G is a homomorphism from G into the group u(k(G, A)).

(c) $i_A(\beta_s(a)) = i_G(s)i_A(a)i_G(s)^*$ for all $a \in A$ and $s \in G$.

Proof. That k(G, A) is a *-algebra generated by the elements $i_A(a)$ and $i_G(s)$ such that the relations (a)-(c) are satisfied follows directly from [4, Lemma 42 and Lemma 43]. So we just need to check that i_A is unital and that k(G, A) is a universal *-algebra.

That i_A is unital is pretty clear since

$$i_A(1_A) = \delta_e 1_A = 1_{k(G,A)}.$$

To show that k(G, A) is a universal *-algebra, suppose that $\{\hat{i}_A(a) : a \in A\}$ and $\{\hat{i}_G(s) : s \in G\}$ are elements in a *-algebra *B* which also satisfies (a)-(c). We need to find a *-homomorphism $\phi : k(G, A) \longrightarrow B$ such that $\phi(i_A(a)) = \hat{i}_A(a)$ and $\phi(i_G(s)) = \hat{i}_G(s)$.

Claim. The map $\phi : k(G, A) \longrightarrow B$ defined by $\phi(f) = \sum_{s \in G} \hat{i}_A(f(s))\hat{i}_G(s)$ is a *-homomorphism.

Proof. Notice that ϕ is a linear combination of the linear maps $f \mapsto \hat{i}_A(f(s))$, hence ϕ is linear. Let $a \in A$. Then

$$\phi(i_A(a)) = \sum_{s \in G} \hat{i}_A(i_A(a)(s))\hat{i}_G(s)$$
$$= \sum_{s \in G} \hat{i}_A(\delta_e a(s))\hat{i}_G(s)$$
$$= \hat{i}_A(a)\hat{i}_G(e)$$
$$= \hat{i}_A(a)\mathbf{1}_B$$
$$= \hat{i}_A(a).$$

Let $t \in G$. Then

$$\begin{split} \phi(i_G(t)) &= \sum_{s \in G} \hat{i}_A(i_G(t)(s)) \hat{i}_G(s) \\ &= \sum_{s \in G} \hat{i}_A(\delta_t 1_A(s)) \hat{i}_G(s) \\ &= \hat{i}_A(1_A) \hat{i}_G(t) \\ &= 1_B \hat{i}_G(t) \\ &= \hat{i}_G(t). \end{split}$$

Next, we compute

$$\begin{split} \phi(f^*) &= \sum_{s \in G} \hat{i}_A(f^*(s)) \hat{i}_G(s) \\ &= \sum_{s \in G} \hat{i}_A(\beta_s(f(s^{-1})^*)) \hat{i}_G(s) \\ &= \sum_{s \in G} \hat{i}_A(\beta_s(f(s^{-1}))^*) \hat{i}_G(s) \\ &= \sum_{s \in G} \hat{i}_A(\beta_s(f(s^{-1})))^* \hat{i}_G(s) \end{split}$$

From relation (c) we conclude that

$$\hat{i}_G(s)^* \hat{i}_A(\beta_s(a)) = \hat{i}_A(a) \hat{i}_G(s)^*,$$

and this is equivalent to

$$\hat{i}_A(\beta_s(a))^* \hat{i}_G(s) = \hat{i}_G(s)\hat{i}_A(a)^*.$$

By noting that

$$\hat{i}_G(s)^* = \hat{i}_G(s^{-1}),$$

we have

$$\begin{split} \phi(f^*) &= \sum_{s \in G} \hat{i}_G(s) \hat{i}_A(f(s^{-1}))^* \\ &= \sum_{s \in G} \hat{i}_G(s^{-1})^* \hat{i}_A(f(s^{-1}))^* \\ &= \sum_{p \in G} \hat{i}_G(p)^* \hat{i}_A(f(p))^* \\ &= \phi(f)^*. \end{split}$$

Finally, let $f, h \in k(G, A)$. Then

$$\begin{split} \phi(f*_{\beta}h) &= \sum_{s \in G} \hat{i}_A(f*_{\beta}h(s))\hat{i}_G(s) \\ &= \sum_{s \in G} \hat{i}_A\Big(\sum_{t \in G} f(t)\beta_t(h(t^{-1}s))\Big)\hat{i}_G(s) \\ &= \sum_{s \in G} \Big(\sum_{t \in G} \hat{i}_A(f(t))\hat{i}_A(\beta_t(h(t^{-1}s)))\Big) \\ &= \sum_{s \in G} \Big(\sum_{t \in G} \hat{i}_A(f(t))\hat{i}_G(t)\hat{i}_A(h(t^{-1}s))\hat{i}_G(t)^*\hat{i}_G(s)\Big) \\ &= \sum_{s \in G} \Big(\sum_{t \in G} \hat{i}_A(f(t))\hat{i}_G(t)\hat{i}_A(h(t^{-1}s))\hat{i}_G(t^{-1}s)\Big). \end{split}$$

By writing $d = t^{-1}s$ and noting that $\sum_{s \in G} = \sum_{d \in G}$ (this is true since all sums are finite) we have

$$\phi(f *_{\beta} h) = \sum_{t \in G} \hat{i}_A(f(t))\hat{i}_G(t) \sum_{d \in G} \hat{i}_A(h(d))\hat{i}_G(d) = \phi(f)\phi(h).$$

Thus ϕ is multiplicative.

4. The relation between $H(P^+_{\mathbb{Q}}, P_{\mathbb{Z}})$ and $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$

Proposition 4.1. Consider the group $G = \{1, -1\}$ and the algebra $A = H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$. Then there is a *-homomorphism $\phi : H(P_{\mathbb{Q}}, P_{\mathbb{Z}}) \to H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$ such that

(i)
$$\phi(e(r)) = i_A(e(r))$$
 for all $r \in \mathbb{Q}/\mathbb{Z}$.
(ii) $\phi(\mu_n) = i_A(\mu_n)$ for all $n \in \mathbb{N}^*$.
(iii) $\phi(u) = i_G(-1)$.

Proof. Define a map $\beta : G \longrightarrow Aut(A)$ by

 $\beta_1 = id$ and $\beta_{-1} = \alpha$ (the *-homomorphism of Lemma 3.1).

To show that β is an action we only need to check that $\beta_{(1)(-1)} = \beta_1 \beta_{-1}$ and $\beta_{-1}^2 = \beta_1$. Now $\beta_{(1)(-1)} = \beta_{-1} = \alpha = id\alpha = \beta_1 \beta_{-1}$, and by Lemma 3.1 we

have $\beta_{-1}^2 = \alpha^2 = id = \beta_1$. Thus β is an action of the group G on the group of automorphisms of A. Suppose that $\{\hat{\mu}_n = i_A(\mu_n) : n \in \mathbb{N}^*\}$, $\{\hat{e}(r) = i_A(e(r)) : r \in \mathbb{Q}/\mathbb{Z}\}$ and $\hat{u} = i_G(-1)$. If these elements satisfy the relations (a)-(g) of [1, Theorem 7.4] we are done.

For (a)

$$\hat{\mu}_n^* \hat{\mu}_n = i_A(\mu_n)^* i_A(\mu_n) = i_A(\mu_n^* \mu_n) = 1_{k(G,A)}.$$

For (b)

$$\hat{\mu}_{mn} = i_A(\mu_{mn}) = i_A(\mu_m\mu_n) = i_A(\mu_m)i_A(\mu_n) = \hat{\mu}_m\hat{\mu}_n.$$

For (c), let us start with

$$\hat{e}(r)^* = i_A(e(r))^* = i_A(e(r)^*) = i_A(e(-r)) = \hat{e}(-r).$$

and for the second part

$$\hat{e}(r_1 + r_2) = i_A(e(r_1 + r_2)) = i_A(e(r_1)e(r_2)) = i_A(e(r_1)i_A(e(r_2))) = \hat{e}(r_1)\hat{e}(r_2).$$

For (d)

$$\hat{\mu}_{n}\hat{e}(r)\hat{\mu}_{n}^{*} = i_{A}(\mu_{n})i_{A}(e(r))i_{A}(\mu_{n})^{*}$$

$$= i_{A}(\mu_{n}e(r)\mu_{n}^{*})$$

$$= i_{A}\left(\frac{1}{n}\sum_{j=1}^{n}e(r/n+j/n)\right)$$

$$= \frac{1}{n}\sum_{j=1}^{n}i_{A}\left(e(r/n+j/n)\right)$$

$$= \frac{1}{n}\sum_{j=1}^{n}\hat{e}(r/n+j/n).$$

For (e), let us start with $\hat{u}^* = i_G(-1)^* = i_G(-1) = \hat{u}$ and for the second part of (e) $\hat{u}^2 = i_G(-1)i_G(-1) = i_G(1) = 1_{k(G,A)}$.

For (f), by relation (c) of Proposition 3.2

$$\begin{aligned} \hat{u}\hat{\mu}_{n} &= i_{G}(-1)i_{A}(\mu_{n}) \\ &= i_{A}\big(\beta_{-1}(\mu_{n})\big)i_{G}(-1) \\ &= i_{A}\big(\alpha(\mu_{n})\big)i_{G}(-1) \\ &= i_{A}(\mu_{n})i_{G}(-1) \\ &= \hat{\mu}_{n}\hat{u}. \end{aligned}$$

For (g), by relation (c) of Proposition 3.2

$$\begin{split} \hat{u}\hat{e}(-r) &= i_G(-1)i_A(e(-r)) \\ &= i_A \big(\beta_{-1}(e(-r))\big)i_G(-1) \\ &= i_A \big(\alpha(e(-r))\big)i_G(-1) \\ &= i_A(e(r))i_G(-1) \\ &= \hat{e}(r)\hat{u}. \end{split}$$

Thus, [1, Theorem 7.4] says that there exists a *-homomorphism $\phi: H(P_{\mathbb{Q}}, P_{\mathbb{Z}}) \longrightarrow A \times_{\beta} G.$

Lemma 4.2. The pair (ι, U) is a covariant representation of $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$ on $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ where

(i) $\iota: H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \longrightarrow H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ is the unital *-homomorphism of [1, Lemma 2.8].

(ii) $U : \{1, -1\} \longrightarrow u(H(P_{\mathbb{Q}}, P_{\mathbb{Z}}))$ is defined by $U_1 = \mu_1 = 1_{H(P_{\mathbb{Q}}, P_{\mathbb{Z}})}$ and $U_{-1} = u$.

(iii) β is the group action defined in Proposition 4.1.

Proof. The map U is a homomorphism by relation (e) of [1, Theorem 7.4]. We still need to show that $\iota(\beta_1(a)) = U_1\iota(a)U_1^*$ and $\iota(\beta_{-1}(a)) = U_{-1}\iota(a)U_{-1}^*$ for all $a \in H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$.

On one hand, the first relation is true since both sides are $\iota(a)$, and on the other, it is enough to check the second relation when $a = \mu_n$ and a = e(r).

If $a = \mu_n$, then we have relation (f) in [1, Theorem 7.4] and if a = e(r) we have relation (g) in [1, Theorem 7.4]. Both β_{-1} and $a \mapsto uau^*$ are *-homomorphisms, so this implies the second relation is true for all $a \in H(P^+_{\mathbb{Q}}, P_{\mathbb{Z}})$.

Now we give our main theorem which allows us to realize the Bost and Connes Hecke Algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ as the crossed product $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$.

Theorem 4.3. The map ϕ in Proposition 4.1 is a *-isomorphism of $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ onto $H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\}$ with inverse $\iota \times U$ where

- (i) β is the group action defined in Proposition 4.1.
- (ii) The pair (ι, U) is the covariant representation in Lemma 4.2.

Proof. Let $A = H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}})$ and $G = \{1, -1\}$. Lemma 4.2 and [4, Lemma 42] yield the map $\iota \times U : H(P_{\mathbb{Q}}^+, P_{\mathbb{Z}}) \times_{\beta} \{1, -1\} \longrightarrow H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ defined by

$$\iota \times U(f) = \sum_{s \in \{1, -1\}} \iota(f(s)) U_s$$

is a *-homomorphism. So if we show that $(\iota \times U) \circ \phi = id$ and $\phi \circ (\iota \times U) = id$ the proof of this theorem will follow. Since the elements $\mu_n, e(r)$ and u generate the *-algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ and $(\iota \times U) \circ \phi$ is a *-homomorphism. To show that $(\iota \times U) \circ \phi = id$, it is enough to check that it is true for $\mu_n, e(r)$ and u.

For μ_n we have

$$(\iota \times U) \circ \phi(\mu_n) = (\iota \times U) (\phi(\mu_n))$$
$$= (\iota \times U) (i_A(\mu_n))$$
$$= \iota(\mu_n)$$
$$= \mu_n.$$

The same argument works for e(r). For u we have

$$(\iota \times U) \circ \phi(u) = (\iota \times U)(\phi(u))$$
$$= (\iota \times U)(i_G(-1))$$
$$= U_{-1}$$
$$= u.$$

For the second part of the proof, notice that the elements $i_A(\mu_n)$, $i_A(e(r))$ and $i_G(-1)$ generate the *-algebra $A \times_{\beta} G$, and $\phi \circ (\iota \times U)$ is a *-homomorphism. So to show that $\phi \circ (\iota \times U) = id$, it is enough to check the equality for $i_A(\mu_n)$, $i_A(e(r))$ and $i_G(-1)$.

For $i_A(\mu_n)$

$$\phi \circ (\iota \times U) (i_A(\mu_n)) = \phi (\iota \times U(i_A(\mu_n)))$$

= $\phi (\iota(\mu_n))$ [4, proposition 44]
= $\phi (\mu_n)$
= $i_A(\mu_n)$.

The same argument works for $i_A(e(r))$. For $i_G(-1)$ we have

$$\phi \circ (\iota \times U) (i_G(-1)) = \phi (\iota \times U(i_G(-1)))$$

= $\phi (U_{-1})$ [4, proposition 44]
= $\phi (u)$
= $i_G(-1)$.

Consequently, the two maps are inverses of each other, and hence the two *-algebras are isomorphic.

References

- [1] M. Ahmed, The Hecke algebra $H(P_{\mathbb{Q}}, P_{\mathbb{Z}})$ arising in number theory, Int. J. Pure Appl. Math. (107) (2016), no. 3, 723-748.
- J.B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.) 1 (1995) 411-457.
- [3] R.W. Hall, *Hecke C*-algebras, PhD thesis*, The Pennsylvania State University, December 1999.
- [4] M. Laca and I. Raeburn, A semigroup crossed product arising in number theory, J.London Math. Soc. (2) 59 (1999) 330-344.

Accepted: 20.10.2017