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Abstract. The algebra H(P+
Q , PZ) arose in number theory has been studied by Bost

and Connes in [2]. In [1] a related Hecke algebra H(PQ, PZ) is considered wherein
it is shown to be a universal ∗-algebra generated by the elements {µn : n ∈ N∗},

{e(r) : r ∈ Q/Z} and an element u =
[( 1 0

0 −1

)]
. The goal of this paper is to study

the relationship between the Hecke algebra of Bost and Connes and the Hecke algebra
H(PQ, PZ). By showing the existence of a ∗-automorphism α ofH(P+

Q , PZ), we construct

a covariant representation (ι, U) of H(P+
Q , PZ)×β {1,−1} on H(PQ, PZ). This leads to

our main result that H(PQ, PZ) is realized as the crossed product H(P+
Q , PZ)×β {1,−1}.
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1. Introduction

A Hecke pair (G,S) consists of a discrete group G and a subgroup S of G such
that every double coset consists of finitely many left cosets.

The Hecke algebra H(P+
Q , PZ) first arose in Bost and Connes’ study [2]

and they have proved that it is a universal ∗-algebra generated by elements
{µn : n ∈ N∗} and {e(r) : r ∈ Q/Z} subject to six relations.

In [1] we introduced a new Hecke pair (PQ, PZ), where

PQ =
{(

1 a
0 r

)
: a, r ∈ Q, r ̸= 0

}
.

Then we showed that this closely related Hecke algebra H(PQ, PZ) is a universal
∗-algebra generated by elements {µn : n ∈ N∗}, {e(r) : r ∈ Q/Z} and an element

u =
[( 1 0

0 −1

)]
.

∗. Corresponding author
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We begin with a preliminaries section in which we define Hecke algebras, set
up our notation and give information about the Hecke algebra H(PQ, PZ). Then
we review dynamical systems and their covariant representations and recall the
basic properties. In section 3, we show the existence of a ∗-automorphism α
of H(P+

Q , PZ). In section 4, we show the existence of a ∗-homomorphism ϕ

from H(PQ, PZ) into H(P+
Q , PZ) ×β {1,−1}. We then construct a covariant

representation (ι, U) of H(P+
Q , PZ) ×β {1,−1} on H(PQ, PZ). This enables us

to show our main theorem that H(PQ, PZ) is realized as the crossed product
H(P+

Q , PZ)×β {1,−1}.

2. Preliminaries

In this section we give the background required for this paper, give the necessary
information about the Hecke algebra H(PQ, PZ), and setup our notations.

Definition 2.1. Let G be a discrete group and S a subgroup of G. The pair
(G,S) ia called a Hecke pair if each double coset StS can be written as a finite
union of left cosets.

The following Proposition can be found in [1, Proposition 2.2].

Proposition 2.2. Let (G,S) be a Hecke pair.Then the set

H(G,S) =
{
f : S\G/S −→ C : f has finite support

}
is a ∗-algebra with

(2.1) (f ∗ g)(StS) =
∑

rS∈G/S

f(SrS)g(Sr−1tS)

and

f∗(StS) = f(St−1S).

This ∗-algebra is called a Hecke algebra.

Bost and Connes defined

P+
Q =

{(
1 a
0 r

)
: a, r ∈ Q, r > 0

}
,

and

PZ =
{(

1 n
0 1

)
: n ∈ Z

}
.

Then they showed that H(P+
Q , PZ) is the universal ∗-algebra generated by

the elements {µn : n ∈ N∗} and {e(r) : r ∈ Q/Z} subject to the following
four relations according to the improvement of their theorem given by Laca and
Raeburn in [4]:
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(a) µ∗
nµn = 1 for all n ∈ N∗.

(b) µmn = µmµn for all m,n.

(c) e(r)∗ = e(−r) , e(r1 + r2) = e(r1)e(r2) for all r1, r2 ∈ Q/Z.
(d) µne(r)µ

∗
n = (1/n)

∑n
j=1 e(r/n+ j/n) for all n and all r.

Where,

µn = n−1/2
[( 1 0

0 n

)]
, and e(r) =

[( 1 r
0 1

)]
.

In [1] we defined the group

PQ =
{(

1 a
0 r

)
: a, r ∈ Q, r ̸= 0

}
,

and the subgroup

PZ =
{(

1 n
0 1

)
: n ∈ Z

}
.

Then we proved the following theorem.

Theorem 2.3 (Theorem 7.4 of [1]). H(PQ, PZ) is the universal ∗-algebra gen-
erated by elements {µn : n ∈ N∗},{e(r) : r ∈ Q/Z}, and u =

[(
1 0
0 −1

)]
subject to

the relations

(a) µ∗
nµn = 1 for all n ∈ N∗.

(b) µmn = µmµn for all m,n.

(c) e(r)∗ = e(−r) , e(r1 + r2) = e(r1)e(r2) for all r1, r2 ∈ Q/Z.
(d) µne(r)µ

∗
n = (1/n)

∑n
j=1 e(r/n+ j/n) for all n and all r.

(e) u∗ = u , u2 = 1.

(f) uµn = µnu for all n ∈ N∗.

(g) e(r)u = ue(−r) for all r ∈ Q/Z.

Remark 2.4. An action of a group G on a ∗-algebra A is a homomorphism
β : G −→ Aut(A), where Aut(A) is the group of ∗-automorphisms of A. The
pair (A,G) is referred to as a dynamical system. We usually write βs(a) for
β(s)(a).

Background 2.5. Let A be a unital ∗-algebra, G a group and β an action
of the group G on A. A covariant representation of the dynamical system
(A,G, β) on a unital ∗-algebra B is a pair (π,U) consisting of a unital ∗-algebra
homomorphism π : A −→ B and a unitary homomorphism U : G −→ u(B),
such that

π
(
βt(a)

)
= Utπ(a)U

∗
t for all a ∈ A, t ∈ G.

Let (A,G, β) be a dynamical system; we shall assume that A has an identity
1A. Define the crossed product A ×β G to be k(G,A), which is the vector
space of finitely supported functions f : G −→ A, with operations given by
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(λf + γh)(s) = λf(s) + γh(s). By [4, Lemma 42] k(G,A) is a ∗-algebra with
multiplication and involution given by

f ∗β h(t) :=
∑
s∈G

f(s)βs
(
h(s−1t)

)
and

f∗(s) := βs
(
f(s−1)

)
.

Also if (π,U) is a covariant representation of (A,G, β) on a unital ∗-algebra B,
then there is a unital ∗-representation π × U of k(G,A) on B such that

(2.2) π × U(f) =
∑
s∈G

π(f(s))Us for f ∈ k(G,A).

To go from representations of k(G,A) to covariant representations of the
system, we define iG : G −→ k(G,A) by iG(s) := δs1A, i.e.

iG(s)(t) =

{
1A, if s = t

0, otherwise,

and iA : A −→ k(G,A) by iA(a) := δea. By [4, proposition 44] iG is a homo-
morphism of G into the group u(k(G,A)) of unitary elements in the ∗-algebra
k(G,A), and iA is a ∗-homomorphism of A into k(A,G).

3. The automorphism of H(P+
Q , PZ)

Lemma 3.1. There is a ∗-automorphism α of H(P+
Q , PZ) such that

(i) α(µn) = µn for all n ∈ N∗.

(ii) α(e(r)) = e(−r) for all r ∈ Q/Z.
(iii) α2 = id.

Proof. Define
{
µ̃n = µn : n ∈ N∗} and

{
ẽ(r) = e(−r) : r ∈ Q/Z

}
, then these

elements are in H(P+
Q , PZ). If these elements satisfy the relations (a)-(d) of

Theorem 5.1 in [1], then the proof follows.

Parts (a) and (b) are trivially true because µ̃n = µn.

For (c), let us start with

ẽ(r)∗ = e(−r)∗ = e(r) = ẽ(−r)

and for the second part of (c) we have that

ẽ(r1 + r2) = e(−(r1 + r2)) = e(−r1)e(−r2) = ẽ(r1)ẽ(r2).
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For (d),

µ̃nẽ(r)µ̃
∗
n = µne(−r)µ∗

n

=
1

n

n∑
j=1

e(−r/n+ j/n)

=
1

n

n∑
j=1

e(−(r/n− j/n))

=
1

n

n∑
j=1

ẽ(r/n− j/n)

=
1

n

n∑
j=1

ẽ(r/n+ j/n) since we are summing over 1 ≤ j ≤ n.

Thus by [1, Theorem 5.1], there exists a ∗-homomorphism α : H(P+
Q , PZ) −→

H(P+
Q , PZ) satisfying the relations (i) and (ii).

To show part (iii), notice that α is a ∗-homomorphism and H(P+
Q , PZ) is

generated by elements µn and e(r). So to show that α2 = id it is enough to
check the equality for µn and e(r).

α2(µn) = α
(
α(µn)

)
= α(µn) = µn

and for e(r)
α2(e(r)) = α

(
α(e(r))

)
= α(e(−r)) = e(r).

Proposition 3.2. Let G be a group, A a unital ∗-algebra and β : G −→ Aut(A)
be an action of the group G on A. Then k(G,A) is the universal ∗-algebra
generated by elements {iA(a) : a ∈ A} and {iG(s) : s ∈ G} such that

(a) iA is a unital ∗-homomorphism.
(b) iG is a homomorphism from G into the group u(k(G,A)).
(c) iA

(
βs(a)

)
= iG(s)iA(a)iG(s)

∗ for all a ∈ A and s ∈ G.

Proof. That k(G,A) is a ∗-algebra generated by the elements iA(a) and iG(s)
such that the relations (a)-(c) are satisfied follows directly from [4, Lemma 42
and Lemma 43]. So we just need to check that iA is unital and that k(G,A) is
a universal ∗-algebra.

That iA is unital is pretty clear since

iA(1A) = δe1A = 1k(G,A).

To show that k(G,A) is a universal ∗-algebra, suppose that
{
îA(a) : a ∈ A

}
and

{
îG(s) : s ∈ G

}
are elements in a ∗-algebra B which also satisfies (a)-(c). We

need to find a ∗-homomorphism ϕ : k(G,A) −→ B such that ϕ(iA(a)) = îA(a)
and ϕ(iG(s)) = îG(s).
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Claim. The map ϕ : k(G,A) −→ B defined by ϕ(f) =
∑

s∈G îA(f(s))̂iG(s) is a
∗-homomorphism.

Proof. Notice that ϕ is a linear combination of the linear maps f 7→ îA(f(s)),
hence ϕ is linear. Let a ∈ A. Then

ϕ(iA(a)) =
∑
s∈G

îA(iA(a)(s))̂iG(s)

=
∑
s∈G

îA(δea(s))̂iG(s)

= îA(a)̂iG(e)

= îA(a)1B

= îA(a).

Let t ∈ G. Then

ϕ(iG(t)) =
∑
s∈G

îA(iG(t)(s))̂iG(s)

=
∑
s∈G

îA(δt1A(s))̂iG(s)

= îA(1A)̂iG(t)

= 1B îG(t)

= îG(t).

Next, we compute

ϕ(f∗) =
∑
s∈G

îA(f
∗(s))̂iG(s)

=
∑
s∈G

îA(βs(f(s
−1)∗))̂iG(s)

=
∑
s∈G

îA(βs(f(s
−1))∗)̂iG(s)

=
∑
s∈G

îA(βs(f(s
−1)))∗îG(s)

From relation (c) we conclude that

îG(s)
∗îA(βs(a)) = îA(a)̂iG(s)

∗,

and this is equivalent to

îA(βs(a))
∗îG(s) = îG(s)̂iA(a)

∗.

By noting that
îG(s)

∗ = îG(s
−1),
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we have

ϕ(f∗) =
∑
s∈G

îG(s)̂iA(f(s
−1))∗

=
∑
s∈G

îG(s
−1)∗îA(f(s

−1))∗

=
∑
p∈G

îG(p)
∗îA(f(p))

∗

= ϕ(f)∗.

Finally, let f, h ∈ k(G,A). Then

ϕ(f ∗β h) =
∑
s∈G

îA(f ∗β h(s))̂iG(s)

=
∑
s∈G

îA

(∑
t∈G

f(t)βt(h(t
−1s))

)
îG(s)

=
∑
s∈G

(∑
t∈G

îA(f(t))̂iA(βt(h(t
−1s)))

)
=

∑
s∈G

(∑
t∈G

îA(f(t))̂iG(t)̂iA(h(t
−1s))̂iG(t)

∗îG(s)
)

=
∑
s∈G

(∑
t∈G

îA(f(t))̂iG(t)̂iA(h(t
−1s))̂iG(t

−1s)
)
.

By writing d = t−1s and noting that
∑

s∈G =
∑

d∈G (this is true since all sums
are finite) we have

ϕ(f ∗β h) =
∑
t∈G

îA(f(t))̂iG(t)
∑
d∈G

îA(h(d))̂iG(d) = ϕ(f)ϕ(h).

Thus ϕ is multiplicative.

4. The relation between H(P+
Q , PZ) and H(PQ, PZ)

Proposition 4.1. Consider the group G={1,−1} and the algebra A=H(P+
Q , PZ).

Then there is a ∗-homomorphism ϕ : H(PQ, PZ) → H(P+
Q , PZ)×β {1,−1} such

that
(i) ϕ(e(r)) = iA(e(r)) for all r ∈ Q/Z.
(ii) ϕ(µn) = iA(µn) for all n ∈ N∗.
(iii) ϕ(u) = iG(−1).

Proof. Define a map β : G −→ Aut(A) by

β1 = id and β−1 = α (the ∗-homomorphism of Lemma 3.1).

To show that β is an action we only need to check that β(1)(−1) = β1β−1 and
β2
−1 = β1. Now β(1)(−1) = β−1 = α = idα = β1β−1, and by Lemma 3.1 we
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have β2
−1 = α2 = id = β1. Thus β is an action of the group G on the group of

automorphisms of A. Suppose that {µ̂n = iA(µn) : n ∈ N∗}, {ê(r) = iA(e(r)) :
r ∈ Q/Z} and û = iG(−1). If these elements satisfy the relations (a)-(g) of [1,
Theorem 7.4] we are done.

For (a)
µ̂∗
nµ̂n = iA(µn)

∗iA(µn) = iA(µ
∗
nµn) = 1k(G,A).

For (b)

µ̂mn = iA(µmn) = iA(µmµn) = iA(µm)iA(µn) = µ̂mµ̂n.

For (c), let us start with

ê(r)∗ = iA(e(r))
∗ = iA(e(r)

∗) = iA(e(−r)) = ê(−r).

and for the second part

ê(r1 + r2) = iA(e(r1 + r2)) = iA(e(r1)e(r2)) = iA(e(r1)iA(e(r2)) = ê(r1)ê(r2).

For (d)

µ̂nê(r)µ̂
∗
n = iA(µn)iA(e(r))iA(µn)

∗

= iA(µne(r)µ
∗
n)

= iA

( 1

n

n∑
j=1

e(r/n+ j/n)
)

=
1

n

n∑
j=1

iA
(
e(r/n+ j/n)

)
=

1

n

n∑
j=1

ê(r/n+ j/n).

For (e), let us start with û∗ = iG(−1)∗ = iG(−1) = û and for the second part of
(e) û2 = iG(−1)iG(−1) = iG(1) = 1k(G,A).

For (f), by relation (c) of Proposition 3.2

ûµ̂n = iG(−1)iA(µn)

= iA
(
β−1(µn)

)
iG(−1)

= iA
(
α(µn)

)
iG(−1)

= iA(µn)iG(−1)

= µ̂nû.

For (g), by relation (c) of Proposition 3.2

ûê(−r) = iG(−1)iA(e(−r))

= iA
(
β−1(e(−r))

)
iG(−1)

= iA
(
α(e(−r))

)
iG(−1)

= iA(e(r))iG(−1)

= ê(r)û.
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Thus, [1, Theorem 7.4] says that there exists a ∗-homomorphism ϕ:H(PQ, PZ)
−→ A×β G.

Lemma 4.2. The pair (ι, U) is a covariant representation of H(P+
Q , PZ) ×β

{1,−1} on H(PQ, PZ) where
(i) ι : H(P+

Q , PZ) −→ H(PQ, PZ) is the unital ∗-homomorphism of [1, Lemma
2.8].

(ii) U : {1,−1} −→ u(H(PQ, PZ)) is defined by U1 = µ1 = 1H(PQ,PZ) and
U−1 = u.

(iii) β is the group action defined in Proposition 4.1.

Proof. The map U is a homomorphism by relation (e) of [1, Theorem 7.4]. We
still need to show that ι

(
β1(a)

)
= U1ι(a)U

∗
1 and ι

(
β−1(a)

)
= U−1ι(a)U

∗
−1 for all

a ∈ H(P+
Q , PZ).

On one hand, the first relation is true since both sides are ι(a), and on the
other, it is enough to check the second relation when a = µn and a = e(r).

If a = µn, then we have relation (f) in [1, Theorem 7.4] and if a = e(r)
we have relation (g) in [1, Theorem 7.4]. Both β−1 and a 7→ uau∗ are ∗-
homomorphisms, so this implies the second relation is true for all a ∈ H(P+

Q , PZ).

Now we give our main theorem which allows us to realize the Bost and
Connes Hecke Algebra H(PQ, PZ) as the crossed product H(P+

Q , PZ)×β {1,−1}.

Theorem 4.3. The map ϕ in Proposition 4.1 is a ∗-isomorphism of H(PQ, PZ)
onto H(P+

Q , PZ)×β {1,−1} with inverse ι× U where
(i) β is the group action defined in Proposition 4.1.
(ii) The pair (ι, U) is the covariant representation in Lemma 4.2.

Proof. Let A = H(P+
Q , PZ) and G = {1,−1}. Lemma 4.2 and [4, Lemma 42]

yield the map ι× U : H(P+
Q , PZ)×β {1,−1} −→ H(PQ, PZ) defined by

ι× U(f) =
∑

s∈{1,−1}

ι
(
f(s)

)
Us

is a ∗-homomorphism. So if we show that (ι× U) ◦ ϕ = id and ϕ ◦ (ι× U) = id
the proof of this theorem will follow. Since the elements µn, e(r) and u generate
the ∗-algebra H(PQ, PZ) and (ι × U) ◦ ϕ is a ∗-homomorphism. To show that
(ι× U) ◦ ϕ = id, it is enough to check that it is true for µn, e(r) and u.

For µn we have

(ι× U) ◦ ϕ(µn) = (ι× U)
(
ϕ(µn)

)
= (ι× U)

(
iA(µn)

)
= ι

(
µn)

= µn.
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The same argument works for e(r). For u we have

(ι× U) ◦ ϕ(u) = (ι× U)
(
ϕ(u)

)
= (ι× U)

(
iG(−1)

)
= U−1

= u.

For the second part of the proof, notice that the elements iA(µn), iA(e(r))
and iG(−1) generate the ∗-algebra A×βG, and ϕ◦(ι×U) is a ∗-homomorphism.
So to show that ϕ ◦ (ι× U) = id, it is enough to check the equality for iA(µn),
iA(e(r)) and iG(−1).

For iA(µn)

ϕ ◦ (ι× U)
(
iA(µn)

)
= ϕ

(
ι× U(iA(µn))

)
= ϕ

(
ι(µn)

)
[4, proposition 44]

= ϕ
(
µn

)
= iA(µn).

The same argument works for iA(e(r)). For iG(−1) we have

ϕ ◦ (ι× U)
(
iG(−1)

)
= ϕ

(
ι× U(iG(−1))

)
= ϕ

(
U−1

)
[4, proposition 44]

= ϕ(u)

= iG(−1).

Consequently, the two maps are inverses of each other, and hence the two
∗-algebras are isomorphic.
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