ON THE *k*-NORMAL ELEMENTS AND POLYNOMIALS OVER FINITE FIELDS

Mahmood Alizadeh^{*}

Department of Mathematics Ahvaz Branch Islamic Azad University Ahvaz Iran alizadeh@iauahvaz.ac.ir

Mohammad Reza Darafsheh

School of Mathematics Statistics and Computer Science College of Science University of Tehran Tehran Iran darafsheh@ut.ac.ir

Saeid Mehrabi

Department of Mathematics Farhangian University Tehran Iran saeid_mehrabi@yahoo.com

Abstract. An element $\alpha \in \mathbb{F}_{q^n}$ is normal over \mathbb{F}_q if the set $\{\alpha, \alpha^q, ..., \alpha^{q^{n-1}}\}$ is a basis of \mathbb{F}_{q^n} over \mathbb{F}_q . The k-normal elements over finite fields are defined and characterized by Huczynska, Mullen, Panario and Thomson (2013). For $0 \leq k \leq n-1$, the element $\alpha \in \mathbb{F}_{q^n}$ is said to be a k-normal element if $gcd(x^n - 1, \sum_{i=0}^{n-1} \alpha^{q^i} x^{n-1-i})$ has degree k. It is well known that a 0-normal element is a normal element. So, the k-normal elements are a generalization of normal elements. By analogy with the case of normal polynomials, a monic irreducible polynomial of degree n is called a k-normal polynomial if its roots are k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q . In this paper, a new characterization and construction of k-normal elements and polynomials over finite fields are given. **Keywords:** finite field, normal basis, k-normal element, k-normal polynomial.

1. Introduction

Let \mathbb{F}_q be the Galois field of order $q = p^m$, where p is a prime and m is a natural number, and \mathbb{F}_q^* be its multiplicative group. A normal basis of \mathbb{F}_{q^n} over \mathbb{F}_q is a basis of the form $N = \{\alpha, \alpha^q, ..., \alpha^{q^{n-1}}\}$, i.e. a basis that consists of the algebraic conjugates of a fixed element $\alpha \in \mathbb{F}_{q^n}^*$. Such an element $\alpha \in \mathbb{F}_{q^n}$ is

^{*.} Corresponding author

said to generate a normal basis for \mathbb{F}_{q^n} over \mathbb{F}_q , and for convenience called a *normal element*.

A monic irreducible polynomial $F(x) \in \mathbb{F}_q[x]$ is called *normal polynomial* or *N*-polynomial if its roots are linearly independent over \mathbb{F}_q . Since the elements in a normal basis are exactly the roots of some *N*-polynomials, there is a canonical one-to-one correspondence between *N*-polynomials and normal bases. Normal bases have many applications, including coding theory, cryptography and computer algebra systems. For further details, see [9].

Recently, the k-normal elements over finite fields are defined and characterized by Huczynska et al [8]. For $0 \le k \le n-1$, the element $\alpha \in \mathbb{F}_{q^n}$ is called a k-normal element if $deg(gcd(x^n-1,\sum_{i=0}^{n-1}\alpha^{q^i}x^{n-1-i})) = k$.

By analogy with the case of normal polynomials, a monic irreducible polynomial $P(x) \in \mathbb{F}_q[x]$ of degree n is called a k-normal polynomial (or N_k -polynomial) over \mathbb{F}_q if its roots are k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q . Here, P(x) has n distinct conjugate roots, of which (n - k) are linearly independent. Recall that an element $\alpha \in \mathbb{F}_{q^n}$ is called a proper element of \mathbb{F}_{q^n} over \mathbb{F}_q if $\alpha \notin \mathbb{F}_{q^v}$ for any proper divisor v of n. So, the element $\alpha \in \mathbb{F}_{q^n}$ is a proper k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q if α is a k-normal and proper element of \mathbb{F}_{q^n} over \mathbb{F}_q .

Using the above mention, a normal polynomial (or element) is a 0-normal polynomial (or element). Since the proper k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q are the roots of a k-normal polynomial of degree n over \mathbb{F}_q , hence the k-normal polynomials of degree n over \mathbb{F}_q is just another way of describing the proper k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q . Some results on the constructions of special sequences of k-normal polynomials over \mathbb{F}_q , in the cases k = 0 and 1 can be found in [2, 4, 5, 10, 11] and [6], respectively.

In this paper, in Sec. 2 some definitions, notes and results which are useful for our study have been stated. Section 3 is devoted to characterization and construction of k-normal elements. Finally, in Sec. 4 a recursive method for constructing k-normal polynomials of higher degree from a given k-normal polynomial is given.

2. Preliminary notes

We use the definitions, notations and results given by Huczynska [8], Gao [7] and Kyuregyan [10, 11], where similar problems are considered. We need the following results for our further study.

The trace of α in \mathbb{F}_{q^n} over \mathbb{F}_q , is given by $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}(\alpha) = \sum_{i=0}^{n-1} \alpha^{q^i}$. For convenience, $Tr_{\mathbb{F}_{q^n}|\mathbb{F}_q}$ is denoted by $Tr_{q^n|q}$.

Let \mathbb{F} be a field and $f(x) = \sum_{i=0}^{n} f_i x^i$ and $g(x) = \sum_{j=0}^{m} g_j x^j$ with all $f_i, g_j \in \mathbb{F}$. The Sylvester matrix $S_{f,g}$ is the $(m+n) \times (m+n)$ matrix given by:

(1)
$$S_{f,g} = \begin{pmatrix} f_n & f_{n-1} & \dots & f_1 & f_0 & \dots & \dots \\ 0 & f_n & \dots & \dots & \dots & f_0 & \dots \\ \vdots & \vdots \\ 0 & \dots & f_n & \dots & \dots & \dots & f_0 \\ g_m & g_{m-1} & \dots & g_1 & g_0 & \dots & \dots \\ 0 & g_m & g_{m-1} & \dots & \dots & g_0 & \dots \\ \vdots & \vdots \\ 0 & \dots & g_m & \dots & \dots & \dots & g_0 \end{pmatrix}$$

Proposition 2.1 ([8]). Let \mathbb{F} be a field. For two non-zero polynomials $f, g \in \mathbb{F}[x]$, we have

$$rank(S_{f,g}) = deg(f) + deg(g) - deg(gcd(f,g)).$$

Proposition 2.2 ([8]). Let $\alpha \in \mathbb{F}_{q^n}$. Then the following properties are equivalent:

i) α is k-normal over \mathbb{F}_q ;

ii) α gives rise to a basis $\{\alpha, \alpha^q, ..., \alpha^{q^{n-k-1}}\}$ of a q-modules of degree n-k over \mathbb{F}_q ;

iii) $rank(A_{\alpha}) = n - k$, where

$$A_{\alpha} = \begin{pmatrix} \alpha & \alpha^{q} & \dots & \alpha^{q^{n-1}} \\ \alpha^{q} & \alpha^{q^{2}} & \dots & \alpha \\ \vdots & \vdots & \vdots & \vdots \\ \alpha^{q^{n-1}} & \alpha & \dots & \alpha^{q^{n-2}} \end{pmatrix}$$

Proposition 2.3 ([6]). Let p divide n, then $n = n_1 p^e$, for some $e \ge 1$ and $a, b \in \mathbb{F}_q^*$. Therefore the element α is a proper k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q if and only if $a + b\alpha$ is a proper k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q .

Let p denote the characteristic of \mathbb{F}_q and let $n = n_1 p^e = n_1 t$, with $gcd(p, n_1) = 1$ and suppose that $x^n - 1$ has the following factorization in $\mathbb{F}_q[x]$:

(2)
$$x^n - 1 = (\varphi_1(x)\varphi_2(x)\cdots\varphi_r(x))^t,$$

where $\varphi_i(x) \in \mathbb{F}_q[x]$ are the distinct irreducible factors of $x^n - 1$. For each $s, 0 \leq s < n$, let there is a $u_s > 0$ such that $R_{s,1}(x), R_{s,2}(x), \cdots, R_{s,u_s}(x)$ are all of the s degree polynomials dividing $x^n - 1$. So, from (2) we can write $R_{s,i}(x) = \prod_{j=1}^r \varphi_j^{t_{ij}}(x)$, for each $1 \leq i \leq u_s, 0 \leq t_{ij} \leq t$. Let

(3)
$$\phi_{s,i}(x) = \frac{x^n - 1}{R_{s,i}(x)},$$

for $1 \leq i \leq u_s$. Then, there is a useful characterization of the k-normal polynomials of degree n over \mathbb{F}_q as follows:

Proposition 2.4 ([6]). Let F(x) be an irreducible polynomial of degree n over \mathbb{F}_q and α be a root of it. Let $x^n - 1$ factor as (2) and let $\phi_{s,i}(x)$ be as in (3). Then F(x) is a N_k -polynomial over \mathbb{F}_q if and only if, there is $j, 1 \leq j \leq u_k$, such that

$$L_{\phi_{k,j}}(\alpha) = 0,$$

and also

$$L_{\phi_{s,i}}(\alpha) \neq 0,$$

for each s, k < s < n, and $1 \le i \le u_s$, where u_s is the number of all s degree polynomials dividing $x^n - 1$ and $L_{\phi_{s,i}}(x)$ is the linearized polynomial defined by

$$L_{\phi_{s,i}}(x) = \sum_{v=0}^{n-s} t_{iv} x^{q^v} \ if \ \phi_{s,i}(x) = \sum_{v=0}^{n-s} t_{iv} x^v.$$

The following propositions and lemma are useful for constructing N_k -polynomials over \mathbb{F}_q .

Proposition 2.5 ([3]). Let $x^p - \delta_2 x + \delta_0$ and $x^p - \delta_2 x + \delta_1$ be relatively prime polynomials in $\mathbb{F}_q[x]$ and $P(x) = \sum_{i=0}^n c_i x^i$ be an irreducible polynomial of degree $n \geq 2$ over \mathbb{F}_q , and let $\delta_0, \delta_1 \in \mathbb{F}_q$, $\delta_2 \in \mathbb{F}_q^*$, $(\delta_0, \delta_1) \neq (0, 0)$. Then

$$F(x) = (x^p - \delta_2 x + \delta_1)^n P\left(\frac{x^p - \delta_2 x + \delta_0}{x^p - \delta_2 x + \delta_1}\right)$$

is an irreducible polynomial of degree np over \mathbb{F}_q if and only if $\delta_2^{\frac{q-1}{p-1}} = 1$ and

$$Tr_{q|p}\left(\frac{1}{A^p}\left((\delta_1-\delta_0)\frac{P'(1)}{P(1)}-n\delta_1\right)\right)\neq 0,$$

where $A^{p-1} = \delta_2$, for some $A \in \mathbb{F}_q^*$.

Proposition 2.6 ([1]). Let $x^p - x + \delta_0$ and $x^p - x + \delta_1$ be relatively prime polynomials in $\mathbb{F}_q[x]$ and let P(x) be an irreducible polynomial of degree $n \geq 2$ over \mathbb{F}_q , and $0 \neq \delta_1, \delta_0 \in \mathbb{F}_p$, such that $\delta_0 \neq \delta_1$. Define

$$F_0(x) = P(x)$$

$$F_k(x) = (x^p - x + \delta_1)^{t_{k-1}} F_{k-1} \left(\frac{x^p - x + \delta_0}{x^p - x + \delta_1}\right), \qquad k \ge 1$$

where $t_k = np^k$ denotes the degree of $F_k(x)$. Suppose that

$$Tr_{q|p}\left(\frac{(\delta_{1}-\delta_{0})F_{0}'(1)-n\delta_{1}F_{0}(1)}{F_{0}(1)}\right)\cdot Tr_{q|p}\left(\frac{(\delta_{1}-\delta_{0})F_{0}'(\frac{\delta_{0}}{\delta_{1}})+n\delta_{1}F_{0}(\frac{\delta_{0}}{\delta_{1}})}{F_{0}(\frac{\delta_{0}}{\delta_{1}})}\right)\neq 0.$$

Then $(F_k(x))_{k\geq 0}$ is a sequence of irreducible polynomials over \mathbb{F}_q of degree $t_k = np^k$, for every $k \geq 0$.

Lemma 2.7. Let γ be a proper element of \mathbb{F}_{q^n} and $\theta \in \mathbb{F}_p^*$, where $q = p^m$, $(m \in \mathbb{N})$. Then we have

(4)
$$\sum_{j=0}^{p-1} \frac{1}{\gamma + j\theta} = -\frac{1}{\gamma^p - \gamma}.$$

Proof. By observing that

$$\sum_{j=0}^{p-1} \frac{1}{\gamma + j\theta} = \frac{1}{\gamma^p - \gamma} \left(\sum_{j=0}^{p-1} \frac{\gamma^p - \gamma}{\gamma + j\theta} \right),$$

it is enough to show that

$$\sum_{j=0}^{p-1} \frac{\gamma^p - \gamma}{\gamma + j\theta} = -1.$$

We note that

(5)
$$\sum_{j=0}^{p-1} \frac{\gamma^p - \gamma}{\gamma + j\theta} = \sum_{j=0}^{p-1} \left((\gamma + j\theta)^{p-1} - 1 \right)$$
$$= \sum_{j=0}^{p-1} (\gamma + j\theta)^{p-1}$$
$$= \sum_{j=1}^{p-1} \theta^j \binom{p-1}{j} \left(\sum_{i=1}^{p-1} i^j \right),$$

where

$$\binom{p-1}{j} = \frac{(p-1)!}{(p-1-j)!j!}, \quad j \in \mathbb{F}_p^*.$$

On the other side, we know that

(6)
$$\sum_{i=1}^{p-1} i^{j} = \begin{cases} 0 \pmod{p}, & \text{if } p-1 \nmid j \\ -1 \pmod{p}, & \text{if } p-1 \mid j \end{cases}$$

and also $\theta^{p-1} = 1$. Thus by (5) and (6), the proof is completed.

3. Characterization and construction of k-normal elements

In this section, we extend some existence results on the characterization and construction of normal elements into k-normal elements over finite fields. In the case k = 0, the following theorems had been obtained in [7] and [13].

Theorem 3.1. Suppose that α is a proper element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $\alpha_i = \alpha^{q^i}$ and $t_i = Tr_{q^n|q}(\alpha_0\alpha_i), 0 \le i \le n-1$. Then α is a k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q if and only if $deg(gcd(g(x), x^n - 1)) = k$, where $g(x) = \sum_{i=0}^{n-1} t_i x^i$. **Proof.** Let

$$A_{\alpha} = \begin{pmatrix} \alpha & \alpha^{q} & \dots & \alpha^{q^{n-1}} \\ \alpha^{q} & \alpha^{q^{2}} & \dots & \alpha \\ \vdots & \vdots & \vdots & \vdots \\ \alpha^{q^{n-1}} & \alpha & \dots & \alpha^{q^{n-2}} \end{pmatrix}.$$

So, by setting

$$\Delta = A_{\alpha} A_{\alpha}^{T} = \begin{pmatrix} Tr_{q^{n}|q}(\alpha_{0}\alpha_{0}) & Tr_{q^{n}|q}(\alpha_{0}\alpha_{1}) & \dots & Tr_{q^{n}|q}(\alpha_{0}\alpha_{n-1}) \\ Tr_{q^{n}|q}(\alpha_{1}\alpha_{0}) & Tr_{q^{n}|q}(\alpha_{1}\alpha_{1}) & \dots & Tr_{q^{n}|q}(\alpha_{1}\alpha_{n-1}) \\ \vdots & \vdots & \vdots & \vdots \\ Tr_{q^{n}|q}(\alpha_{n-1}\alpha_{0}) & Tr_{q^{n}|q}(\alpha_{0}\alpha_{0}) & \dots & Tr_{q^{n}|q}(\alpha_{n-1}\alpha_{n-1}) \end{pmatrix}$$

$$= \begin{pmatrix} t_{0} & t_{1} & \dots & t_{n-1} \\ t_{n-1} & t_{0} & \dots & t_{n-2} \\ \vdots & \vdots & \vdots & \vdots \\ t_{1} & t_{2} & \dots & t_{0} \end{pmatrix},$$

we get

$$rank(A_{\alpha}A_{\alpha}^{T}) = rank(A_{\alpha}) = rank(\triangle).$$

Now, it is enough to show that $deg(gcd(\sum_{i=0}^{n-1}t_ix^i, x^n - 1)) = k$ if and only if the matrix \triangle has rank n - k. The Sylvester matrix $S_{f,g}$ (see Equation 1) with $f(x) = x^n - 1$ can be converted, by a sequence of column operations, into the block matrix

$$\left(\begin{array}{cc}I_{n-1}&0_{n-1}\\0_{n-1}&\triangle\end{array}\right).$$

From this block decomposition, it follows that

$$rank(S_{f,g}) = rank(\Delta) + rank(I_{n-1}) = rank(\Delta) + (n-1).$$

By Proposition 2.1,

$$rank(S_{f,g}) = n + (n - 1) - deg(gcd(f(x), g(x))).$$

Combining these two expressions yields

$$deg(gcd(f(x), g(x))) = n - rank(\triangle).$$

The proof is complete.

Theorem 3.2. Let α be a k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q . Then the element $\gamma = \sum_{i=0}^{n-1} a_i \alpha^{q^i}$, where $a_i \in \mathbb{F}_q$, is a k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q if and only if the polynomial $\gamma(x) = \sum_{i=1}^{n-1} a_i x^i$ is relatively prime to $x^n - 1$.

Proof. Since α is a k-normal element of \mathbb{F}_{q^n} over \mathbb{F}_q , so by Proposition 2.2, $rank(A_{\alpha}) = n - k$, where

$$A_{\alpha} = \begin{pmatrix} \alpha & \alpha^{q} & \dots & \alpha^{q^{n-1}} \\ \alpha^{q} & \alpha^{q^{2}} & \dots & \alpha \\ \vdots & \vdots & \vdots & \vdots \\ \alpha^{q^{n-1}} & \alpha & \dots & \alpha^{q^{n-2}} \end{pmatrix}.$$

Let

$$A_{\gamma} = \begin{pmatrix} \gamma & \gamma^{q} & \dots & \gamma^{q^{n-1}} \\ \gamma^{q} & \gamma^{q^{2}} & \dots & \gamma \\ \vdots & \vdots & \vdots & \vdots \\ \gamma^{q^{n-1}} & \gamma & \dots & \gamma^{q^{n-2}} \end{pmatrix}.$$

By Proposition 2.2, it is enough to show that $rank(A_{\gamma}) = n - k$. We note that $A_{\gamma} = A \cdot A_{\alpha}$, where

$$A = \begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_1 & a_2 & \dots & a_0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & a_0 & \dots & a_{n-2} \end{pmatrix}.$$

Since $\gamma(x) = \sum_{i=0}^{n-1} a_i x^i$ is relatively prime to $x^n - 1$, thus A is non-singular and so

 $rank(A_{\gamma}) = rank(A \cdot A_{\alpha}) = rank(A_{\alpha}) = n - k.$

The proof is complete.

Theorem 3.3. Let t and v are two positive integers with 1 < t < v < 2t and α is a k-normal element of $\mathbb{F}_{q^{vt}}$ over \mathbb{F}_q for $v - t \leq k \leq t - 1$. If $\gamma = Tr_{q^{vt}|q^t}(\alpha)$ is a proper element of \mathbb{F}_{q^t} over \mathbb{F}_q , then γ is a proper k-normal element of \mathbb{F}_{q^t} over \mathbb{F}_q .

Proof. Since α is a k-normal element of $\mathbb{F}_{q^{vt}}$ over \mathbb{F}_q , so by Proposition 2.2 the elements α , α^q , α^{q^2} , ..., $\alpha^{q^{vt-k-1}}$ form a basis for a q-module of degree vt - k over \mathbb{F}_q . By hypothesis and considering $\gamma = Tr_{q^{vt}|q^t}(\alpha)$, the elements γ , γ^q , ..., $\gamma^{q^{v-k-1}}$ are non-overlapping sums of the vt - k conjugates of α , which are assumed to be linearly independent over \mathbb{F}_q . So the v - k conjugates of γ are linearly independent over \mathbb{F}_q . On the other side, for each $0 \leq s \leq k-1$,

$$\gamma^{q^{v-k+s}} = \sum_{i=1}^{v} \alpha^{q^{vt-k+(v+s-it)}}$$
$$= \sum_{i=1}^{vt-k} c_i \alpha^{q^{vt-k-i}}, \quad c_i \in \mathbb{F}_q$$
$$= \sum_{j=1}^{v-k} d_j \gamma^{q^{v-k-j}}, \quad d_j \in \mathbb{F}_{q^t}$$

So γ gives rise to a basis $M = \{\gamma, \gamma^q, ..., \gamma^{q^{v-k-1}}\}$ of a q-modules of degree v - k over \mathbb{F}_q . By Proposition 2.2, the proof is complete.

457

Theorem 3.4. Let t and v are two positive integers with gcd(v,t) = 1 and α is a k-normal element of \mathbb{F}_{q^v} over \mathbb{F}_q , for $0 \leq k \leq v - 1$. Then α is also a k-normal element of $\mathbb{F}_{q^{vt}}$ over \mathbb{F}_{q^t} .

Proof. Since α is a k-normal element of \mathbb{F}_{q^v} over \mathbb{F}_q , so by Proposition 2.2, $rank(A_\alpha) = v - k$, where

$$A_{\alpha} = \begin{pmatrix} \alpha & \alpha^{q} & \dots & \alpha^{q^{v-1}} \\ \alpha^{q} & \alpha^{q^{2}} & \dots & \alpha \\ \vdots & \vdots & \vdots & \vdots \\ \alpha^{q^{v-1}} & \alpha & \dots & \alpha^{q^{v-2}} \end{pmatrix}.$$

The element α is also a k-normal element of $\mathbb{F}_{q^{vt}}$ over \mathbb{F}_{q^t} if $rank(A'_{\alpha}) = v - k$, where

$$A'_{\alpha} = \begin{pmatrix} \alpha & \alpha^{q^t} & \dots & \alpha^{q^{(v-1)t}} \\ \alpha^{q^t} & \alpha^{q^{2t}} & \dots & \alpha \\ \vdots & \vdots & \vdots & \vdots \\ \alpha^{q^{(v-1)t}} & \alpha & \dots & \alpha^{q^{(v-2)t}} \end{pmatrix}$$

Since gcd(v,t) = 1, when j runs through $0,1,2, \ldots, v-1 \mod v$, tj also runs through $0,1,2, \ldots, v-1 \mod v$. Note that since $\alpha \in \mathbb{F}_{q^v}$, we have $\alpha^{q^v} = \alpha$ and thus $\alpha^{q^{jt}} = \alpha^{q^{k_j}}$ whenever $jt \equiv k_j \pmod{v}$ and k_j runs through $0,1,2, \ldots, v-1$. So $rank(A'_{\alpha}) = rank(A_{\alpha}) = v-k$ and the proof is complete. \Box

4. Recursive construction N_k -polynomials

In this section we establish theorems which will show how propositions 2.4, 2.5 and 2.6 can be applied to produce infinite sequences of N_k -polynomials over \mathbb{F}_q . Recall that, the polynomial $P^*(x) = x^n P\left(\frac{1}{x}\right)$ is called the reciprocal polynomial of P(x), where *n* is the degree of P(x). In the case k = 0, some similar results of the following theorems have been obtained in [2], [4] and ([5], Theorems 3.3.1 and 3.4.1). We use of an analogous technique to that used in the above results, where similar problems are considered.

Theorem 4.1. Let $P(x) = \sum_{i=0}^{n} c_i x^i$ be an N_k -polynomial of degree n over \mathbb{F}_q , for each $n = rp^e$, where $e \in \mathbb{N}$ and r equals 1 or is a prime different from p and q a primitive element modulo r. Suppose that $\delta \in \mathbb{F}_q^*$ and

(7)
$$F(x) = (x^p - x + \delta)^n P^* \left(\frac{x^p - x}{x^p - x + \delta}\right)$$

Then $F^*(x)$ is an N_k -polynomial of degree np over \mathbb{F}_q if $k < p^e$ and

$$Tr_{q|p}\left(\delta\frac{P^{*'}(1)}{P^{*}(1)}\right) \neq 0.$$

Proof. Since $P^*(x)$ is an irreducible polynomial over \mathbb{F}_q , so Proposition 2.5 and theorem's hypothesis imply that F(x) is irreducible over \mathbb{F}_q .

Let $\alpha \in \mathbb{F}_{q^n}$ be a root of P(x). Since P(x) is an N_k -polynomial of degree n over \mathbb{F}_q by theorem's hypothesis, then $\alpha \in \mathbb{F}_{q^n}$ is a proper k-normal element over \mathbb{F}_q .

Since q is a primitive modulo r, so in the case r > 1 the polynomial $x^{r-1} + \cdots + x + 1$ is irreducible over \mathbb{F}_q . Thus $x^n - 1$ has the following factorization in $\mathbb{F}_q[x]$:

(8)
$$x^n - 1 = (\varphi_1(x) \cdot \varphi_2(x))^t,$$

where $\varphi_1(x) = x - 1$, $\varphi_2(x) = x^{r-1} + \dots + x + 1$ and $t = p^e$.

Letting that for each $0 \leq s < n$ and $1 \leq i \leq u_s$, $R_{s,i}(x)$ is the *s* degree polynomial dividing $x^n - 1$, where u_s is the number of all *s* degree polynomials dividing $x^n - 1$. So, from (8), we can write $R_{s,i}(x) = (x-1)^{s_{1,i}} \cdot (x^{r-1} + \cdots + x + 1)^{s_{2,i}}$, where $s = s_{1,i} + s_{2,i} \cdot (r-1)$ for each $0 \leq s_{1,i}, s_{2,i} \leq t$, except when $s_{1,i} = s_{2,i} = t$. So, we have

(9)
$$\phi_{s,i}(x) = \frac{x^n - 1}{R_{s,i}(x)} = \frac{x^n - 1}{(x - 1)^{s_{1,i}} \cdot (x^{r-1} + \dots + x + 1)^{s_{2,i}}} = \sum_{v=0}^{n-s} t_{s,i,v} x^v.$$

Since P(x) is an N_k -polynomial of degree n over \mathbb{F}_q , so by Proposition 2.4, there is a $j, 1 \leq j \leq u_k$, such that

$$L_{\phi_{k,i}}(\alpha) = 0,$$

and also

$$L_{\phi_{s,i}}(\alpha) \neq 0,$$

for each k < s < n and $1 \le i \le u_s$. Further, we proceed by proving that $F^*(x)$ is a k-normal polynomial. Let α_1 be a root of F(x). Then $\beta_1 = \frac{1}{\alpha_1}$ is a root of its reciprocal polynomial $F^*(x)$. Note that by (8), the polynomial $x^{np} - 1$ has the following factorization in $\mathbb{F}_q[x]$:

(10)
$$x^{np} - 1 = (\varphi_1(x) \cdot \varphi_2(x))^{pt},$$

where $\varphi_1(x) = x - 1$, $\varphi_2(x) = x^{r-1} + \dots + x + 1$ and $t = p^e$.

Letting that for each $0 \leq s' < np$ and $1 \leq i' \leq u'_{s'}$, $R'_{s',i'}(x)$ is the s' degree polynomial dividing $x^{np} - 1$, where $u'_{s'}$ is the number of all s' degree polynomials dividing $x^{np} - 1$. So, from (10) we can write $R'_{s',i'}(x) = (x-1)^{s'_{1,i'}} \cdot (x^{r-1} + \cdots + x + 1)^{s'_{2,i'}}$, where $s' = s'_{1,i'} + s'_{2,i'} \cdot (r-1)$ for each $0 \leq s'_{1,i'}, s'_{2,i'} \leq pt$, except when $s'_{1,i'} = s'_{2,i'} = pt$. Therefore by considering

(11)
$$H'_{s',i'}(x) = \frac{x^{np} - 1}{R'_{s',i'}(x)},$$

and Proposition 2.4, $F^*(x)$ is an N_k -polynomial of degree np over \mathbb{F}_q if and only if there is a $j', 1 \leq j' \leq u'_k$, such that

$$L_{H'_{k,j'}}(\beta_1) = 0,$$

and also

$$L_{H'_{s',i'}}(\beta_1) \neq 0,$$

for each k < s' < np and $1 \leq i' \leq u'_{s'}$. Consider

(12)
$$H_{s,i}(x) = \frac{x^{np} - 1}{R_{s,i}(x)} = \frac{x^n - 1}{R_{s,i}(x)} \left(\sum_{j=0}^{p-1} x^{jn}\right),$$

for each $0 \leq s < n$ and $1 \leq i \leq u_s$. By (9) we obtain

$$H_{s,i}(x) = \phi_{s,i}(x) \left(\sum_{j=0}^{p-1} x^{jn}\right) = \sum_{v=0}^{n-s} t_{s,i,v} \left(\sum_{j=0}^{p-1} x^{jn+v}\right).$$

It follows that

$$L_{H_{s,i}}(\beta_1) = \sum_{\nu=0}^{n-s} t_{s,i,\nu} \left(\sum_{j=0}^{p-1} (\beta_1)^{p^{jmn}} \right)^{p^{m\nu}},$$

or

(13)
$$L_{H_{s,i}}(\beta_1) = L_{H_{s,i}}\left(\frac{1}{\alpha_1}\right) = \sum_{v=0}^{n-s} t_{s,i,v} \left(\sum_{j=0}^{p-1} \left(\frac{1}{\alpha_1}\right)^{p^{jmn}}\right)^{p^{mv}}$$

From (7), if α_1 is a zero of F(x), then $\frac{\alpha_1^p - \alpha_1 + \delta}{\alpha_1^p - \alpha_1}$ is a zero of P(x), and therefore it may assume that

$$\alpha = \frac{\alpha_1^p - \alpha_1 + \delta}{\alpha_1^p - \alpha_1},$$

or

(14)
$$\frac{\alpha - 1}{\delta} = (\alpha_1^p - \alpha_1)^{-1}.$$

Now, by (14) and observing that P(x) is an irreducible polynomial of degree n over \mathbb{F}_q , we obtain

(15)
$$\frac{\alpha - 1}{\delta} = \left(\frac{\alpha - 1}{\delta}\right)^{p^{mn}} = \left(\alpha_1^{p^{mn+1}} - \alpha_1^{p^{mn}}\right)^{-1}.$$

It follows from (14) and (15) that

(16)
$$(\alpha_1^{p^{mn+1}} - \alpha_1^{p^{mn}})^{-1} = (\alpha_1^p - \alpha_1)^{-1}.$$

Also observing that F(x) is an irreducible polynomial of degree np over \mathbb{F}_q , we have $(\alpha_1^p - \alpha_1) \neq 0$ and $(\alpha_1^{p^{mn+1}} - \alpha_1^{p^{mn}}) \neq 0$. Hence by (16)

(17)
$$(\alpha_1^{p^{mn}} - \alpha_1)^p = (\alpha_1^{p^{mn}} - \alpha_1).$$

It follows from (17) that $\alpha_1^{p^{mn}} - \alpha_1 = \theta \in \mathbb{F}_p^*$. Hence $\alpha_1^{p^{mn}} = \alpha_1 + \theta$ and

$$\alpha_1^{p^{2mn}} = (\alpha_1 + \theta)^{p^{mn}} = \alpha_1^{p^{mn}} + \theta^{p^{mn}} = \alpha_1 + \theta + \theta = \alpha_1 + 2\theta.$$

It is easy to show that $\alpha_1^{p^{jmn}} = \alpha_1 + j\theta$, for $1 \le j \le p - 1$, or

(18)
$$\left(\frac{1}{\alpha_1}\right)^{p^{jmn}} = \frac{1}{\alpha_1 + j\theta}, \text{ for } 1 \le j \le p-1.$$

From (13) and (18), we immediately obtain

(19)
$$L_{H_{s,i}}(\beta_1) = \sum_{v=0}^{n-s} t_{s,i,v} \left(\sum_{j=0}^{p-1} \frac{1}{\alpha_1 + j\theta} \right)^{p^{mv}}.$$

Thus, by (14), (19) and Lemma 2.7 we have

(20)
$$L_{H_{s,i}}(\beta_1) = \sum_{v=0}^{n-s} t_{s,i,v} \left(-\frac{1}{\alpha_1^p - \alpha_1} \right)^{p^{mv}} = \frac{1}{\delta} \sum_{v=0}^{n-s} t_{s,i,v} (1-\alpha)^{p^{mv}} = L_{\phi_{s,i}} \left(\frac{1-\alpha}{\delta} \right).$$

Since α is a zero of P(x), then α will be a k-normal element in \mathbb{F}_{q^n} over \mathbb{F}_q . Thus according to Proposition 2.3, the element $\frac{1-\alpha}{\delta}$ will also be a k-normal element. since $\frac{1-\alpha}{\delta}$ is a root of $P(-\delta x + 1)$, so by (20) and Proposition 2.4, there is a $j, 1 \leq j \leq u_k$, such that $L_{H_{k,j}}(\beta_1) = 0$, and also $L_{H_{s,i}}(\beta_1) \neq 0$, for each s, k < s < n and $1 \leq i \leq u_s$. So, there is a $j', 1 \leq j' \leq u'_k$, such that, $L_{H'_{k,j'}}(\beta_1) = L_{H_{k,j}}(\beta_1) = 0$. On the other side, by (11) and (12), for each s', k < s' < np and $1 \leq i' \leq u'_{s'}$, there is s, k < s < n and $1 \leq i \leq u_s$ such that $H'_{s',i'}(x)$ divide $H_{s,i}(x)$. It follows that $L_{H'_{s',i'}}(\beta_1) \neq 0$, for each s', k < s' < np and $1 \leq i' \leq u'_{s'}$. The proof is completed.

In the following theorem, a computationally simple and explicit recurrent method for constructing higher degree N_k -polynomials over \mathbb{F}_q starting from an N_k -polynomial is described.

Theorem 4.2. Let P(x) be an N_k -polynomial of degree n over \mathbb{F}_q , for each $n = rp^e$, where $e \in \mathbb{N}$ and r equals 1 or is a prime different from p and q a primitive element modulo r. Define

$$F_0(x) = P^*(x)$$

(21)
$$F_u(x) = (x^p - x + \delta)^{np^{u-1}} F_{u-1} \left(\frac{x^p - x}{x^p - x + \delta} \right),$$

where $\delta \in \mathbb{F}_p^*$. Then $(F_u^*(x))_{u \ge 0}$ is a sequence of N_k -polynomials of degree np^u over \mathbb{F}_q if $k < p^e$ and

$$Tr_{q|p}\left(\frac{P^{*'}(0)}{P^{*}(0)}\right) \cdot Tr_{q|p}\left(\frac{P^{*'}(1)}{P^{*}(1)}\right) \neq 0,$$

where $P^{*'}(0)$ and $P^{*'}(1)$ are the formal derivative of $P^{*}(x)$ at the points x = 0and x = 1, respectively.

Proof. By Proposition 2.6 and hypotheses of theorem for each $u \ge 1$, $F_u(x)$ is an irreducible polynomial over \mathbb{F}_q . Consequently, $(F_u^*(x))_{u\ge 0}$ is a sequence of irreducible polynomials over \mathbb{F}_q . The proof of k-normality of the irreducible polynomials $F_u^*(x)$, for each $u \ge 1$ is implemented by mathematical induction on u. In the case u = 1, by Theorem 4.1 $F_1^*(x)$ is a k-normal polynomial.

For u = 2 we show that $F_2^*(x)$ is also a k-normal polynomial. To this end we need to show that the hypothesis of Theorem 4.1 are satisfied. By Theorem 4.1, $F_2^*(x)$ is a k-normal polynomial if

$$Tr_{q|p}\left(\frac{F_1'(1)}{F_1(1)}\right) \neq 0,$$

since $\delta \in \mathbb{F}_p^*$. We apply (21) to compute

(22)
$$F_u(0) = F_u(1) = \delta^{un} P^*(0), \quad u = 1, 2, \dots$$

We calculate the formal derivative of $F'_1(x)$ at the points x = 0 and x = 1. According to (21) the first derivative of $F_1(x)$ is

$$F_{1}'(x) = -n(x^{p} - x + \delta)^{n-1}F_{0}'\left(\frac{x^{p} - x}{x^{p} - x + \delta}\right) + (x^{p} - x + \delta)^{n} \cdot \left(\frac{(px^{p-1} - 1)(x^{p} - x + \delta) - (px^{p-1} - 1)(x^{p} - x)}{(x^{p} - x + \delta)^{2}}\right) \cdot F_{0}'\left(\frac{x^{p} - x}{x^{p} - x + \delta}\right) = -\delta(x^{p} - x + \delta)^{n-2} \cdot P^{*'}\left(\frac{x^{p} - x}{x^{p} - x + \delta}\right),$$

and at the points x = 0 and x = 1

(23)
$$F_1'(0) = -F_1'(1) = -\delta^{n-1} P^{*'}(0)$$

which is not equal to zero by the condition $Tr_{q|p}\left(\frac{P^{*'}(0)}{P^{*}(0)}\right) \neq 0$ in the hypothesis of theorem, since $\delta \in \mathbb{F}_{p}^{*}$. From (23) and (22)

(24)
$$Tr_{q|p}\left(\frac{F_{1}'(1)}{F_{1}(1)}\right) = Tr_{q|p}\left(\frac{-\delta^{n-1}P^{*'}(0)}{\delta^{n}P^{*}(0)}\right) = -\frac{1}{\delta}Tr_{q|p}\left(\frac{P^{*'}(0)}{P^{*}(0)}\right),$$

which is not equal to zero by hypothesis of theorem. Hence the polynomial $F_2^*(x)$ is a k-normal polynomial. If induction holds for u-1, then it must hold also for u, that is by assuming that $F_{u-1}^*(x)$ is a k-normal polynomial, we show that $F_u^*(x)$ is also a k-normal polynomial.

Let $u \geq 3$. By Theorem 4.1, $F_u^*(x)$ is a k-normal polynomial if

$$Tr_{q|p}\left(\frac{F'_{u-1}(1)}{F_{u-1}(1)}\right) \neq 0,$$

since $\delta \in \mathbb{F}_p^*$. We calculate the formal derivative of $F'_{u-1}(x)$ at the points 1 and 0. By (21) the first derivative of $F_{u-1}(x)$ is

$$F'_{u-1}(x) = (x^p - x + \delta)^{np^{u-2}} \left(\frac{(px^{p-1} - 1)(x^p - x + \delta) - (px^{p-1} - 1)(x^p - x)}{(x^p - x + \delta)^2} \right)$$
$$\cdot F'_{u-2} \left(\frac{x^p - x}{x^p - x + \delta} \right)$$
$$= -\delta (x^p - x + \delta)^{np^{u-2} - 2} F'_{u-2} \left(\frac{x^p - x}{x^p - x + \delta} \right),$$

and at the point x = 0 and x = 1

$$F'_{u-1}(0) = F'_{u-1}(1) = -\delta^{np^{u-2}-1}F'_{u-2}(0) = -\delta^{n-1}F'_{u-2}(0).$$

So we have

$$F'_{u-1}(0) = F'_{u-1}(1) = (-1)^{u-2} \delta^{(n-1)(u-2)} F'_1(0),$$

which is not equal to zero by (23) and the condition $Tr_{q|p}\left(\frac{P^{*'}(0)}{P^{*}(0)}\right) \neq 0$ in the hypothesis of theorem, since $\delta \in \mathbb{F}_{p}^{*}$. Also

$$Tr_{q|p}\left(\frac{F'_{u-1}(1)}{F_{u-1}(1)}\right) = (-1)^{u-2} \frac{1}{\delta^{(u-2)}} Tr_{q|p}\left(\frac{F'_{1}(1)}{F_{1}(1)}\right),$$

which is not equal to zero by (24) and hypothesis of theorem. The theorem is proved. $\hfill \Box$

References

- [1] S. Abrahamyan, M. K. Kyureghyan, A recurrent method for constructing irreducible polynomials over finite fields, Proceeding of the 13th international conference on computer algebra in scientific computing, 2011, 1-9.
- [2] S. Abrahamyan, M. K. Kyureghyan, New recursive construction of normal polynomials over finite fields, Proceeding of the 11th international conference on finite fields and their applications, 2013, 1-10.

- [3] S. Abrahamyan, M. Alizadeh, M. K. Kyureghyan, *Recursive constructions of irreducible polynomials over finite fields*, Finite Fields Appl., 18 (2012), 738-745.
- [4] M. Alizadeh, S. Abrahamyan, S. Mehrabi, M. K. Kyuregyan, Constructing of N-polynomials over finite fields, International Journal of Algebra, (5) 29, (2011), 1437-1442.
- [5] M. Alizadeh, Construction of Irreducible and Normal Polynomials over Finite Fields, Ph.D. Thesis, National Academy of Sciences of Armenia, Yerevan, 2013.
- [6] M. Alizadeh, Some notes on the k-normal elements and k-normal polynomials over finite fields, Journal of Algebra and Its Applications, Vol. 16, No. 1, 1750006, (11 pages), 2017.
- [7] S. Gao, Normal bases over finite fields, Ph.D. Thesis, Waterloo, 1993.
- [8] S. Huczynska, G. L. Mullen, D. Panario and D. Thomson, Existence and properties of k-normal elements over finite fields, Finite Fields Appl., 24 (2013), 170-183.
- [9] D. Jungnickel, Finite Fields: Structure and Arithmetics, Wissenschaftsverlag, (Mannheim), 1993.
- [10] M. K. Kyuregyan, Iterated construction of irreducible polynomials over finite fields with linearly independent roots, Finite Fields Appl., 10 (2004), 323-341.
- [11] M. K. Kyuregyan, Recursive construction of N-polynomials over $GF(2^s)$, Discrete Applied Mathematics, 156 (2008), 1554-1559.
- [12] H. W. Lenstra and R. Schoof, Primitive normal bases for finite fields, Mathematics of Computation, 48 (1987), 217-231.
- S. Perlis, Normal bases of cyclic fields of prime-power degree, Duke Math. J., 9 (1942), 507-517.
- [14] S. Schwartz, Irreducible polynomials over finite fields with linearly independent roots, Math. Slovaca, 38 (1988), 147-158.

Accepted: 5.09.2017