
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 39–2018 (451–464) 451

ON THE k-NORMAL ELEMENTS AND POLYNOMIALS
OVER FINITE FIELDS

Mahmood Alizadeh∗

Department of Mathematics
Ahvaz Branch
Islamic Azad University
Ahvaz
Iran
alizadeh@iauahvaz.ac.ir

Mohammad Reza Darafsheh
School of Mathematics
Statistics and Computer Science College of Science
University of Tehran
Tehran
Iran
darafsheh@ut.ac.ir

Saeid Mehrabi
Department of Mathematics

Farhangian University

Tehran

Iran

saeid mehrabi@yahoo.com

Abstract. An element α ∈ Fqn is normal over Fq if the set {α, αq, ..., αqn−1} is a basis
of Fqn over Fq. The k-normal elements over finite fields are defined and characterized
by Huczynska, Mullen, Panario and Thomson (2013). For 0 ≤ k ≤ n − 1, the element

α ∈ Fqn is said to be a k-normal element if gcd(xn − 1,
∑n−1

i=0 αqixn−1−i) has degree
k. It is well known that a 0-normal element is a normal element. So, the k-normal
elements are a generalization of normal elements. By analogy with the case of normal
polynomials, a monic irreducible polynomial of degree n is called a k-normal polynomial
if its roots are k-normal elements of Fqn over Fq. In this paper, a new characterization
and construction of k-normal elements and polynomials over finite fields are given.

Keywords: finite field, normal basis, k-normal element, k-normal polynomial.

1. Introduction

Let Fq be the Galois field of order q = pm, where p is a prime and m is a natural
number, and F∗

q be its multiplicative group. A normal basis of Fqn over Fq

is a basis of the form N = {α, αq, ..., αqn−1}, i.e. a basis that consists of the
algebraic conjugates of a fixed element α ∈ F∗

qn . Such an element α ∈ Fqn is

∗. Corresponding author
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said to generate a normal basis for Fqn over Fq, and for convenience called a
normal element.

A monic irreducible polynomial F (x) ∈ Fq[x] is called normal polynomial
or N -polynomial if its roots are linearly independent over Fq. Since the ele-
ments in a normal basis are exactly the roots of some N -polynomials, there is a
canonical one-to-one correspondence between N -polynomials and normal bases.
Normal bases have many applications, including coding theory, cryptography
and computer algebra systems. For further details, see [9].

Recently, the k-normal elements over finite fields are defined and character-
ized by Huczynska et al [8]. For 0 ≤ k ≤ n− 1, the element α ∈ Fqn is called a

k-normal element if deg(gcd(xn − 1,
∑n−1

i=0 αqixn−1−i)) = k.
By analogy with the case of normal polynomials, a monic irreducible poly-

nomial P (x) ∈ Fq[x] of degree n is called a k-normal polynomial (or Nk-
polynomial) over Fq if its roots are k-normal elements of Fqn over Fq. Here,
P (x) has n distinct conjugate roots, of which (n− k) are linearly independent.
Recall that an element α ∈ Fqn is called a proper element of Fqn over Fq if
α /∈ Fqv for any proper divisor v of n. So, the element α ∈ Fqn is a proper
k-normal element of Fqn over Fq if α is a k-normal and proper element of Fqn

over Fq.
Using the above mention, a normal polynomial (or element) is a 0-normal

polynomial (or element). Since the proper k-normal elements of Fqn over Fq

are the roots of a k-normal polynomial of degree n over Fq, hence the k-normal
polynomials of degree n over Fq is just another way of describing the proper
k-normal elements of Fqn over Fq. Some results on the constructions of special
sequences of k-normal polynomials over Fq, in the cases k = 0 and 1 can be
found in [2, 4, 5, 10, 11] and [6], respectively.

In this paper, in Sec. 2 some definitions, notes and results which are use-
ful for our study have been stated. Section 3 is devoted to characterization
and construction of k-normal elements. Finally, in Sec. 4 a recursive method
for constructing k-normal polynomials of higher degree from a given k-normal
polynomial is given.

2. Preliminary notes

We use the definitions, notations and results given by Huczynska [8], Gao [7]
and Kyuregyan [10, 11], where similar problems are considered. We need the
following results for our further study.

The trace of α in Fqn over Fq, is given by TrFqn |Fq
(α) =

∑n−1
i=0 αqi . For

convenience, TrFqn |Fq
is denoted by Trqn|q.

Let F be a field and f(x) = Σn
i=0fix

i and g(x) = Σm
j=0gjx

j with all fi, gj ∈ F.
The Sylvester matrix Sf,g is the (m+ n)× (m+ n) matrix given by:



ON THE k-NORMAL ELEMENTS AND POLYNOMIALS OVER FINITE FIELDS 453

(1) Sf,g =



fn fn−1 ... f1 f0 ... ...
0 fn ... ... ... f0 ...
...

...
...

...
...

...
...

0 ... fn ... ... ... f0
gm gm−1 ... g1 g0 ... ...
0 gm gm−1 ... ... g0 ...
...

...
...

...
...

...
...

0 ... gm ... ... ... g0


Proposition 2.1 ([8]). Let F be a field. For two non-zero polynomials f, g ∈
F[x], we have

rank(Sf,g) = deg(f) + deg(g)− deg(gcd(f, g)).

Proposition 2.2 ([8]). Let α ∈ Fqn. Then the following properties are equiva-
lent:

i) α is k-normal over Fq;

ii) α gives rise to a basis {α, αq, ..., αqn−k−1} of a q-modules of degree n− k
over Fq;

iii) rank(Aα) = n− k, where

Aα =


α αq . . . αqn−1

αq αq2 ... α
...

...
...

...

αqn−1
α . . . αqn−2

 .

Proposition 2.3 ([6]). Let p divide n, then n = n1p
e, for some e ≥ 1 and

a, b ∈ F∗
q. Theefore the element α is a proper k-normal element of Fqn over Fq

if and only if a+ bα is a proper k-normal element of Fqn over Fq.

Let p denote the characteristic of Fq and let n = n1p
e = n1t, with gcd(p, n1) =

1 and suppose that xn − 1 has the following factorization in Fq[x] :

(2) xn − 1 = (φ1(x)φ2(x) · · ·φr(x))
t,

where φi(x) ∈ Fq[x] are the distinct irreducible factors of xn − 1. For each
s, 0 ≤ s < n, let there is a us > 0 such that Rs,1(x), Rs,2(x), · · · , Rs,us(x)
are all of the s degree polynomials dividing xn − 1. So, from (2) we can write
Rs,i(x) =

∏r
j=1 φj

tij (x), for each 1 ≤ i ≤ us, 0 ≤ tij ≤ t. Let

(3) ϕs,i(x) =
xn − 1

Rs,i(x)
,

for 1 ≤ i ≤ us. Then, there is a useful characterization of the k-normal polyno-
mials of degree n over Fq as follows:
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Proposition 2.4 ([6]). Let F (x) be an irreducible polynomial of degree n over
Fq and α be a root of it. Let xn − 1 factor as (2) and let ϕs,i(x) be as in (3).
Then F (x) is a Nk-polynomial over Fq if and only if, there is j, 1 ≤ j ≤ uk,
such that

Lϕk,j
(α) = 0,

and also
Lϕs,i

(α) ̸= 0,

for each s, k < s < n, and 1 ≤ i ≤ us, where us is the number of all s degree
polynomials dividing xn − 1 and Lϕs,i

(x) is the linearized polynomial defined by

Lϕs,i
(x) =

n−s∑
v=0

tivx
qv if ϕs,i(x) =

n−s∑
v=0

tivx
v.

The following propositions and lemma are useful for constructing Nk-poly-
nomials over Fq.

Proposition 2.5 ([3]). Let xp − δ2x+ δ0 and xp − δ2x+ δ1 be relatively prime
polynomials in Fq[x] and P (x) =

∑n
i=0 cix

i be an irreducible polynomial of degree
n ≥ 2 over Fq, and let δ0, δ1 ∈ Fq, δ2 ∈ F∗

q, (δ0, δ1) ̸= (0, 0). Then

F (x) = (xp − δ2x+ δ1)
nP

(
xp − δ2x+ δ0
xp − δ2x+ δ1

)
is an irreducible polynomial of degree np over Fq if and only if δ2

q−1
p−1 = 1 and

Trq|p

(
1

Ap

(
(δ1 − δ0)

P ′(1)

P (1)
− nδ1

))
̸= 0,

where Ap−1 = δ2, for some A ∈ F∗
q .

Proposition 2.6 ([1]). Let xp − x + δ0 and xp − x + δ1 be relatively prime
polynomials in Fq[x] and let P (x) be an irreducible polynomial of degree n ≥ 2
over Fq, and 0 ̸= δ1, δ0 ∈ Fp, such that δ0 ̸= δ1. Define

F0(x) = P (x)

Fk(x) = (xp − x+ δ1)
tk−1Fk−1

(
xp − x+ δ0
xp − x+ δ1

)
, k ≥ 1

where tk = npk denotes the degree of Fk(x). Suppose that

Trq|p

(
(δ1 − δ0)F

′
0(1)− nδ1F0(1)

F0(1)

)
· Trq|p

(
(δ1 − δ0)F

′
0(

δ0
δ1
) + nδ1F0(

δ0
δ1
)

F0(
δ0
δ1
)

)
̸= 0.

Then (Fk(x))k≥0 is a sequence of irreducible polynomials over Fq of degree tk =

npk, for every k ≥ 0.
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Lemma 2.7. Let γ be a proper element of Fqn and θ ∈ F∗
p, where q = pm,

(m ∈ N). Then we have

(4)

p−1∑
j=0

1

γ + jθ
= − 1

γp − γ
.

Proof. By observing that

p−1∑
j=0

1

γ + jθ
=

1

γp − γ

p−1∑
j=0

γp − γ

γ + jθ

 ,

it is enough to show that
p−1∑
j=0

γp − γ

γ + jθ
= −1.

We note that

p−1∑
j=0

γp − γ

γ + jθ
=

p−1∑
j=0

(
(γ + jθ)p−1 − 1

)

=

p−1∑
j=0

(γ + jθ)p−1

=

p−1∑
j=1

θj
(
p− 1

j

)(p−1∑
i=1

ij

)
,(5)

where (
p− 1

j

)
=

(p− 1)!

(p− 1− j)!j!
, j ∈ F∗

p.

On the other side, we know that

(6)

p−1∑
i=1

ij =

{
0 (mod p), if p-1 - j
−1 (mod p), if p-1 | j

and also θp−1 = 1. Thus by (5) and (6), the proof is completed.

3. Characterization and construction of k-normal elements

In this section, we extend some existence results on the characterization and
construction of normal elements into k-normal elements over finite fields. In the
case k = 0, the following theorems had been obtained in [7] and [13].

Theorem 3.1. Suppose that α is a proper element of Fqn over Fq. Let αi = αqi

and ti = Trqn|q(α0αi), 0 ≤ i ≤ n−1. Then α is a k-normal element of Fqn over

Fq if and only if deg(gcd(g(x), xn − 1)) = k, where g(x) = Σn−1
i=0 tix

i.



456 MAHMOOD ALIZADEH, MOHAMMAD REZA DARAFSHEH and SAEID MEHRABI

Proof. Let

Aα =


α αq . . . αqn−1

αq αq2 ... α
...

...
...

...

αqn−1
α . . . αqn−2

 .

So, by setting

△ = AαAα
T =


Trqn|q(α0α0) Trqn|q(α0α1) . . . T rqn|q(α0αn−1)

Trqn|q(α1α0) Trqn|q(α1α1) ... T rqn|q(α1αn−1)
...

...
...

...
Trqn|q(αn−1α0) Trqn|q(α0α0) . . . T rqn|q(αn−1αn−1)



=


t0 t1 . . . tn−1

tn−1 t0 ... tn−2
...

...
...

...
t1 t2 . . . t0

 ,

we get

rank(AαAα
T ) = rank(Aα) = rank(△).

Now, it is enough to show that deg(gcd(Σn−1
i=0 tix

i, xn − 1)) = k if and only if
the matrix △ has rank n− k. The Sylvester matrix Sf,g (see Equation 1) with
f(x) = xn − 1 can be converted, by a sequence of column operations, into the
block matrix (

In−1 0n−1

0n−1 △

)
.

From this block decomposition, it follows that

rank(Sf,g) = rank(△) + rank(In−1) = rank(△) + (n− 1).

By Proposition 2.1,

rank(Sf,g) = n+ (n− 1)− deg(gcd(f(x), g(x)).

Combining these two expressions yields

deg(gcd(f(x), g(x)) = n− rank(△).

The proof is complete.

Theorem 3.2. Let α be a k-normal element of Fqn over Fq. Then the element

γ = Σn−1
i=0 aiα

qi, where ai ∈ Fq, is a k-normal element of Fqn over Fq if and only
if the polynomial γ(x) = Σn−1

i=1 aix
i is relatively prime to xn − 1.
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Proof. Since α is a k-normal element of Fqn over Fq, so by Proposition 2.2,
rank(Aα) = n− k, where

Aα =


α αq . . . αqn−1

αq αq2 ... α
...

...
...

...

αqn−1
α . . . αqn−2

 .

Let

Aγ =


γ γq . . . γq

n−1

γq γq
2

... γ
...

...
...

...

γq
n−1

γ . . . γq
n−2

 .

By Proposition 2.2, it is enough to show that rank(Aγ) = n− k. We note that
Aγ = A ·Aα, where

A =


a0 a1 . . . an−1

a1 a2 ... a0
...

...
...

...
an−1 a0 . . . an−2

 .

Since γ(x) = Σn−1
i=0 aix

i is relatively prime to xn − 1, thus A is non-singular and
so

rank(Aγ) = rank(A ·Aα) = rank(Aα) = n− k.

The proof is complete.

Theorem 3.3. Let t and v are two positive integers with 1 < t < v < 2t and α
is a k-normal element of Fqvt over Fq for v − t ≤ k ≤ t− 1. If γ = Trqvt|qt (α)
is a proper element of Fqt over Fq, then γ is a proper k-normal element of Fqt

over Fq.

Proof. Since α is a k-normal element of Fqvt over Fq, so by Proposition 2.2 the

elements α, αq, αq2 , ... , αqvt−k−1
form a basis for a q-module of degree vt − k

over Fq. By hypothesis and considering γ = Trqvt|qt (α), the elements γ, γq,

... , γq
v−k−1

are non-overlapping sums of the vt − k conjugates of α, which are
assumed to be linearly independent over Fq. So the v − k conjugates of γ are
linearly independent over Fq. On the other side, for each 0 ≤ s ≤ k − 1,

γq
v−k+s

= Σv
i=1α

qvt−k+(v+s−it)

= Σvt−k
i=1 ciα

qvt−k−i
, ci ∈ Fq

= Σv−k
j=1djγ

qv−k−j
, dj ∈ Fqt .

So γ gives rise to a basis M = {γ, γq, ..., γqv−k−1} of a q-modules of degree v− k
over Fq. By Proposition 2.2, the proof is complete.
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Theorem 3.4. Let t and v are two positive integers with gcd(v, t) = 1 and α
is a k-normal element of Fqv over Fq, for 0 ≤ k ≤ v − 1. Then α is also a
k-normal element of Fqvt over Fqt.

Proof. Since α is a k-normal element of Fqv over Fq, so by Proposition 2.2,
rank(Aα) = v − k, where

Aα =


α αq . . . αqv−1

αq αq2 ... α
...

...
...

...

αqv−1
α . . . αqv−2

 .

The element α is also a k-normal element of Fqvt over Fqt if rank(A
′
α) = v − k,

where

A′
α =


α αqt . . . αq(v−1)t

αqt αq2t ... α
...

...
...

...

αq(v−1)t
α . . . αq(v−2)t

 .

Since gcd(v, t) = 1, when j runs through 0,1,2, ... , v− 1 modulo v, tj also runs
through 0,1,2, ... , v − 1 modulo v. Note that since α ∈ Fqv , we have αqv = α

and thus αqjt = αqkj whenever jt ≡ kj (mod v) and kj runs through 0,1,2, ... ,
v − 1. So rank(A′

α) = rank(Aα) = v − k and the proof is complete.

4. Recursive construction Nk-polynomials

In this section we establish theorems which will show how propositions 2.4, 2.5
and 2.6 can be applied to produce infinite sequences of Nk-polynomials over Fq.
Recall that, the polynomial P ∗(x) = xnP

(
1
x

)
is called the reciprocal polynomial

of P (x), where n is the degree of P (x). In the case k = 0, some similar results
of the following theorems have been obtained in [2], [4] and ([5], Theorems 3.3.1
and 3.4.1). We use of an analogous technique to that used in the above results,
where similar problems are considered.

Theorem 4.1. Let P (x) =
∑n

i=0 cix
i be an Nk-polynomial of degree n over Fq,

for each n = rpe, where e ∈ N and r equals 1 or is a prime different from p and
q a primitive element modulo r. Suppose that δ ∈ F∗

q and

(7) F (x) = (xp − x+ δ)nP ∗
(

xp − x

xp − x+ δ

)
.

Then F ∗(x) is an Nk-polynomial of degree np over Fq if k < pe and

Trq|p

(
δ
P ∗′(1)

P ∗(1)

)
̸= 0.
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Proof. Since P ∗(x) is an irreducible polynomial over Fq, so Proposition 2.5 and
theorem’s hypothesis imply that F (x) is irreducible over Fq.
Let α ∈ Fqn be a root of P (x). Since P (x) is an Nk-polynomial of degree n over
Fq by theorem’s hypothesis, then α ∈ Fqn is a proper k-normal element over Fq.

Since q is a primitive modulo r, so in the case r > 1 the polynomial xr−1 +
· · ·+ x+1 is irreducible over Fq. Thus x

n − 1 has the following factorization in
Fq[x]:

(8) xn − 1 = (φ1(x) · φ2(x))
t,

where φ1(x) = x− 1, φ2(x) = xr−1 + · · ·+ x+ 1 and t = pe.

Letting that for each 0 ≤ s < n and 1 ≤ i ≤ us, Rs,i(x) is the s de-
gree polynomial dividing xn − 1, where us is the number of all s degree poly-
nomials dividing xn − 1. So, from (8), we can write Rs,i(x) = (x− 1)s1,i ·
(xr−1 + · · ·+ x+ 1)

s2,i , where s = s1,i + s2,i · (r − 1) for each 0 ≤ s1,i, s2,i ≤ t,
except when s1,i = s2,i = t. So, we have

(9) ϕs,i(x) =
xn − 1

Rs,i(x)
=

xn − 1

(x− 1)s1,i · (xr−1 + · · ·+ x+ 1)s2,i
=

n−s∑
v=0

ts,i,vx
v.

Since P (x) is an Nk-polynomial of degree n over Fq, so by Proposition 2.4,
there is a j, 1 ≤ j ≤ uk, such that

Lϕk,j
(α) = 0,

and also

Lϕs,i
(α) ̸= 0,

for each k < s < n and 1 ≤ i ≤ us. Further, we proceed by proving that F ∗(x)
is a k-normal polynomial. Let α1 be a root of F (x). Then β1 = 1

α1
is a root of

its reciprocal polynomial F ∗(x). Note that by (8), the polynomial xnp − 1 has
the following factorization in Fq[x]:

(10) xnp − 1 = (φ1(x) · φ2(x))
pt,

where φ1(x) = x− 1, φ2(x) = xr−1 + · · ·+ x+ 1 and t = pe.

Letting that for each 0 ≤ s′ < np and 1 ≤ i′ ≤ u′s′ , R′
s′,i′(x) is the s′

degree polynomial dividing xnp − 1, where u′s′ is the number of all s′ degree

polynomials dividing xnp−1. So, from (10) we can write R′
s′,i′(x) = (x− 1)

s′
1,i′ ·

(xr−1 + · · ·+ x+ 1)
s′
2,i′ , where s′ = s′1,i′ + s′2,i′ · (r − 1) for each 0 ≤ s′1,i′ , s

′
2,i′ ≤

pt, except when s′1,i′ = s′2,i′ = pt. Therefore by considering

(11) H ′
s′,i′(x) =

xnp − 1

R′
s′,i′(x)

,
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and Proposition 2.4, F ∗(x) is an Nk-polynomial of degree np over Fq if and only
if there is a j′, 1 ≤ j′ ≤ u′k, such that

LH′
k,j′

(β1) = 0,

and also
LH′

s′,i′
(β1) ̸= 0,

for each k < s′ < np and 1 ≤ i′ ≤ u′s′ . Consider

(12) Hs,i(x) =
xnp − 1

Rs,i(x)
=

xn − 1

Rs,i(x)

p−1∑
j=0

xjn

 ,

for each 0 ≤ s < n and 1 ≤ i ≤ us. By (9) we obtain

Hs,i(x) = ϕs,i(x)

p−1∑
j=0

xjn

 =

n−s∑
v=0

ts,i,v

p−1∑
j=0

xjn+v

 .

It follows that

LHs,i(β1) =
n−s∑
v=0

ts,i,v

p−1∑
j=0

(β1)
pjmn

pmv

,

or

(13) LHs,i(β1) = LHs,i

(
1

α1

)
=

n−s∑
v=0

ts,i,v

p−1∑
j=0

(
1

α1

)pjmn
pmv

.

From (7), if α1 is a zero of F (x), then α1
p−α1+δ

α1
p−α1

is a zero of P (x), and therefore
it may assume that

α =
α1

p − α1 + δ

α1
p − α1

,

or

(14)
α− 1

δ
= (α1

p − α1)
−1.

Now, by (14) and observing that P (x) is an irreducible polynomial of degree n
over Fq, we obtain

(15)
α− 1

δ
= (

α− 1

δ
)
pmn

= (α1
pmn+1 − α1

pmn
)
−1

.

It follows from (14) and (15) that

(16) (α1
pmn+1 − α1

pmn
)
−1

= (α1
p − α1)

−1.
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Also observing that F (x) is an irreducible polynomial of degree np over Fq, we

have (α1
p − α1) ̸= 0 and (α1

pmn+1 − α1
pmn

) ̸= 0. Hence by (16)

(17) (α1
pmn − α1)

p
= (α1

pmn − α1).

It follows from (17) that α1
pmn − α1 = θ ∈ F∗

p. Hence α1
pmn

= α1 + θ and

α1
p2mn

= (α1 + θ)p
mn

= α1
pmn

+ θp
mn

= α1 + θ + θ = α1 + 2θ.

It is easy to show that α1
pjmn

= α1 + jθ, for 1 ≤ j ≤ p− 1, or

(18)

(
1

α1

)pjmn

=
1

α1 + jθ
, for 1 ≤ j ≤ p− 1.

From (13) and (18), we immediately obtain

(19) LHs,i(β1) =
n−s∑
v=0

ts,i,v

p−1∑
j=0

1

α1 + jθ

pmv

.

Thus, by (14), (19) and Lemma 2.7 we have

LHs,i(β1) =
n−s∑
v=0

ts,i,v

(
− 1

αp
1 − α1

)pmv

=
1

δ

n−s∑
v=0

ts,i,v(1− α)p
mv

= Lϕs,i

(
1− α

δ

)
.(20)

Since α is a zero of P (x), then α will be a k-normal element in Fqn over Fq.
Thus according to Proposition 2.3, the element 1−α

δ will also be a k-normal
element. since 1−α

δ is a root of P (−δx + 1), so by (20) and Proposition 2.4,
there is a j, 1 ≤ j ≤ uk, such that LHk,j

(β1) = 0, and also LHs,i(β1) ̸= 0, for
each s, k < s < n and 1 ≤ i ≤ us. So, there is a j′, 1 ≤ j′ ≤ u′k, such that,
LH′

k,j′
(β1) = LHk,j

(β1) = 0. On the other side, by (11) and (12), for each s′,

k < s′ < np and 1 ≤ i′ ≤ u′s′ , there is s, k < s < n and 1 ≤ i ≤ us such that
H ′

s′,i′(x) divide Hs,i(x). It follows that LH′
s′,i′

(β1) ̸= 0, for each s′, k < s′ < np

and 1 ≤ i′ ≤ u′s′ . The proof is completed.

In the following theorem, a computationally simple and explicit recurrent
method for constructing higher degree Nk-polynomials over Fq starting from an
Nk-polynomial is described.

Theorem 4.2. Let P (x) be an Nk-polynomial of degree n over Fq, for each
n = rpe, where e ∈ N and r equals 1 or is a prime different from p and q a
primitive element modulo r. Define

F0(x) = P ∗(x)
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(21) Fu(x) = (xp − x+ δ)np
u−1

Fu−1

(
xp − x

xp − x+ δ

)
,

where δ ∈ F∗
p. Then (F ∗

u (x))u≥0 is a sequence of Nk-polynomials of degree npu

over Fq if k < pe and

Trq|p

(
P ∗′

(0)

P ∗(0)

)
· Trq|p

(
P ∗′(1)

P ∗(1)

)
̸= 0,

where P ∗′
(0) and P ∗′(1) are the formal derivative of P ∗(x) at the points x = 0

and x = 1, respectively.

Proof. By Proposition 2.6 and hypotheses of theorem for each u ≥ 1, Fu(x)
is an irreducible polynomial over Fq. Consequently, (F ∗

u (x))u≥0 is a sequence
of irreducible polynomials over Fq. The proof of k-normality of the irreducible
polynomials F ∗

u (x), for each u ≥ 1 is implemented by mathematical induction
on u. In the case u = 1, by Theorem 4.1 F1

∗(x) is a k-normal polynomial.
For u = 2 we show that F2

∗(x) is also a k-normal polynomial. To this end
we need to show that the hypothesis of Theorem 4.1 are satisfied. By Theorem
4.1, F2

∗(x) is a k-normal polynomial if

Trq|p

(
F ′
1(1)

F1(1)

)
̸= 0,

since δ ∈ F∗
p. We apply (21) to compute

(22) Fu(0) = Fu(1) = δunP ∗(0), u = 1, 2, . . . .

We calculate the formal derivative of F ′
1(x) at the points x = 0 and x = 1.

According to (21) the first derivative of F1(x) is

F1
′
(x) = −n(xp − x+ δ)n−1F0

′
(

xp − x

xp − x+ δ

)
+ (xp − x+ δ)n ·

(
(pxp−1 − 1)(xp − x+ δ)− (pxp−1 − 1)(xp − x)

(xp − x+ δ)2

)
· F0

′
(

xp − x

xp − x+ δ

)
= −δ(xp − x+ δ)n−2 · P ∗′

(
xp − x

xp − x+ δ

)
,

and at the points x = 0 and x = 1

(23) F1
′
(0) = −F1

′
(1) = −δn−1P ∗′(0)

which is not equal to zero by the condition Trq|p

(
P ∗′ (0)
P ∗(0)

)
̸= 0 in the hypothesis

of theorem, since δ ∈ F∗
p. From (23) and (22)

(24) Trq|p

(
F ′
1(1)

F1(1)

)
= Trq|p

(
−δn−1P ∗′(0)

δnP ∗(0)

)
= −1

δ
Trq|p

(
P ∗′

(0)

P ∗(0)

)
,
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which is not equal to zero by hypothesis of theorem. Hence the polynomial
F ∗
2 (x) is a k-normal polynomial. If induction holds for u− 1, then it must hold

also for u, that is by assuming that F ∗
u−1(x) is a k-normal polynomial, we show

that F ∗
u (x) is also a k-normal polynomial.

Let u ≥ 3. By Theorem 4.1, F ∗
u (x) is a k-normal polynomial if

Trq|p

(
F ′
u−1(1)

Fu−1(1)

)
̸= 0,

since δ ∈ F∗
p. We calculate the formal derivative of F ′

u−1(x) at the points 1 and
0. By (21) the first derivative of Fu−1(x) is

F ′
u−1(x) = (xp − x+ δ)np

u−2

(
(pxp−1 − 1)(xp − x+ δ)− (pxp−1 − 1)(xp − x)

(xp − x+ δ)2

)
· F ′

u−2

(
xp − x

xp − x+ δ

)
= −δ(xp − x+ δ)np

u−2−2F ′
u−2

(
xp − x

xp − x+ δ

)
,

and at the point x = 0 and x = 1

F ′
u−1(0) = F ′

u−1(1) = −δnp
u−2−1F ′

u−2(0) = −δn−1F ′
u−2(0).

So we have

F ′
u−1(0) = F ′

u−1(1) = (−1)u−2δ(n−1)(u−2)F ′
1(0),

which is not equal to zero by (23) and the condition Trq|p

(
P ∗′ (0)
P ∗(0)

)
̸= 0 in the

hypothesis of theorem, since δ ∈ F∗
p. Also

Trq|p

(
F ′
u−1(1)

Fu−1(1)

)
= (−1)u−2 1

δ(u−2)
Trq|p

(
F ′
1(1)

F1(1)

)
,

which is not equal to zero by (24) and hypothesis of theorem. The theorem is
proved.
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