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Abstract. An element a € Fyn is normal over Fy if the set {a, a9, ..., ozqnfl} is a basis
of Fgn over Fy. The k-normal elements over finite fields are defined and characterized
by Huczynska, Mullen, Panario and Thomson (2013). For 0 < k < n — 1, the element
a € Fyn is said to be a k-normal element if ged(z™ — 1, Z?;Ol a9 2" 17%) has degree
k. It is well known that a 0-normal element is a normal element. So, the k-normal
elements are a generalization of normal elements. By analogy with the case of normal
polynomials, a monic irreducible polynomial of degree n is called a k-normal polynomial
if its roots are k-normal elements of Fy» over . In this paper, a new characterization
and construction of k-normal elements and polynomials over finite fields are given.
Keywords: finite field, normal basis, k-normal element, k-normal polynomial.

1. Introduction

Let IF, be the Galois field of order ¢ = p™, where p is a prime and m is a natural
number, and F be its multiplicative group. A normal basis of Fyn over F,
is a basis of the form N = {«, a?, ...,oﬂ"il}, i.e. a basis that consists of the
algebraic conjugates of a fixed element o € Fyn. Such an element a € Fyn is
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said to generate a normal basis for Fy» over Fy, and for convenience called a
normal element.

A monic irreducible polynomial F'(z) € Fy[z] is called normal polynomial
or N-polynomial if its roots are linearly independent over [F,. Since the ele-
ments in a normal basis are exactly the roots of some N-polynomials, there is a
canonical one-to-one correspondence between N-polynomials and normal bases.
Normal bases have many applications, including coding theory, cryptography
and computer algebra systems. For further details, see [9].

Recently, the k-normal elements over finite fields are defined and character-
ized by Huczynska et al [8]. For 0 < k < n — 1, the element a € Fyn is called a
k-normal element if deg(ged(z™ — 1, Z?:_ol ad 1)) = k.

By analogy with the case of normal polynomials, a monic irreducible poly-
nomial P(z) € Fy[z] of degree n is called a k-normal polynomial (or Nj-
polynomial) over F, if its roots are k-normal elements of Fy» over F,. Here,
P(z) has n distinct conjugate roots, of which (n — k) are linearly independent.
Recall that an element o« € Fyn is called a proper element of Fy» over F, if
a ¢ Fq for any proper divisor v of n. So, the element o € Fyn is a proper
k-normal element of Fy» over F, if v is a k-normal and proper element of Fy»
over Fg.

Using the above mention, a normal polynomial (or element) is a 0-normal
polynomial (or element). Since the proper k-normal elements of Fy» over F,
are the roots of a k-normal polynomial of degree n over F,, hence the k-normal
polynomials of degree n over F, is just another way of describing the proper
k-normal elements of Fyn over F,. Some results on the constructions of special
sequences of k-normal polynomials over F,, in the cases £ = 0 and 1 can be
found in [2, 4, 5, 10, 11] and [6], respectively.

In this paper, in Sec. 2 some definitions, notes and results which are use-
ful for our study have been stated. Section 3 is devoted to characterization
and construction of k-normal elements. Finally, in Sec. 4 a recursive method
for constructing k-normal polynomials of higher degree from a given k-normal
polynomial is given.

2. Preliminary notes

We use the definitions, notations and results given by Huczynska [8], Gao [7]
and Kyuregyan [10, 11], where similar problems are considered. We need the
following results for our further study. A

The trace of a in Fgn over Fy, is given by Trg ,r, (o) = Z?;ol a? . For
convenience, TrlganFq is denoted by T'rgn|,.

Let F be a field and f(z) = X1, fiz® and g(x) = ET:Ogjwj with all f;, g; € F.
The Sylvester matrix Sy 4 is the (m +n) x (m + n) matrix given by:
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Proposition 2.1 ([8]). Let F be a field. For two non-zero polynomials f,g €
Flx], we have

rank(Syq) = deg(f) + deg(g) — deg(ged(f, g))-

Proposition 2.2 ([8]). Let o € Fyn. Then the following properties are equiva-
lent:

i) « is k-normal over Fy;

i1) « gives rise to a basis {a, al, ..., aqnfkfl} of a g-modules of degree n — k
over Fy;

ii1) rank(Ay) = n — k, where

n—1
« af af
2
af af o
Aa - . .
n—1 n—2
af o al

Proposition 2.3 ([6]). Let p divide n, then n = nip®, for some e > 1 and
a,b € Fy. Theefore the element « is a proper k-normal element of Fgn over I,
if and only if a + ba is a proper k-normal element of Fyn over Fy.

Let p denote the characteristic of F, and let n = nip® = nit, with ged(p, n1) =
1 and suppose that 2™ — 1 has the following factorization in F,[z] :

(2) o = 1= (p1(@)pa(@) - or(2))
where @;(z) € F,y[z] are the distinct irreducible factors of 2™ — 1. For each
s, 0 < s < n, let there is a ug > 0 such that Rg;(x), Rs2(x), -+, Rsu,(x)

are all of the s degree polynomials dividing 2™ — 1. So, from (2) we can write

Rsi(x) = [1j=) p;" (2), for each 1 < i < g, 0 <t; <t. Let
" —1

3 () =

( ) (bs,z(x) Rs,i(x)7

for 1 <1 < ug. Then, there is a useful characterization of the k-normal polyno-
mials of degree n over F, as follows:
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Proposition 2.4 ([6]). Let F(z) be an irreducible polynomial of degree n over
F, and a be a root of it. Let 2™ — 1 factor as (2) and let ¢s;(x) be as in (3).
Then F(z) is a Ny-polynomial over F, if and only if, there is j, 1 < j < wy,
such that

L¢k,]’ (a) = 07
and also

Ly, (@) # 0,

for each s, k < s <mn, and 1 <1 < ug, where ug is the number of all s degree
polynomials dividing x™ — 1 and Ly, ,(x) is the linearized polynomial defined by

L¢s i Z twl' if ¢5 i Z tiva".

The following propositions and lemma are useful for constructing Ng-poly-
nomials over [F,.

Proposition 2.5 ([3]). Let 2P — dax + 6o and xP — dax + &1 be relatively prime
polynomials in Fy[z] and P(z) = Y"1, c;x® be an irreducible polynomial of degree
n > 2 over Fy, and let 50,01 € Fy, 02 € Fy, (d0,01) # (0,0). Then

xp—52$+50
= (2P — n - = -
Flz) = (@" = opw +01)"P <.CEP — o + 51)

-1
is an irreducible polynomial of degree np over Fy if and only if 52;17?1 =1 and

Tryp (;p ((51 _ 50)P'((11)) _ n(51>> £0,

where AP~ = §,, for some A € Fy.

Proposition 2.6 ([1]). Let 2P — x + 09 and xP — x + 01 be relatively prime
polynomials in Fylx] and let P(x) be an irreducible polynomial of degree n > 2
over Fy, and 0 # 61,00 € Fp, such that 69 # 61. Define

Fy(x) = P(x)

a:p—x—l—&))

Fl) = 07 o bt (G

where t;, = np® denotes the degree of Fy.(x). Suppose that

o (B = 00)Fo(1) —ndiFo(1) (01 = 8o) Fy(52) + nor Fo(52)
T qp( Fo(1) ) Trqlp ( Fo(g) > # 0.

Then (F(z));>q is a sequence of irreducible polynomials over Fy of degree t), =
np®, for every k > 0.



ON THE k-NORMAL ELEMENTS AND POLYNOMIALS OVER FINITE FIELDS 455

Lemma 2.7. Let v be a proper element of Fgn and 6 € F,, where ¢ = p™,
(m € N). Then we have

= 1
(4) — = :
;vﬂe gl

Proof. By observing that

-1
> >
jzo'yﬂ'@ vp— “v+340 )7
it is enough to show that
p—1 5
ST
— 7t jo
We note that
I =
> e = 2 (o0
=0 1T j=0
p—1
=D (y+4oy
=0
1

where

-1 — 1)
j (p—1-3)y!
On the other side, we know that
i 0 (modp), if p-l1j
(6) Zij — { D) p-117

— —1 (mod p), if p-1]j

and also #P~1 = 1. Thus by (5) and (6), the proof is completed. O

3. Characterization and construction of k-normal elements

In this section, we extend some existence results on the characterization and
construction of normal elements into k-normal elements over finite fields. In the
case k = 0, the following theorems had been obtained in [7] and [13].

Theorem 3.1. Suppose that o is a proper element of Fgn over Fy. Let o; = ad'
and t; = Trgng(aoa;), 0 <i <n—1. Then a is a k-normal element of Fyn over

F, if and only if deg(ged(g(z),z™ — 1)) = k, where g(x) = S}~ t;2".
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Proof. Let
« ol ad" !
al  af «
-Aa = . .
aqn—l o aqn—Z
So, by setting
Tronjg(aoan)  Trgng(aoar) ... Trenjg(aoan—1)
AN A AT Trqn‘q(ozlozg) Trqn|q(a1a1) Trqn|q(oz1an,1)
- o « - . . .
Tronjg(an—1a0) Tregng(aoan) ... Tregnglan—10m-1)
to t1 ... th_1
N N R
11 to ... to
we get

rank(AqAqT) = rank(Ay) = rank(A).
Now, it is enough to show that deg(gcd(Z?;OIti:ri,x” — 1)) = k if and only if

the matrix A has rank n — k. The Sylvester matrix S, (see Equation 1) with
f(x) = 2™ — 1 can be converted, by a sequence of column operations, into the

block matrix

In—l On—l

0p—1 A '
From this block decomposition, it follows that

rank(Syg) = rank(A) + rank(I,—1) = rank(A) + (n — 1).
By Proposition 2.1,
rank(Sz,) = n+ (n — 1) — deg(ged(f(z), g(x).
Combining these two expressions yields
deg(ged(f(2), g(x)) = n — rank(L).

The proof is complete. ]
Theorem 3.2. Let o be a k-normal element of Fyn over Fy. Then the element

v = E?:_Olaiaqi, where a; € Fy, is a k-normal element of Fyn over Fy if and only
if the polynomial ~(x) = E?;llaix’ 1s relatively prime to ™ — 1.



ON THE k-NORMAL ELEMENTS AND POLYNOMIALS OVER FINITE FIELDS 457

Proof. Since « is a k-normal element of Fy» over F,, so by Proposition 2.2,
rank(Ay) = n — k, where

a aq qnfl
2
al af o
Aa: . .
n—1 n—2
al «o af
Let
v "
2
A — vt v
¥ .
n—1 n—2
74 oo !

By Proposition 2.2, it is enough to show that rank(A,) =n — k. We note that
A, =A-A,, where

ag al ... Qp-1
al a9 ap
A=
an—-1 aop ... Qap—2

Since y(z) = Z?golaimi is relatively prime to ™ — 1, thus A is non-singular and
SO
rank(Ay) = rank(A - Ay) = rank(Ay) =n — k.

The proof is complete. O

Theorem 3.3. Lett and v are two positive integers with 1 <t < v < 2t and «
is a k-normal element of Fyue over Fy forv—t <k <t —1. If v = Trge (o)
is a proper element of Fy: over By, then v is a proper k-normal element of g
over [Fy.

Proof. Since « is a k-normal element of Fy.: over Fy, so by Proposition 2.2 the

elements a, a?, a®, ... , a?""""" form a basis for a g-module of degree vt — k
over Fy. By hypothesis and considering v = T vt (), the elements v, 4,
- ’yq“_k_l are non-overlapping sums of the vt — k conjugates of «, which are

assumed to be linearly independent over F,. So the v — k conjugates of v are
linearly independent over F,. On the other side, for each 0 < s <k —1,

v—k+s vt—k+(v+s—it)

v
,},q — Eizlaq
vt—k vt—k—1
=X et , ¢ €y
_ ywv—kg g kI 4
= Zj:l dj’y s dj S th.

So v gives rise to a basis M = {v,79, ..., ’yqv_k_l} of a g-modules of degree v — k
over [F,. By Proposition 2.2, the proof is complete. O
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Theorem 3.4. Let t and v are two positive integers with ged(v,t) = 1 and «
is a k-normal element of Fgv over Fy, for 0 < k < v —1. Then « is also a
k-normal element of F ot over Fy:.

Proof. Since « is a k-normal element of Fy» over F,, so by Proposition 2.2,
rank(A,) = v — k, where

« af af
2
ol ol o
Aa = . .
v—1 v—2
af «o q

The element « is also a k-normal element of Fyv: over Fye if rank(A),) = v —k,
where

o aqt aq(v—l)t
, ad’ Q@ L a
A, =
T
Since ged(v,t) = 1, when j runs through 0,1,2, ... , v — 1 modulo v, tj also runs
through 0,1,2, ... , v — 1 modulo v. Note that since a € Fgv, we have a?’ =«

and thus o' = a7 whenever jt = k; (mod v) and k; runs through 0,1,2, ... |
v —1. So rank(AL) = rank(A,) = v — k and the proof is complete. O

4. Recursive construction Ni-polynomials

In this section we establish theorems which will show how propositions 2.4, 2.5
and 2.6 can be applied to produce infinite sequences of Np-polynomials over F,,.
Recall that, the polynomial P*(z) = =" P (%) is called the reciprocal polynomial
of P(x), where n is the degree of P(z). In the case k = 0, some similar results
of the following theorems have been obtained in [2], [4] and ([5], Theorems 3.3.1
and 3.4.1). We use of an analogous technique to that used in the above results,
where similar problems are considered.

Theorem 4.1. Let P(z) = > I c;z® be an Ny-polynomial of degree n over F,
for each n = rp®, where e € N and r equals 1 or is a prime different from p and
q a primitive element modulo r. Suppose that 6 € Fy and

(7) Flz) = (2 — 2+ 6)" P* <£;i5) |

Then F*(x) is an Ny-polynomial of degree np over Fq if k < p® and

p*
Trypp <5 P*((ll))) # 0.
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Proof. Since P*(x) is an irreducible polynomial over [y, so Proposition 2.5 and

theorem’s hypothesis imply that F'(x) is irreducible over Fj,.

Let o € Fgn be a root of P(x). Since P(x) is an Nj-polynomial of degree n over

F, by theorem’s hypothesis, then a € Fyn is a proper k-normal element over F,.
Since ¢ is a primitive modulo r, so in the case > 1 the polynomial z"~! +

--++x + 1 is irreducible over F,. Thus 2" — 1 has the following factorization in

Fylx]:

(8) 2" =1 = (p1(2) - pa(2))",

where ¢1(z) =2 — 1, pa(x) = 2" 1+ -+ 2+ 1 and t = p°.

Letting that for each 0 < s < n and 1 < i < wg, R, (x) is the s de-
gree polynomial dividing ™ — 1, where us is the number of all s degree poly-
nomials dividing 2" — 1. So, from (8), we can write Ry;(z) = (z—1)" -
(z" 1+ 4+ 2+ 1) where s = 51, + 82, - (r—1) for each 0 < s9,82; < t,
except when s1; = so; = t. So, we have

" —1 " —1 -—
9 . = = - - = t 3 U.
( ) ¢S,Z($) Rs l(x) (3}‘ — 1)81,2 . (xr—l + .-+ x4+ 1)52,1 U::(): 84,00

)

Since P(z) is an Np-polynomial of degree n over Fy, so by Proposition 2.4,
there is a j, 1 < 5 < g, such that

L¢k,j (Od) = 0,

and also
Ly, . (a) #0,

for each k < s < n and 1 < i < ug. Further, we proceed by proving that F™*(x)
is a k-normal polynomial. Let a1 be a root of F(z). Then 8 = a% is a root of
its reciprocal polynomial F*(x). Note that by (8), the polynomial 2™ — 1 has
the following factorization in Fy[x]:

(10) 2" —1 = (p1(z) - pa(2))",

where ¢1(z) =2 — 1, pa(z) =2" '+ -+ 2+ 1 and t = p°.

Letting that for each 0 < s’ < np and 1 < &' < ul,, R, ,(x) is the &
degree polynomial dividing ™ — 1, where u/, is the number of all s’ degree
polynomials dividing 2"” — 1. So, from (10) we can write 1, , () = (z — 1)1
(2714 -+ 2+ 1)°27, where s’ = 5/1,2" + 5’271., +(r—1) for each 0 < S’M,, 5’2717 <
pt, except when Sll,i’ = 3/271" = pt. Therefore by considering

™ —1

11 H// i’ = <
() bolo) = g
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and Proposition 2.4, F*(x) is an Nj-polynomial of degree np over Fy if and only
if there is a j', 1 < 5’ < uj, such that

LH]’W_, (B1) =0,

and also

Ly, , (B1) # 0,

for each k < s’ <mnp and 1 <4 <!, . Consider
n n p—1
"’ — 1 _at—1

Rei(z)  Rsi(z) > ",

s j=0

(12) Hi(z) =

for each 0 < s <n and 1 <1i < us. By (9) we obtain

p—1 ) n—s p—1 ‘
Hyi(z) = ¢s4(x) ijn _ Zfs,i,v Z pintv

j=0 v=0 j=0

It follows that -
p
~— pil jmn
LHS,i(Bl) = Zts,i,v Z (61)pJ ,

v=0 j=0
or

1 n—s p—l 1 pjmn e
09 =t () = X | (1)

V= J]=

From (7), if oy is a zero of F(z), then 2L~ js a4 yero of P(z), and therefore

a1P—aq
it may assume that
a? —o1+ 6

a1 — oy

)
or

a—1

4]

(14) = (? — o)7L
Now, by (14) and observing that P(x) is an irreducible polynomial of degree n
over F,, we obtain

mn, —1

)

mn
O[*l Oé*].p mn+1

— =) =@ e

It follows from (14) and (15) that

(15)

mn _1

mn—+1 ) _ (alp _ al)il

(16) (Oélp — Oélp
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Also observing that F'(x) is an irreducible polynomial of degree np over Fy, we
mn—+1

have (a;? —aq) # 0 and (ay? —a1?™") # 0. Hence by (16)

mn mmn

(17) (a?™" — )’ = (""" —ay).

It follows from (17) that ay?"" —a; =6 € ;. Hence aP™ = a1 + 6 and

2mn

a?" = (ar + 0 =P 0P =+ 0+ 60 =g + 26.

It is easy to show that a?"™" = +40,for 1 <j<p-—1,or

(18) Ly ! for 1<j5< 1
— = , for 1<j<p-—1.

o a1 + 50 I=P
From (13) and (18), we immediately obtain

muv

p—1 1

(19 (5 = Y 2 o0

Thus, by (14), (19) and Lemma 2.7 we have

P
Hs 51 Zts,l,v <_a1—041>
1 mu l—«
_ - ) A\
(20) =3 vz::()tw,v(l @) L, , < 5 >

Since « is a zero of P(x), then a will be a k-normal element in Fyn over F,.
Thus according to Proposition 2.3, the element Ta will also be a k-normal
element. since 1_T°‘ is a root of P(—dx + 1), so by (20) and Proposition 2.4,
there is a j, 1 < j < ug, such that Ly, .(61) = 0, and also Ly, (1) # 0, for
each s, k < s <nand 1 <i < us So, there is a j/, 1 < j' < uj, such that,

Ly . (81) = Ly, ;(B1) = 0. On the other side, by (11) and (12), for each &',

k<ys’<npand1<i’<u’,,thereiss k:<s<nand1<i<us such that
H!, ., (x) divide H;(x). It follows that LH/ (Bl) # 0, for each s’, k < s < np

and 1 < ¢ < wl,. The proof is completed. ]

mu

In the following theorem, a computationally simple and explicit recurrent
method for constructing higher degree Nj-polynomials over [, starting from an
Ng-polynomial is described.

Theorem 4.2. Let P(x) be an Nj-polynomial of degree n over Fy, for each
n = rp®, where e € N and r equals 1 or is a prime different from p and q a
primitive element modulo r. Define

Fo(x) = P*(x)
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B B npu—1 P —x
(21) Fu(.CC) = (;cp x + (5) F,_1 <$p —y 5) ,

where § € Fy. Then (F;(x)),>¢ 18 a sequence of Ng-polynomials of degree np"
over Fy if k < p® and

P*(0) P (1)
TT(J|p (P*(O) ) ’ Tr(]k” (P*(l) 7é 07
where P*'(0) and P* (1) are the formal derivative of P*(x) at the points x =0
and x = 1, respectively.

Proof. By Proposition 2.6 and hypotheses of theorem for each u > 1, F,(z)
is an irreducible polynomial over F,. Consequently, (F;(z)),>o is a sequence
of irreducible polynomials over [F,. The proof of k-normality of the irreducible
polynomials F)(x), for each u > 1 is implemented by mathematical induction
on u. In the case u =1, by Theorem 4.1 F;*(x) is a k-normal polynomial.

For u = 2 we show that F*(x) is also a k-normal polynomial. To this end
we need to show that the hypothesis of Theorem 4.1 are satisfied. By Theorem
4.1, Fy*(x) is a k-normal polynomial if

(i) #

since 0 € F;. We apply (21) to compute
(22) F,(0) = F,(1) = §“"P*(0), u=1,2,....

We calculate the formal derivative of F{(z) at the points = 0 and z = 1.
According to (21) the first derivative of Fi(z) is

, , p_
B (z) = —n(a® —z+6)" 'K (H>

P —x 40
2P~ — 1) (2P —z+6) — (paP~ ! — 1) (2P — 2z
+ (xp_m+(5)”, <(p )( (xp"i__i—i_g; )( ))

/ P —x
Fo (;U_ms)
= 5P —z+0)" 2. P <$p_x> :
and at the points x =0 and z =1
(23) F(0)=—F'(1) = =6"1P*(0)
which is not equal to zero by the condition T'rg, (1;;/((00))> # 0 in the hypothesis
of theorem, since ¢ € . From (23) and (22)

Fl( —5"=1p*' (0 1 P (0
(24) Trq\p (FiEl;) = TT‘q|p <57LP*(0)()> — _STrq|p <P*((O))> y
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which is not equal to zero by hypothesis of theorem. Hence the polynomial
F3(x) is a k-normal polynomial. If induction holds for u — 1, then it must hold
also for u, that is by assuming that F;}_;(x) is a k-normal polynomial, we show
that F(x) is also a k-normal polynomial.

Let u > 3. By Theorem 4.1, F'(z) is a k-normal polynomial if

Fua(1)
T Lt 0
w (7o) 7
since § € IF. We calculate the formal derivative of F}, ;(z) at the points 1 and
0. By (21) the first derivative of Fy,_1(z) is

" (@) = (P ((

, P —z
2\ aP— 240

_ p_ npu—2_2 ’ P — x
=—0(aP —x +9) F,_o <acp—;1:—|—5 ,

pa? !l = 1)(a? =z + ) = (pa?! = 1)(a” — x))
(xP —x + 6)2

and at the point x =0 and x =1

-1(0) = Fiy (1) = =" _5(0) = —0" T F_5(0).

u—1 u—1

So we have
n1(0) = Fl_ (1) = (1) 260D F(0),

which is not equal to zero by (23) and the condition T, (1; - ((00))> # 0 in the

hypothesis of theorem, since ¢ € Fy. Also

b (B0) — s (52).

which is not equal to zero by (24) and hypothesis of theorem. The theorem is
proved. ]
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