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Abstract. A collocation method based on Haar wavelet is presented for solving nu-
merical solution of fourth order nonlinear Kuramoto-Sivashinsky equation. Efficiency
and accuracy of the present method has been established by comparing the numerical
results with exact solutions.
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1. Introduction

Wavelet methods are more appealing, unsophisticated and reliable to obtain
the numerical solutions of partial differential equations. A variety of methods
have been developed for solving nonlinear partial differential equations. Haar
wavelet is simple, computationally fast and give more accurate numerical re-
sults. It is discontinuous and therefore not differentiable. So, it is impossible
to find the numerical results of partial differential equation using Haar wavelet
method directly. Due to integrability of this function, it is utilised as a powerful
mathematical tool for solving nonlinear equations. In [3], Haar wavelet method
has been used for numerical solution of generalized Burger-Huxley equation.
Haar wavelet method for solving lumped and distributed-parameter systems
has been presented in [4]. Haar wavelet method has been presented for solv-
ing Fisher’s equation, Fitzhugh–Nagumo equation and evolution equation in
[6, 7, 12]. Haar and Legendre wavelets collocation methods has been used for
finding numerical solution of Schrondinger and wave equation in [10]. Numerical
solutions of higher degree partial differential equations using Haar wavelet have
been presented in [1, 13, 15, 17, 18]. Consider the general Kuramoto-Sivashinsky
equation [14]:

(1) ut + uux + µuxx + νuxxxx = 0,
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with initial and boundary conditions

(2) u(x, 0) = f(x), ux(0, t) = 0, uxx(0, t) = 0, u(0, t) = g1(t), u(1, t) = g2(t),

where f(x), g1(t) and g2(t) are known functions.

Kuramoto-Sivashinsky (KS) equation which is a canonical nonlinear evolu-
tion equation that arises in a variety of physical contexts. This equation was
originally derived in the context of plasma instabilities, flame front propaga-
tion, and phase turbulence in reaction-diffusion system [16]. It occur incontext
of long waves on the interface between two viscous fluids [9], unstable drift waves
in plasmas, reaction-diffusion systems [11], and flame front instability.

The main aim of this research is to find an accurate and efficient numerical
method for solving Kuramoto-Sivashinsky equation. In Section 2, theory of Haar
wavelets has been presented. In Section 3, we describe function approximation.
Description of Haar wavelet method for solving such equations has been given in
Section 4. Error analysis of Haar wavelet method has been presented in Section
6. In Section 7, numerical observations have been solved using the present
methods and compared with exact solutions.

2. Haar wavelet

Haar wavelet is discontinuous function and is defined as:

(3) Hi(x) =


1, α ≤ x < β,

−1, β ≤ x < γ,

0, elsewhere,

where α = k
m , β = k+0.5

m , γ = k+1
m , m = 2j , j = 0, 1, 2, ..., J . J denotes the

level of resolution. The integer k = 0, 1, 2, ...,m−1 is the translation parameter.
The index i is calculated as: i = m + k + 1. The minimal value of i = 2. The
maximal value of i is 2j+1. The collocation points are calculated as:

(4) xl =
l − 0.5

2M
, l = 1, 2, 3, ...., 2M.

The operational matrices P, which are 2M × 2M , are calculated as below:

(5) P1,i(x) =

∫ x

0
Hi(x)dx,

and

(6) Pn+1,i(x) =

∫ x

0
Pn,i(x)dx.
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In general, operational matrices can be obtained directly from the following
relation (see, for example [8])

(7) Pn,i(x) =


0, x < α,
1
n!(x− α)n, x ∈ [α, β],
1
n!{(x− α)n − 2(x− β)n}, x ∈ [β, γ],
1
n!{(x− α)n − 2(x− β)n + (x− γ)n}, x > γ.

3. Function approximation

The function y(t) ∈ L2(0, 1) can be approximated as:

(8) y(t) =

∞∑
i=0

CiHi(t),

where the coefficient Ci are determined as:

(9) Ci = 2j
∫ 1

0
y(t)Hi(t),

where i = 2j + k, j ≥ 0, 0 ≤ k < 2j . The series expansion of y(t) contains
infinite terms. If y(t) is piecewise constant by itself, or may be approximated
as piecewise constant during each subinterval, then y(t) will be terminated at
finite terms, that is:

(10) y(t) =
m−1∑
i=0

CiHi(t) = CTmHm(x),

where CTm = [C0, C1, ......, Cm−1] and Hm = [H0,H1, ......,Hm−1]
T , where T is

transpose.

4. Description of method for solving fourth order
Kuramoto-Sivashinsky equation

Consider the approximation

(11) u̇′′′′(x, t) =
2M∑
i=0

CiHi(x).

Here (·) represents the differentiation with respect to t and (′) represents the
differentiation with respect to x. Integrating (11) one time with respect to t,
from ts to t, we obtain

(12) u′′′′(x, t) = u′′′′(x, ts) + (t− ts)
2M∑
i=0

CiHi(x).
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Now, integrating (12) four times with respect to x, from 0 to x, we obtain

u′′′(x, t) = u′′′(x, ts) + u′′′(0, t)− u′′′(0, ts) + (t− ts)
2M∑
i=0

CiP1,i(x),(13)

u′′(x, t) = u′′(x, ts) + u′′(0, t)− u′′(0, ts) + x
[
u′′′(0, t)− u′′′(0, ts)

]
+ (t− ts)

2M∑
i=0

CiP2,i(x),(14)

u′(x, t) = u′(x, ts) + u′(0, t)− u′(0, ts) + x
[
u′′(0, t)− u′′(0, ts)

]
+ (

x2

2
)
[
u′′′(0, t)− u′′′(0, ts)

]
+ (t− ts)

2M∑
i=0

CiP3,i(x),(15)

and

u(x, t) = u(x, ts) + u(0, t)− u(0, ts) + x
[
u′(0, t)− u′(0, ts)

]
+ (

x2

2
)
[
u′′(0, t)− u′′(0, ts)

]
(16)

+ (
x3

6
)
[
u′′′(0, t)− u′′′(0, ts)

]
+ (t− ts)

2M∑
i=0

CiP4,i(x),

Substituting x = 1 in (14), we obtain[
u′′′(0, t)− u′′′(0, ts)

]
= u′′(1, t)− u′′(1, ts)− u′′(0, t)

+ u′′(0, ts)− (t− ts)
2M∑
i=0

CiP2,i(1).(17)

Using (17), from (14)-(16), we obtain

u′′(x, t) = u′′(x, ts) + u′′(0, t)− u′′(0, ts)

+ x
[
u′′(1, t)− u′′(1, ts)− u′′(0, t) + u′′(0, ts)

]
(18)

+ (t− ts)
2M∑
i=0

Ci
[
P2,i(x)− xP2,i(1)

]
,

u′(x, t) = u′(x, ts) + u′(0, t)− u′(0, ts) + x
[
u′′(0, t)− u′′(0, ts)

]
+ (

x2

2
)
[
u′′(1, t)− u′′(1, ts)− u′′(0, t) + u′′(0, ts)

]
(19)

+ (t− ts)
2M∑
i=0

Ci
[
P3,i(x)− x2

2
P2,i(1)

]
,
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and

u(x, t) = u(x, ts) + u(0, t)− u(0, ts) + x
[
u′(0, t)− u′(0, ts)

]
+ (

x2

2
)
[
u′′(0, t)−u′′(0, ts)

]
+(
x3

6
)
[
u′′(1, t)−u′′(1, ts)−u′′(0, t)+u′′(0, ts)

]
(20)

+ (t− ts)
2M∑
i=0

Ci
[
P4,i(x)− x3

6
P2,i(1)

]
,

Now, differentiating (20) with respect to t, we obtain

u̇(x, t) = u̇(0, t) + xu̇′(0, t) + (
x2

2
)u̇′′(0, t) + (

x3

6
)
[
u̇′′(1, t)− u̇′′(0, t)

]
+

2M∑
i=0

Ci
[
P4,i(x)− x3

6
P2,i(1)

]
.(21)

From finite difference scheme, we obtain

u̇′′(0, t) =
[u′′(0, t)− u′′(0, ts)

t− ts

]
,(22)

u̇′(0, t) =
[u′(0, t)− u′(0, ts)

t− ts

]
,(23)

and

(24) u̇(0, t) =
[u(0, t)− u(0, ts)

t− ts

]
.

u̇(x, t) =
[u(0, t)− u(0, ts)

t− ts

]
+ x

[u′(0, t)− u′(0, ts)
t− ts

]
+ (

x2

2
)
[u′′(0, t)− u′′(0, ts)

t− ts

]
+ (

x3

6
)
[
(
u′′(1, t)− u′′(1, ts)

t− ts
)− (

u′′(0, t)− u′′(0, ts)
t− ts

)
]

(25)

+
2M∑
i=0

Ci
[
P4,i(x)− x3

6
P2,i(1)

]
.

Discretising (12), (18)-(21) by substituting x→ xl and t→ ts+1, we obtain

(26) u′′′′(xl, ts+1) = u′′′′(xl, ts) + (ts+1 − ts)
2M∑
i=0

CiHi(xl),

u′′(xl, ts+1) = u′′(xl, ts) + u′′(0, ts+1)− u′′(0, ts)

+ xl

[
u′′(1, ts+1)− u′′(1, ts)− u′′(0, ts+1) + u′′(0, ts)

]
(27)

+ (ts+1 − ts)
2M∑
i=0

Ci
[
P2,i(xl)− xlP2,i(1)

]
,
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u′(xl, ts+1)=u
′(xl, ts)+u

′(0, ts+1)−u′(0, ts)+xl
[
u′′(0, ts+1)−u′′(0, ts)

]
+ (

xl
2

2
)
[
u′′(1, ts+1)− u′′(1, ts)− u′′(0, ts+1) + u′′(0, ts)

]
(28)

+ (ts+1 − ts)
2M∑
i=0

Ci
[
P3,i(xl)−

xl
2

2
P2,i(1)

]
,

u(xl, ts+1) = u(xl, ts) + u(0, ts+1)− u(0, ts) + xl

[
u′(0, ts+1)− u′(0, ts)

]
+ (

xl
2

2
)
[
u′′(0, ts+1)− u′′(0, ts)

]
+ (

xl
3

6
)
[
u′′(1, ts+1)− u′′(1, ts)− u′′(0, ts+1) + u′′(0, ts)

]
(29)

+ (ts+1 − ts)
2M∑
i=0

Ci
[
P4,i(xl)−

xl
3

6
P2,i(1)

]
,

and

u̇(xl, ts+1) =
[u(0, ts+1)− u(0, ts)

ts+1 − ts

]
+ xl

[u′(0, ts+1)− u′(0, ts)
ts+1 − ts

]
+ (

xl
2

2
)
[u′′(0, ts+1)− u′′(0, ts)

ts+1 − ts

]
+ (

xl
3

6
)
[
(
u′′(1, ts+1)− u′′(1, ts)

ts+1 − ts
)− (

u′′(0, ts+1)− u′′(0, ts)
ts+1 − ts

)
]

(30)

+
2M∑
i=0

Ci
[
P4,i(xl)−

xl
3

6
P2,i(1)

]
.

The nonlinear term in the partial differential equation (1) is linearized, using
the following time discretized form

(31) ut(xl, ts+1) + u(xl, ts)ux(xl, ts) + µ.uxx(xl, ts+1) + ν.uxxxx(xl, ts+1) = 0.

Substituting the values from (25)− (30) in (31), we obtain

2M∑
i=0

[
P4,i(xl)− (

xl
3

6
)P2,i(1) + ν.(ts+1 − ts)Hi(xl)

+ µ.(ts+1 − ts)
[
P2,i(xl)− xlP2,i(1)

]]
= −ν.u′′′′(xl, ts)− u(xl, ts)u

′(xl, ts)

− µ.u′′(xl, ts)− µ.u′′(0, ts+1) + µ.u′′(0, ts)

− µ.xl
[
u′′(1, ts+1)− u′′(1, ts)− u′′(0, ts+1) + u′′(0, ts)

]
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−
[u(0, ts+1)− u(0, ts)

ts+1 − ts

]
(32)

− xl
[u′(0, ts+1)− u′(0, ts)

ts+1 − ts

]
− (

xl
2

2
)
[u′′(0, ts+1)− u′′(0, ts)

ts+1 − ts

]
− (

xl
3

6
)
[
(
u′′(1, ts+1)− u′′(1, ts)

ts+1 − ts
)− (

u′′(0, ts+1)− u′′(0, ts)
ts+1 − ts

)
]
.

After applying initial and boundary conditions in (32), we obtain the system
of equations. The wavelet coefficients are obtained from this system of linear
equations. The numerical solution of (1) is obtained by substituting the values
of wavelet coefficients into (29).

5. Error analysis of Haar wavelet method

Let u(x, t) be a differentiable function and assume that u(x, t) have bounded
first derivative on [0, 1], that is, there exist K > 0, such that

(33) |u′(x, t)| ≤ K, x ∈ [0, 1].

Consider the Haar wavelet approximation as below

(34) u2M (x, t) =
2M∑
i=1

CiHi(x).

L2-error norm for Haar wavelet approximation [2] is given by

(35) ‖ u(x, t)− u2M (x, t) ‖2 ≤ K2

3

1

(2M)2
.

After simplification, from (35), we obtain

(36) ‖ u(x, t)− u2M (x, t) ‖≤ 1

(M)
.

As J is the maximal level of resolution and M = 2J . From (36), we obtain

(37) ‖ u(x, t)− u2M (x, t) ‖≤ 1

(2J)
.

From (37), we conclude that error is inversely proportional to the level of reso-
lution. It ensures the convergence of Haar wavelet approximation at higher level
of resolution J .

6. Numerical observations

Here, we present some numerical observations to establish the efficiency and
accuray of the present collocation method based on Haar wavelet.
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Example 1. Consider nonlinear Kuramoto-Sivashinsky equation with µ = 1
and ν = 1. The exact solution of the problem is given in [14] and is

(38) u(x, t)=ρ+
15

19

√
11

19
[−9 tanh (σ(x− ρt−x0))+11tanh3 (σ(x−ρt−x0))].

The initial and boundary conditions are obtained from exact solution. Table
1 shows the comparison of absolute errors at different values of t, ρ, x0 with

σ = 1
2

√
11
19 . Figure 1 shows the comparison absolute errors of Example 1 at

J = 3.

xL/32 Absolute errors for Absolute errors for Absolute errors for
t = 0.1, ρ = 5, σ = −25 t = 1, ρ = 5, σ = −35 t = 1, ρ = 10, σ = −35

1 7.8636E-010 6.8077E-010 7.1905E-008

3 4.0585E-009 6.2014E-010 6.5375E-008

5 7.0443E-009 8.2882E-010 6.0913E-008

7 9.6528E-009 1.4740E-009 5.9622E-008

9 1.1790E-008 2.7120E-009 6.2531E-008

11 1.3362E-008 4.6840E-009 7.0576E-008

13 1.4282E-008 7.5119E-009 8.4563E-008

15 1.4475E-008 1.1294E-008 1.0514E-007

17 1.3878E-008 1.6100E-008 1.3279E-007

19 1.2452E-008 2.1971E-008 1.6775E-007

21 1.0180E-008 2.8908E-008 2.1006E-007

23 7.0749E-009 3.6877E-008 2.5946E-007

25 3.1816E-009 4.5800E-008 3.1544E-007

27 1.4170E-009 5.5553E-008 3.7717E-007

29 6.5976E-009 6.5964E-008 4.4347E-007

31 1.2192E-008 7.6810E-008 5.1285E-007

Table 1: Comparison of absolute errors of Example 1 for J = 3 and different
x0, ρ, σ.

Example 2. Consider nonlinear Kuramoto-Sivashinsky equation with µ =
−1 and ν = 1. The exact solution of the problem is given in [14] and is

(39) u(x, t) = ρ+
15

19
√

19
[−3 tanh (σ(x− ρt− x0)) + tanh3 (σ(x− ρt− x0))].

The initial and boundary conditions are obtained from exact solution. Table
2 shows the comparison of absolute errors at different values of t, ρ, x0 with

σ = 1
2

√
1
19 . Figure 2 shows the comparison absolute errors of Example 2 at

J = 3.
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xL/32 Absolute errors for Absolute errors for Absolute errors for
t = 0.1, ρ = 5, σ = −25 t = 1, ρ = 5, σ = −35 t = 1, ρ = 10, σ = −35

1 3.9296E-008 3.1345E-007 6.1496E-006

3 1.9555E-007 3.1226E-006 1.3651E-005

5 3.3756E-007 1.3809E-005 4.3476E-005

7 4.5837E-007 3.7423E-005 1.0993E-004

9 5.5089E-007 7.8717E-005 2.2649E-004

11 6.0821E-007 1.4202E-004 4.0540E-004

13 6.2385E-007 2.3112E-004 6.5740E-004

15 5.9213E-007 3.4914E-004 9.9132E-004

17 5.0845E-007 4.9840E-004 1.4138E-003

19 3.6959E-007 6.8030E-004 1.9286E-003

21 1.7403E-007 8.9517E-004 2.5370E-003

23 7.7708E-008 1.1422E-003 3.2363E-003

25 3.8278E-007 1.4191E-003 4.0205E-003

27 7.3566E-007 1.7223E-003 4.8791E-003

29 1.1278E-006 2.0466E-003 5.7973E-003

31 1.5474E-006 2.3848E-003 6.7551E-003

Table 2: Comparison of absolute errors of Example 2 for J = 3 and different
x0, ρ, σ.

Figure 1: Absolute errors of Example 1 at J = 3.
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Figure 2: Absolute errors of Example 2 at J = 3.

7. Conclusion

From above, it is concluded that Haar wavelet method is a powerful mathemat-
ical tool for solving Kuramoto-Sivashinsky equation. The numerical solutions
are much closer to the exact solutions. Also, it is concluded that Haar wavelet
method is simplier, efficient and take low computational time for solving such
equations.

Acknowledgement

Authors are grateful to the referees for their valuable suggestions. One of the
author Mr. Inderdeep Singh thankfully acknowledges the financial assistance
provided by MHRD Grant given by Dr. B. R. Ambedkar National Institute of
Technology, Jalandhar-144011, Punjab, India.

References

[1] I. Aziz, Siraj-ul-Islam and B. Sarler, Wavelets collocation methods for the
numerical solution of elliptic BV problems, Applied Mathematical Mod-
elling, 37 (2013), 676-697.

[2] E. Babolian and A. Shahsavaran, Numerical solution of nonlinear fredholm
integral equations of the second kind using Haar wavelet, Journal of Com-
putational and Applied Mathematics, 225 (2009), 87-95.

[3] I. Celik, Haar wavelet method for solving generalized Burger-Huxley equa-
tion, Arab Journal of Mathematical Sciences, 18 (2012), 25-37.



HAAR WAVELET COLLOCATION METHOD ... 383

[4] C.F. Chen and C.H. Hsiao, Haar wavelet method for solving lumped and
distributed-parameter systems, IEE Proc. Control Theory Appl., 144 (1997),
87-94.

[5] A. Haar, Zur theorie der orthogonalen Funktionsysteme, Math. Annal., 69
(1910), 331-371.

[6] G. Hariharan, K. Kannan and R.K. Sharma, Haar wavelet method for solv-
ing Fisher’s equation, Applied Mathematics and Computational Science,
211 (2009), 284-292.

[7] G. Hariharan and K. Kannan, Haar wavelet method for solving Fitzhugh-
Nagumo equation, World Academy of Sciences, Engineering and Technol-
ogy, 43 (2010), 560-563.

[8] H. Hein and L. Feklistova, Free vibrations of non-uniform and axially func-
tionally graded beams using Haar wavelets, Engineering Structures, 33(12)
(2011), 3696-3701.

[9] A.P. Hooper and R. Grimshaw, Nonlinear instability at the interface be-
tween two viscous fluids, Phys. Fluids, 28 (1985), 37-45.

[10] H. Kheiri and H. Ghafouri, Haar and Legendre wavelets collocation meth-
ods for the numerical solution of Schrondinger and wave equation, Acta
Universitatis Apulensis, 37 (2014), 01-14.

[11] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration
waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys.,
55 (1976), 356-69
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