ALMOST STRONGLY ω -CONTINUOUS FUNCTIONS

Heyam H. Al-Jarrah^{*}

Department of Mathematics Faculty of science Yarmouk University Irdid-Jordan hiamaljarah@yahoo.com

Abdo Qahis

Department of Mathematics Faculty of Science and Arts Najran university Saudi Arabia cahis82@gmail.com

Takashi Noiri

2949-1 Shiokita-cho Hinagu, Yatsushiro-shi Kumamoto-ken 869-5142 Japan t.noiri@nifty.com

Abstract. The aim of this paper is to introduce and investigate a new class of continuity, called almost strongly ω -continuous function, which contains the class of strongly θ -continuous functions and it is contained in the class of almost ω -continuous functions. **Keywords:** ω -open set, ω -continuous function, almost ω -continuous function.

1. Introduction

Throughout this paper, spaces always mean topological spaces with no separation axioms assumed, unless otherwise stated. Let (X, τ) be a space and A be a subset of X. The closure of A and the interior of A are denoted by cl(A) and Int(A), respectively. A point $x \in X$ is called a condensation point of A [4] if for each open set U containing x, the set U - A is uncountable. A is said to be ω -closed [5] if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. Note that a subset A of a space (X, τ) is ω -open [2] if and only if for each $x \in A$ there exists an open set U containing x such that U - A is countable. The family of all ω -open subsets of a space (X, τ) , forms a topology on X, denoted by τ_{ω} , finer than τ . The closure of Ain (X, τ_{ω}) and the interior of A in (X, τ_{ω}) are denoted by $cl_{\omega}(A)$ and $Int_{\omega}(A)$. Several characterizations of ω -closed subsets were proved in [5]. A subset A

^{*.} Corresponding author

is said to be regular open [11] (resp. regular closed) if Int(cl(A)) = A (resp. cl(Int(A)) = A).

A point $x \in X$ is called a δ -cluster [12] (resp. $\theta_{o\omega}$ -cluster [3]) point of A if $A \cap Int(cl(U)) \neq \phi$ (resp. $A \cap cl(U) \neq \phi$) for each open (resp. ω -open) set U containing x. The set of all δ -cluster (resp. $\theta_{o\omega}$ -cluster) points of A is called the δ -closure (resp. the $\theta_{o\omega}$ -closure) of A and is denoted by $[A]_{\delta}$ (resp. $[A]_{\theta_{o\omega}}$). If $[A]_{\delta} = A$ (resp. $[A]_{\theta_{o\omega}} = A$), then A is said to be δ -closed (resp. $\theta_{o\omega}$ -closed). The complement of a δ -closed (resp. $\theta_{o\omega}$ -closed) set is said to be δ -open (resp. $\theta_{o\omega}$ -open).

A subset A of a space X is said to be an H-set [12] or quasi H-closed relative to X [8] if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of A by open sets of X, there exists a finite subset Δ_{\circ} of Δ such that $A \subseteq \bigcup \{cl(U_{\alpha}) : \alpha \in \Delta_{\circ}\}$. A space X is said to be quasi H-closed [8] if the set X is quasi H-closed relative to X. Quasi H-closed Hausdorff spaces are usually said to be H-closed.

For a nonempty set X, τ_{dis} will denote the discrete topology on X. \mathbb{R} and \mathbb{Q} denote the sets of all real numbers and rational numbers. Finally if (X, τ) and (Y, σ) are two space, then $\tau \times \sigma$ will denote the product topology on $X \times Y$.

Definition 1.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be δ -continuous [7] (resp. almost continuous [9], strongly θ -continuous [7]) if for each $x \in X$ and each open set V containing f(x), there exists an open set U of x such that $f(Int(cl(U))) \subseteq Int(cl(V))$ (resp. $f(U) \subseteq Int(cl(V)), f(cl(U)) \subseteq V$).

Definition 1.2. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be ω -continuous [6] (resp. weakly ω -continuous [1], almost ω -continuous [1]) if for each $x \in X$ and each open set V of Y containing f(x) there exists an ω -open set U containing x such that $f(U) \subseteq V$ (resp. $f(U) \subseteq cl(V), f(U) \subseteq Int(cl(V))$).

Definition 1.3. A space (X, τ) is said to be $\omega - T_2[1]$ (resp. ω -Uryshon [1]) if for each pair of distinct points x and y in X, there exist ω -open sets U and V containing x and y, respectively, such that $U \cap V = \phi$ (resp. $d_{\omega}(U) \cap d_{\omega}(V) = \phi$).

Proposition 1.4. [3] Let A be a subset of a space (X, τ) , A is $\theta_{o\omega}$ -open if and only if for each $x \in A$ there exists an ω -open set U containing x such that $cl(U) \subseteq A$.

Lemma 1.5. [2] Let A be a subset of a space (X, τ) . Then:

- *i.* $(\tau_{\omega})_{\omega} = \tau_{\omega}$.
- *ii.* $(\tau_A)_{\omega} = (\tau_{\omega})_A$.

2. Almost strongly ω -continuous functions

Definition 2.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be almost strongly ω -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists an ω -open set U containing x such that $f(cl(U)) \subseteq Int(cl(V))$.

Clearly, the following diagram follows immediately from the definitions and facts.

Continuous $\rightarrow \omega$ -continuous $\rightarrow \text{ almost } \omega$ -continuous $\rightarrow \text{ weakly } \omega$ -continuous $\uparrow \qquad \uparrow$ Strongly θ -continuous $\rightarrow \text{ almost strongly } \omega$ -continuous

Note that almost strong ω -continuity and continuity (resp. ω -continuity) are independent of each other as the following examples show.

Example 2.2. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and let $Y = \{p, q, r\}$ with the topology $\sigma = \{\phi, Y, \{p\}, \{q\}, \{p, q\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as follows:

$$f(x) = \begin{cases} p : x = a, b \\ r : x = c, d \end{cases}$$

Then f is continuous (hence, ω -continuous) but it is not almost strongly ω continuous at x = a.

Example 2.3. Let $X = \mathbb{R}$ with the topologies $\tau = \tau_u$ and $\sigma = \{\phi, \mathbb{R}, \mathbb{R} - \{0\}\}$, where τ_u is the standard topology. Let $f : (X, \tau) \to (X, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} - \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

Then f is not ω -continuous since $V = \mathbb{R} - \{0\} \in \sigma$, but $f^{-1}(V) = \mathbb{Q} \notin \tau_{\omega}$. On the other hand, f is almost strongly ω -continuous.

Next, several characterizations of almost strongly ω -continuous functions are obtained.

Theorem 2.4. For a function $f: (X, \tau) \to (Y, \sigma)$, the following are equivalent:

- i. f is almost strongly ω -continuous.
- ii. The inverse image of a regular open set in (Y, σ) is $\theta_{o\omega}$ -open in (X, τ) .
- iii. The inverse image of a regular closed set in (Y, σ) is $\theta_{o\omega}$ -closed in (X, τ) .
- iv. For each $x \in X$ and each regular open set V in (Y, σ) containing f(x), there exists an ω -open set U in (X, τ) containing x such that $f(cl(U)) \subseteq V$.
- v. The inverse image of a δ -open set in (Y, σ) is $\theta_{o\omega}$ -open in (X, τ) .
- vi. The inverse image of a δ -closed set in (Y, σ) is $\theta_{o\omega}$ -closed in (X, τ) .
- vii. $f([A]_{\theta_{\alpha\omega}}) \subset [f(A)]_{\delta}$ for each subset A of X.

viii. $[f^{-1}(B)]_{\theta_{o\omega}} \subset f^{-1}([B]_{\delta})$ for each subset B of Y.

Proof. (i \rightarrow ii) Let V be any regular open set in (Y, σ) and $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists an ω -open set U in (X, τ) containing x such that $f(cl(U)) \subset V$. Thus $x \in U \subseteq cl(U) \subseteq f^{-1}(V)$ and hence, by Proposition 1.4, $f^{-1}(V)$ is $\theta_{o\omega}$ -open.

(ii \rightarrow iii) Let F be any regular closed set in (Y, σ) . By (ii), $f^{-1}(F) = X - f^{-1}(Y - F)$ is $\theta_{o\omega}$ -closed in X.

(iii \rightarrow iv) Let $x \in X$ and V be any regular open set in (Y, σ) containing f(x). By (iii), $f^{-1}(Y - V) = X - f^{-1}(V)$ is $\theta_{o\omega}$ -closed in (X, τ) . Since $f^{-1}(V)$ is a $\theta_{o\omega}$ -open set containing x, by Proposition 1.4, there exists an ω -open set Ucontaining x such that $cl(U) \subseteq f^{-1}(V)$; hence $f(cl(U)) \subseteq V$.

(iv \rightarrow v) Let V be a δ -open set in (Y, σ) and $x \in f^{-1}(V)$. There exists a regular open set G in (Y, σ) such that $f(x) \in G \subseteq V$. By (iv), there exists an ω -open set U containing x such that $f(cl(U)) \subseteq G$. Therefore, we obtain $x \in U \subseteq cl(U) \subseteq f^{-1}(V)$. Hence, by Proposition 1.4, $f^{-1}(V)$ is $\theta_{o\omega}$ -open in (X, τ) .

 $(v \rightarrow vi)$ Let F be a δ -closed set in (Y, σ) . By (v) we have $f^{-1}(F) = X - f^{-1}(Y - E)$ is $\theta_{o\omega}$ -closed in (X, τ) .

(vi \rightarrow vii) Let A be a subset of X. Since $[f(A)]_{\delta}$ is δ -closed in (Y, σ) , by (vi), $f^{-1}([f(A)]_{\delta})$ is $\theta_{o\omega}$ -closed in (X, τ) . Let $x \notin f^{-1}([f(A)]_{\delta})$. Then for some ω -open set U in (X, τ) containing x, $cl(U) \cap f^{-1}([f(A)]_{\delta}) = \phi$ and hence $cl(U) \cap A = \phi$. So $x \notin [A]_{\theta_{o\omega}}$. Therefore, we have $f([A]_{\theta_{o\omega}}) \subseteq [f(A)]_{\delta}$.

(vii \rightarrow viii) Let *B* be a subset of *Y*. By (vii) we have $f([f^{-1}(B)]_{\theta_{o\omega}}) \subseteq [B]_{\delta}$ and hence $[f^{-1}(B)]_{\theta_{o\omega}} \subseteq f^{-1}([B]_{\delta})$.

(viii \rightarrow i) Let $x \in X$ and V be an open set in (Y, σ) containing f(x). Then G = Y - Int(cl(V)) is regular closed and hence δ -closed in (Y, σ) . By (viii), $[f^{-1}(G)]_{\theta_{o\omega}} \subseteq f^{-1}(G)$ and hence $f^{-1}(G)$ is $\theta_{o\omega}$ -closed in (X, τ) . Therefore, $f^{-1}(Int(cl(V)))$ is a $\theta_{o\omega}$ -open set in (X, τ) containing x. By Proposition 1.4 there exists an ω -open set U containing x such that $x \in U \subseteq cl(U) \subseteq f^{-1}(Int(cl(V)))$. Therefore, we obtain $f(cl(U)) \subseteq Int(cl(V))$. This show that f is almost strongly ω -continuous.

Note that the family of all $\theta_{o\omega}$ -open [3] (resp. δ -open [12]) sets in a space (X, τ) form a topology for X which is denoted by $\tau_{\theta_{o\omega}}$ (resp. τ_{δ}).

Theorem 2.5. For a function $f: (X, \tau) \to (Y, \sigma)$, the following are equivalent:

i. $f: (X, \tau) \to (Y, \sigma)$ is almost strongly ω -continuous.

ii. $f: (X, \tau_{\theta_{\alpha \alpha}}) \to (Y, \sigma)$ is almost continuous.

iii. $f: (X, \tau_{\theta_{\alpha\omega}}) \to (Y, \sigma_{\delta})$ is continuous.

Proof. (i \rightarrow ii) Let V be any regular open set in (Y, σ) . By Theorem 2.4 $f^{-1}(V)$ is $\theta_{o\omega}$ -open in (X, τ) and hence open in $(X, \tau_{\theta_{o\omega}})$, it follows from Theorem 2.2 of [9] that f is almost continuous.

(ii \rightarrow iii) Let V be an open in (Y, σ_{δ}) . Then V is δ -open in (Y, σ) and it is the union of regular open sets in (Y, σ) . By (ii), $f^{-1}(V)$ is open in $(X, \tau_{\theta_{o\omega}})$. Therefore, $f: (X, \tau_{\theta_{o\omega}}) \rightarrow (Y, \sigma_{\delta})$ is continuous.

(iii \rightarrow i) Let V be a regular open set in (Y, σ) . Since V is open in (Y, σ_{δ}) , by (iii), $f^{-1}(V)$ is $\theta_{o\omega}$ -open in (X, τ) and hence by Theorem 2.4, f is almost strongly ω -continuous.

The composition of two almost strongly ω -continuous functions need not be almost strongly ω -continuous as the following examples shows.

Example 2.6. Let $X = \mathbb{R}$, $Y = \{0,1\}$ and $Z = \{1,2,3\}$ with the topologies $\tau = \{\phi, X, \mathbb{Q}\}, \sigma = \{\phi, Y, \{0\}\}, \rho = \{\phi, Z, \{1\}, \{2\}, \{1,2\}\}$ defined on X, Y and Z respectively. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} - \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

and let $g: (Y, \sigma) \to (Z, \rho)$ be the function defined by

$$g(y) = \begin{cases} 1, & y = 1 \\ 3, & y = 0 \end{cases}$$

Then f and g are almost strongly ω -continuous. However $g \circ f$ is not almost strongly ω -continuous at $x \in \mathbb{Q}$. For more clarify, let $x \in \mathbb{Q} \subseteq X$, $(g \circ f)(x) =$ $g(f(x)) = g(1) = 1 \in V = \{1\} \in \rho$. Now for every ω -open set W containing x, $cl(W) = \mathbb{R}$, therefore $(g \circ f)(cl_{\rho}(W)) = g(f(\mathbb{R})) = g(\{0,1\}) = \{1,3\} \notin \{1\}$.

Theorem 2.7. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \rho)$ be functions. Then the following hold:

- a. $g \circ f$ is almost strongly ω -continuous if f is almost strongly ω -continuous and g is δ -continuous.
- b. $g \circ f$ is almost strongly ω -continuous if f is almost strongly ω -continuous and g is continuous and open.
- c. Let $p: (X \times Y, \tau \times \sigma) \to (X, \tau)$ be the projection function. If $(f \circ p)$ is almost strongly ω -continuous, then f is almost strongly ω -continuous.

Proof. The proof of a. follows immediately from Definitions 1.1 and 2.1. Thus we prove only part b and c.

b) Let $x \in X$ and V be any open set in (Z, ρ) such that $(g \circ f)(x) \in V$. Therefore $f(x) \in g^{-1}(V)$ which is open in (Y, σ) . Since f is almost strongly ω -continuous, there exists an ω -open set W in (X, τ) such that $x \in W$ and $f(cl(W)) \subseteq Int(cl(g^{-1}(V)))$. Therefore $(g \circ f)(cl(W)) = g(Int(cl(g^{-1}(V)))) \subseteq Int(cl(V))$. c) Let $x \in X$ and V be any open set in (Y, σ) such that $f(x) \in V$. Choose $y \in Y$. Then $(f \circ p)(x, y) = f(x) \in V$. Since $(f \circ p)$ is almost strongly ω -continuous, there exists an ω -open set W in $X \times Y$ such that $(x, y) \in W$ and $(f \circ p)(cl_{\tau \times \sigma}(W)) \subseteq Int_{\sigma}(cl_{\sigma}(V))$. Since $(x, y) \in W$, choose $W_1 \in (X, \tau_{\omega})$ and $W_2 \in (Y, \sigma_{\omega})$ such that $x \in W_1, y \in W_2$ and $(x, y) \in W_1 \times W_2 \subseteq W$ and so $(f \circ p)(cl_{\tau \times \sigma}(W_1 \times W_2)) = f(cl(W_1)) \subseteq (f \circ p)(cl_{\tau \times \sigma}(W)) \subseteq Int(cl(V))$. Thus $f(cl_{\tau}(W_1)) \subseteq Int(cl(V))$ and so f is almost strongly ω -continuous.

To show that the assumption g is a continuous open function in part (b) of Theorem 2.7 is essential and that the projection function p in the same theorem part (c) can not be replaced by arbitrary open continuous function we consider the following examples.

Example 2.8. Let $X = \mathbb{R}$ with the topologies $\rho = \{\phi, \mathbb{R}, \mathbb{Q}\}$ and $\tau = \{U \subseteq \mathbb{R} : \mathbb{Q} \subseteq U\} \cup \{\phi\}$ and let $Y = \{0, 1, 2\}$ with the topology $\sigma = \{\phi, Y, \{0\}, \{1, 2\}\}$. Let $f : (X, \rho) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 1, & x \in \mathbb{R} - \mathbb{Q} \\ 0, & x \in \mathbb{Q} \end{cases}$$

and $g: (X, \tau) \to (X, \rho)$ be the function defined by

$$g(x) = \begin{cases} 1, & x \in \mathbb{R} - \mathbb{Q} \\ x, & x \in \mathbb{Q} \end{cases}$$

Then g is open and continuous but f is not almost strongly ω -continuous. Note that $g^{-1}(\mathbb{Q}) = \mathbb{Q} \in \tau$ and $g^{-1}(\mathbb{R}) = \mathbb{R}$, so we get that g is continuous and for every open set U in $(X, \tau), g(U) = \mathbb{Q} \in \rho$ therefore g is open. Now $(f \circ g)(x) = 0$ for every $x \in X$ and so $(f \circ g)$ is almost strongly ω -continuous.

Example 2.9. Let $X = \mathbb{R}$ with the topology $\rho = \{\phi, \mathbb{R}, \mathbb{Q}\}$, let $Y = \{0, 1\}$ with the topology $\sigma = \{\phi, Y, \{0\}\}$ and let $Z = \{0, 1, 2\}$ with the topology $\tau = \{\phi, Z, \{0\}, \{1, 2\}\}$. Let $f : (X, \rho) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} - \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

and let $g: (Y, \sigma) \to (Z, \tau)$ defined by

$$g(y) = \begin{cases} 2, & y = 0 \\ 1, & y = 1 \end{cases}.$$

Then f is almost strongly ω -continuous, g is continuous function but not open and $(g \circ f)$ is not almost strongly ω -continuous at $x \in \mathbb{Q}$. **Example 2.10.** Let $x = \mathbb{R}$ with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$ and let $Y = \{0, 1\}$ with the topology $\sigma = \{\phi, Y, \{0\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} - \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

and $g: (Y, \sigma) \to (Y, \tau_{dis})$ be the identity function. Then f is almost strongly ω -continuous function, g is open but not continuous and $(g \circ f)$ is not almost strongly ω -continuous. For every open set V in (Y, σ) ; g(V) is open in (Y, τ_{dis}) and $g^{-1}(\{0\}) \notin \sigma$ and hence is not continuous. To show that $(g \circ f)$ is not almost strongly ω -continuous. Let $x \in \mathbb{Q} \subseteq X$, $(g \circ f)(x) = g(f(x)) = g(1) = 1 \in V = \{1\} \in \tau_{dis}$. Now for every ω -open set W containing x, $cl(W) = \mathbb{R}$, therefore $(g \circ f)(cl_{\rho}(W)) = g(f(\mathbb{R})) = g(Y) = Y \not\subset Int(cl(\{1\})) = \{1\}$.

Corollary 2.11. Let Δ be an index set and let $f_{\alpha} : (X_{\alpha}, \tau_{\alpha}) \to (Y_{\alpha}, \sigma_{\alpha})$ be a function for each $\alpha \in \Delta$. If the product function $f = \prod_{\alpha \in \Delta} f_{\alpha} : \prod X_{\alpha} \to \prod Y_{\alpha}$ is almost strongly ω -continuous, then f_{α} is almost strongly ω -continuous for each $\alpha \in \Delta$.

Proof. For each $\beta \in \Delta$, we consider the projections $p_{\beta} : \prod_{\alpha \in \Delta} X_{\alpha} \to X_{\beta}$ and $q_{\beta} : \prod_{\alpha \in \Delta} Y_{\alpha} \to Y_{\beta}$. Then we have $q_{\beta} \circ f = f_{\beta} \circ p_{\beta}$ for each $\beta \in \Delta$. Since f is almost strongly ω -continuous and q_{β} is a continuous open function for each $\beta \in \Delta$, $q_{\beta} \circ f$ is almost strongly ω -continuous by Theorem 2.7 and hence $f_{\beta} \circ p_{\beta}$ is almost strongly ω -continuous. Thus f_{β} is almost strongly ω -continuous by Theorem 2.7 .

Proposition 2.12. Let $f : (X, \tau) \to (Y_1 \times Y_2, \sigma_1 \times \sigma_2)$ be a function, where $(X, \tau), (Y_1, \sigma_1)$ and (Y_2, σ_2) are topological spaces. Let $f_i : (X, \tau) \to (Y_i, \sigma_i)$ be defined as $f_i = p_i \circ f$ for i = 1, 2 where $p_i : (Y_1 \times Y_2, \sigma_1 \times \sigma_2) \to (Y_i, \sigma_i)$ is the projection function. If f is almost strongly ω -continuous, then f_i is almost strongly ω -continuous for i = 1, 2.

Proof. Since p_i is a continuous open function and f is almost strongly ω -continuous, then by Theorem 2.7, $f_i = p_i \circ f$ is almost strongly ω -continuous for i = 1, 2.

Theorem 2.13. Let $f : (X, \tau) \to (Y, \sigma)$ be an almost strongly ω -continuous function. Then the restriction $f|_A : (A, \tau_A) \to (Y, \sigma)$ is almost strongly ω -continuous for any subset A of X.

Proof. Let $a \in A$ and V be an open set in (Y, σ) containing f(a). Since f is almost strongly ω -continuous, there exists an ω -open set W in (X, τ) such that $x \in W$ and $f(cl(W)) \subseteq Int(cl(V))$. Therefore by Lemma 1.5 $W \cap A \in (\tau_A)_{\omega}$ and $(f|_A)(cl(W \cap A)) \subseteq Int(cl(V))$. And the result follows. \Box

The following example shows that the converse of the previous theorem is not true in general. **Example 2.14.** Let $X = \mathbb{R}$ with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$ and let $Y = \{0, 1, 2\}$ with the topology $\sigma = \{\phi, Y, \{0\}, \{1, 2\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Then f is not almost strongly ω -continuous, since if we take $x \in \mathbb{Q}$, then $f(x) = 0 \in \{0\} \in \sigma$ and for any ω -open set W containing x, $f(cl(W)) = f(\mathbb{R}) = \{0,1\} \not\subset Int(cl(\{0\})) = \{0\}$. Let $A = \mathbb{Q}$. Then $A \in \tau$ and $\tau_A = \{\phi, A\}$. Note that $(f|_A)(x) = 0$ for every $x \in A$ and so $(f|_A)$ is almost strongly ω -continuous.

Note that if A is a clopen subset of a space (X, τ) . Then $cl(U \cap A) = cl(U) \cap A$ for every $U \subseteq X$.

Proposition 2.15. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and let $x \in X$. If there exists a clopen subset A of X containing x and $(f|_A)$ is almost strongly ω -continuous at x, then f is almost strongly ω -continuous at x.

Proof. Let V be an open set in (Y, σ) containing f(x). Since $(f|_A)$ is almost strongly ω -continuous at x, there exists an ω -open set W in (A, τ_A) such that $x \in W$ and $(f|_A)(cl_{\tau_A}(W)) = f(cl_{\tau_A}(W)) \subseteq Int(cl(V))$. So by Lemma 1.5 $W \in (\tau_A)_\omega = (\tau_\omega)_A$ and there exists an ω -open set U in (X, τ) such that W = $U \cap A$. Therefore W is an ω -open set in (X, τ) and $f(cl_{\tau}(W)) = f(cl_{\tau}(A \cap U)) =$ $f(cl_{\tau}(U) \cap A) = f(cl_{\tau}(U \cap A) \cap A) = f(cl_{\tau}(W) \cap A) = f(cl_{\tau_A}(W)) \subseteq Int(cl(V))$ and the result follows. \Box

The following example shows that if the set A is ω -clopen then the result in proposition 2.15 need not be true.

Example 2.16. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined in Example 2.14. Then f is not almost strongly ω -continuous. Let $A = \mathbb{R} - \mathbb{Q}$. Then A is an ω -clopen set in (X, τ) and $(f|_A)$ is almost strongly ω -continuous. Note that $(f|_A)(x) = 1$ for every $x \in A$ so $(f|_A)(x)$ is almost strongly ω -continuous.

3. Basic properties

A space (X, τ) is said to be weakly Hausdorff [10] if each point of X is expressed by the intersection of regular closed sets of (X, τ) and it is said to be ω^* -regular if for every ω -open set U and each point $x \in U$ there exists an open set V such that $x \in U \subseteq cl(U) \subseteq V$.

Theorem 3.1. Let $f: (X, \tau) \to (Y, \sigma)$ be a function such that X is ω^* -regular and let $g: (X, \tau) \to (X \times Y, \tau \times \sigma)$ be the graph function of f defined by g(x) = (x, f(x)) for each $x \in X$. Then g is almost strongly ω -continuous if and only if f is almost strongly ω -continuous. **Proof.** Necessity. Suppose that g is almost strongly ω -continuous. Let $x \in X$ and V be an open set in (Y, σ) containing f(x). Then $X \times V$ is an open set of $X \times Y$ containing g(x). Since g is almost strongly ω -continuous, there exists an ω -open set U in (X, τ) containing x such that $g(cl(U)) \subseteq Int(cl(X \times V))$. It follows $Int(cl(X \times V)) = X \times Int(cl(V))$. Therefore, we obtain $f(cl(U)) \subseteq Int(cl(V))$.

Sufficiency. Let $x \in X$ and W be any open set of $X \times Y$ containing g(x). There exist open sets $U_1 \subseteq X$ and $V \subseteq Y$ such that $g(x) = (x, f(x)) \in U_1 \times V \subseteq W$. Since f is almost strongly ω -continuous, there exists an ω -open set U_2 in (X, τ) containing x such that $f(cl(U_2)) \subseteq Int(cl(V))$. Let $U = U_1 \cap U_2$, then U is an ω -open in (X, τ) containing x. Since X is ω^* -regular, there exists an open set Z such that $x \in Z \subseteq cl(Z) \subseteq U$. Therefore, we obtain $g(cl(Z)) \subseteq U_1 \times f(U_2) \subseteq Int(cl(W))$.

Theorem 3.2. If $f, g: (X, \tau) \to (Y, \sigma)$ are almost strongly ω -continuous functions and (Y, σ) is a Hausdorff space, then the set $E = \{x \in X : f(x) = g(x)\}$ is $\theta_{o\omega}$ -closed in (X, τ) .

Proof. By Theorem 2.5 $f, g: (X, \tau_{\theta_{o\omega}}) \to (Y, \sigma_{\delta})$ are continuous functions and hence A is closed in $(X, \tau_{\theta_{o\omega}})$. Therefore, A is $\theta_{o\omega}$ -closed in (X, τ) .

Theorem 3.3. Let $f : (X, \tau) \to (Y, \sigma)$ be an almost strongly ω -continuous injection. If Y is a Hausdorff (resp. weakly Hausdorff) space, then X is an ω -Urysohn (resp. ω -Hausdorff) space.

Proof. Let (Y, σ) be Hausdorff and $x_1 \neq x_2$ for any $x_1, x_2 \in X$ and there exist disjoint open sets V_1 and V_2 containing $f(x_1)$ and $f(x_2)$, respectively. Since V_1 and V_2 are disjoint, we obtain $Int(cl(V_1)) \cap Int(cl(V_2)) = \phi$. Since f is almost strongly ω -continuous, for i = 1, 2, there exists an ω -open set U_i containing x_i such that $f(cl(U_i)) \subseteq Int(cl(V_i))$. It follows from $cl(U_1) \cap cl(U_2) = \phi$ that X is an ω -Urysohn space. Next, let Y be weakly Hausdorff and x_1, x_2 distinct points of X. Then $f(x_1) \neq f(x_2)$ and there exists a regular closed set V of Y such that $f(x_1) \notin V$ and $f(x_2) \in V$. Since f is almost strongly ω -containuous, by Theorem 2.4, there exists an ω -open set U containing x_1 such that $f(cl(U)) \subseteq Y - V$. Then we have $x_2 \in f^{-1}(V) \subseteq X - cl(U)$. This show that (X, τ) is ω -Hausdorff. \Box

For a function $f: (X, \tau) \to (Y, \sigma)$, the subset $\{x, f(x) : x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by G(f).

The G(f) is said to be $\theta_{o\omega}$ -closed with respect to $X \times Y$ if for each $(x, y) \notin G(f)$, there exists an ω -open sets U and V containing x and y, respectively, such that $cl(U \times V) \cap G(f) = \phi$. It is easy to see that G(f) is $\theta_{o\omega}$ -closed with respect to $X \times Y$ if and only if for each $(x, y) \notin G(f)$ there exist ω -open subsets $U \subseteq X$ and $V \subseteq Y$ containing x and y, respectively, such that $f(cl(U)) \cap cl(V) = \phi$.

Definition 3.4. A subset S of a space X is said to be quasi H_{ω} -closed (resp. N_{ω} -closed) relative to X if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of S by ω -open sets of

X, there exists a finite subset Δ_{\circ} of Δ such that $S \subseteq \bigcup \{cl(U_{\alpha}) : \alpha \in \Delta_{\circ}\}$ (resp. $S \subseteq \bigcup \{Int(cl(U_{\alpha})) : \alpha \in \Delta_{\circ}\}$). A space X is said to be quasi H_{ω} -closed (resp. nearly ω -compact) if the set X is quasi H_{ω} -closed (resp. N_{ω} -closed) relative to X.

Theorem 3.5. Let $f: (X, \tau) \to (Y, \sigma)$ be a function whose graph is $\theta_{o\omega}$ -closed with respect to $X \times Y$. If K is quasi H_{ω} -closed relative to Y, then $f^{-1}(K)$ is $\theta_{o\omega}$ -closed in X.

Proof. Let $x \in X - f^{-1}(K)$. For each $y \in K$, $(x, y) \notin G(f)$ and there exist ω -open sets U_y and V_y containing x and y, respectively, such that $f(cl(U_y)) \cap cl(V_y) = \phi$. The family $\{V_y : y \in K\}$ is a cover of K by ω -open sets of Y and $K \subseteq \cup (cl(V_y) : y \in K_0)$ for some finite subset K_\circ of K. Put $U = \cap \{U_y : y \in K_\circ\}$. Then U is an ω -open set containing x and $f(cl(U)) \cap K = \phi$. Therefore, we have $cl(U) \cap f^{-1}(K) = \phi$ and hence $x \notin [f^{-1}(K)]_{\theta_{o\omega}}$. This shows that $f^{-1}(K)$ is $\theta_{o\omega}$ -closed in X.

Theorem 3.6. If $f : (X, \tau) \to (Y, \sigma)$ almost strongly ω -continuous and K is quasi H_{ω} -closed relative to X, then f(K) is N_{ω} -closed relative to Y.

Proof. Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a cover of f(K) by ω -open sets of Y. For each $x \in K$, there exists $\alpha_x \in \Delta$ such that $f(x) \in V_{\alpha_x}$. Since f is almost strongly ω -continuous, there exists an ω -open set U_x containing x such that $f(cl(U_x)) \subseteq Int(cl(V_{\alpha_x}))$. The family $\{U_x : x \in K\}$ is a cover of K by ω -open sets of (X, τ) and hence there exists a finite subset K^* of K such that $K \subseteq \bigcup_{x \in K^*} cl(U_x)$. Therefore, we obtain $f(K) \subseteq f(\bigcup_{x \in K^*} cl(U_x)) \subseteq \bigcup_{x \in K^*} Int(cl(V_{\alpha_x}))$.

Lemma 3.7. If X is nearly ω -compact and A is regular closed in X, then A is N_{ω} -closed relative to X (and hence quasi H_{ω} -closed relative to X).

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any cover of A by ω -open sets of X. Then $X = \bigcup \{U_{\alpha} : \alpha \in \Delta\} \cap (X - A)$. Since X - A is regular open, it is open and hence ω -open. Since X is nearly ω -compact, there exists a finite subset Δ_{\circ} of Δ such that $X = [\bigcup \{Int(cl(U_{\alpha})) : \alpha \in \Delta_{\circ}\}] \cup Int(cl(X - A)) = (\bigcup \{Int(cl(U_{\alpha})) : \alpha \in \Delta_{\circ}\}) \cup (X - A)$. Therefore, $A \subseteq \bigcup \{Int(cl(U_{\alpha})) : \alpha \in \Delta_{\circ}\}$ and A is N_{ω} -closed relative to X.

Theorem 3.8. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and (Y, σ) nearly ω -compact Hausdorff. Then, the following are equivalent:

- i. f is almost strongly ω -continuous.
- ii. G(f) is $\theta_{o\omega}$ -closed with respect to $X \times Y$.
- iii. If K is quasi H_{ω} -closed relative to Y, then $f^{-1}(K)$ is $\theta_{o\omega}$ -closed in (X, τ) .

Proof. (i \rightarrow ii) Let $(x, y) \in X \times Y - G(f)$. Since (Y, σ) is Hausdorff, there exist two open sets V and W such that $y \in V$, $f(x) \in W$ and $V \cap W = \phi$. This gives $cl(V) \cap Int(cl(W)) = \phi$. By (i), there exists an ω -open set U containing x such that $f(cl(U)) \subseteq Int(cl(W))$. Hence $f(cl(U)) \cap cl(V) = \phi$, that is, G(f) is $\theta_{o\omega}$ -closed with respect to $X \times Y$.

 $(ii \rightarrow iii)$ This follows from Theorem 3.5.

(iii) Let $x \in X$ and V be a regular open subset of Y such that $f(x) \in V$. Then Y - V is a regular closed set and Y is nearly ω -compact, by Lemma 3.7 Y - V is quasi H_{ω} -closed relative to Y. By (iii) $f^{-1}(X - V)$ is $\theta_{o\omega}$ -closed in X and $x \notin f^{-1}(Y - V)$. Hence there exists an ω -open set U containing x such that $cl(U) \cap f^{-1}(Y - V) = \phi$. This implies that $f(cl(U)) \subseteq V$. Therefore, it follows from Theorem 2.4 that f is almost strongly θ -continuous.

References

- A. Al-Omari, T. Noiri and M.S.M. Noorani, Weak and strong forms of ωcontinuous functions, Internat. J. Math. Math. Sci., vol. 2009, Article ID 174042, 12 pages, 2009.
- [2] K. Al-Zoubi and B. Al-Nashef, The topology of ω-open subsets, Al-Manarah, 9 (2003), 169-179.
- [3] S. Bani Melhem and K. Al-Zoubi, Strongly $\theta_{o\omega}^{o}$ -continuous functions, Master, Yarmouk University, 2012.
- [4] Z. Frolik, Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J., 9 (1959), 172-217.
- [5] H. Hdeib, ω -closed mappings, Rev. Colomb. Mat., 16 (1982), 65-78.
- [6] H. Hdeib, ω -continuous functions, Dirasat, 16 (1989), 136-142.
- [7] T. Noiri, On δ -continuous functions, J. Korean Math. Soc., 16 (1980), 161-66.
- [8] J. Porfer and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138 (1969), 159-70.
- [9] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16 (1968), 63-73.
- [10] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relations to Modern Analysis and Algera. III, Proc. Conf. Kanpur, 1968, Academia, Prague, 1971, 301-306.

- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.
- [12] N. V. Veličko, *H*-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.

Accepted: 23.01.2017