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Abstract. The aim of this paper is to introduce and investigate a new class of conti-
nuity, called almost strongly ω-continuous function, which contains the class of strongly
θ-continuous functions and it is contained in the class of almost ω-continuous functions.
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1. Introduction

Throughout this paper, spaces always mean topological spaces with no separa-
tion axioms assumed, unless otherwise stated. Let (X, τ) be a space and A be
a subset of X. The closure of A and the interior of A are denoted by cl(A) and
Int(A), respectively. A point x ∈ X is called a condensation point of A [4] if
for each open set U containing x, the set U −A is uncountable. A is said to be
ω−closed [5] if it contains all its condensation points. The complement of an
ω−closed set is said to be ω−open. Note that a subset A of a space (X, τ) is
ω−open [2] if and only if for each x ∈ A there exists an open set U containing
x such that U − A is countable. The family of all ω−open subsets of a space
(X, τ), forms a topology on X, denoted by τω, finer than τ . The closure of A
in (X, τω) and the interior of A in (X, τω) are denoted by clω(A) and Intω(A).
Several characterizations of ω−closed subsets were proved in [5]. A subset A
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is said to be regular open [11] (resp. regular closed) if Int(cl(A)) = A (resp.
cl(Int(A)) = A).

A point x ∈ X is called a δ−cluster [12] (resp. θoω-cluster [3]) point of A if
A ∩ Int(cl(U)) 6= φ (resp. A ∩ cl(U) 6= φ) for each open (resp. ω-open) set U
containing x. The set of all δ−cluster (resp. θoω-cluster) points of A is called
the δ-closure (resp. the θoω-closure) of A and is denoted by [A]δ (resp. [A]θoω).
If [A]δ = A (resp. [A]θoω = A), then A is said to be δ−closed (resp. θoω−closed).
The complement of a δ−closed (resp. θoω-closed) set is said to be δ-open (resp.
θoω-open).

A subset A of a space X is said to be an H-set [12] or quasi H-closed relative
to X [8] if for every cover {Uα : α ∈ ∆} of A by open sets of X, there exists
a finite subset ∆◦ of ∆ such that A ⊆ ∪{cl(Uα) : α ∈ ∆◦}. A space X is said
to be quasi H-closed [8] if the set X is quasi H-closed relative to X. Quasi
H-closed Hausdorff spaces are usually said to be H−closed.

For a nonempty set X, τdis will denote the discrete topology on X. R and Q
denote the sets of all real numbers and rational numbers. Finally if (X, τ) and
(Y, σ) are two space, then τ × σ will denote the product topology on X × Y .

Definition 1.1. A function f : (X, τ) → (Y, σ) is said to be δ-continuous [7]
(resp. almost continuous [9] , strongly θ-continuous [7]) if for each x ∈ X and
each open set V containing f(x), there exists an open set U of x such that
f(Int(cl(U))) ⊆ Int(cl(V )) (resp. f(U) ⊆ Int(cl(V )), f(cl(U)) ⊆ V ).

Definition 1.2. A function f : (X, τ) → (Y, σ) is said to be ω-continuous [6]
(resp. weakly ω-continuous [1], almost ω-continuous [1]) if for each x ∈ X and
each open set V of Y containing f(x) there exists an ω−open set U containing
x such that f(U) ⊆ V (resp. f(U) ⊆ cl(V ), f(U) ⊆ Int(cl(V ))).

Definition 1.3. A space (X, τ) is said to be ω−T2[1] (resp. ω−Uryshon [1]) if
for each pair of distinct points x and y in X, there exist ω−open sets U and V
containing x and y, respectively, such that U∩V = φ (resp. clω(U)∩clω(V ) = φ).

Proposition 1.4. [3] Let A be a subset of a space (X, τ), A is θoω−open if and
only if for each x ∈ A there exists an ω−open set U containing x such that
cl(U) ⊆ A.

Lemma 1.5. [2] Let A be a subset of a space (X, τ). Then:

i. (τω)ω = τω.

ii. (τA)ω = (τω)A.

2. Almost strongly ω-continuous functions

Definition 2.1. A function f : (X, τ) → (Y, σ) is said to be almost strongly
ω-continuous if for each x ∈ X and each open set V of Y containing f(x), there
exists an ω−open set U containing x such that f(cl(U)) ⊆ Int(cl(V )).
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Clearly, the following diagram follows immediately from the definitions and
facts.

Continuous → ω-continuous → almost ω-continuous → weakly ω-continuous
↑ ↑

Strongly θ-continuous → almost strongly ω-continuous

Note that almost strong ω-continuity and continuity (resp. ω-continuity) are
independent of each other as the following examples show.

Example 2.2. LetX={a, b, c, d} with the topology τ={φ,X, {c}, {a, b}, {a, b, c}}
and let Y = {p, q, r} with the topology σ = {φ, Y, {p}, {q}, {p, q}}. Define a
function f : (X, τ)→ (Y, σ) as follows:

f(x) =

{
p : x = a, b

r : x = c, d
.

Then f is continuous (hence, ω-continuous) but it is not almost strongly ω-
continuous at x = a.

Example 2.3. Let X = R with the topologies τ = τu and σ = {φ,R,R− {0}},
where τu is the standard topology. Let f : (X, τ) → (X,σ) be the function
defined by

f(x) =

{
0, x ∈ R−Q
1, x ∈ Q

.

Then f is not ω-continuous since V = R− {0} ∈ σ, but f−1(V ) = Q /∈ τω. On
the other hand, f is almost strongly ω-continuous.

Next, several characterizations of almost strongly ω-continuous functions are
obtained.

Theorem 2.4. For a function f : (X, τ)→ (Y, σ), the following are equivalent:

i. f is almost strongly ω-continuous.

ii. The inverse image of a regular open set in (Y, σ) is θoω-open in (X, τ).

iii. The inverse image of a regular closed set in (Y, σ) is θoω-closed in (X, τ).

iv. For each x ∈ X and each regular open set V in (Y, σ) containing f(x), there
exists an ω-open set U in (X, τ) containing x such that f(cl(U)) ⊆ V .

v. The inverse image of a δ−open set in (Y, σ) is θoω-open in (X, τ).

vi. The inverse image of a δ-closed set in (Y, σ) is θoω-closed in (X, τ).

vii. f([A]θoω) ⊂ [f(A)]δ for each subset A of X.
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viii. [f−1(B)]θoω ⊂ f−1([B]δ) for each subset B of Y .

Proof. (i→ii) Let V be any regular open set in (Y, σ) and x ∈ f−1(V ). Then
f(x) ∈ V and there exists an ω−open set U in (X, τ) containing x such that
f(cl(U)) ⊂ V . Thus x ∈ U ⊆ cl(U) ⊆ f−1(V ) and hence, by Proposition 1.4,
f−1(V ) is θoω-open.

(ii→iii) Let F be any regular closed set in (Y, σ). By (ii), f−1(F ) = X −
f−1(Y − F ) is θoω-closed in X.

(iii→iv) Let x ∈ X and V be any regular open set in (Y, σ) containing f(x).
By (iii), f−1(Y − V ) = X − f−1(V ) is θoω-closed in (X, τ). Since f−1(V ) is
a θoω-open set containing x, by Proposition 1.4, there exists an ω−open set U
containing x such that cl(U) ⊆ f−1(V ); hence f(cl(U)) ⊆ V .

(iv→v) Let V be a δ-open set in (Y, σ) and x ∈ f−1(V ). There exists a
regular open set G in (Y, σ) such that f(x) ∈ G ⊆ V . By (iv), there exists
an ω-open set U containing x such that f(cl(U)) ⊆ G. Therefore, we obtain
x ∈ U ⊆ cl(U) ⊆ f−1(V ). Hence, by Proposition 1.4, f−1(V ) is θoω-open in
(X, τ).

(v→vi) Let F be a δ-closed set in (Y, σ). By (v) we have f−1(F ) = X −
f−1(Y − E) is θoω-closed in (X, τ).

(vi→vii) Let A be a subset of X. Since [f(A)]δ is δ−closed in (Y, σ), by
(vi), f−1([f(A)]δ) is θoω-closed in (X, τ). Let x /∈ f−1([f(A)]δ). Then for
some ω-open set U in (X, τ) containing x, cl(U) ∩ f−1([f(A)]δ) = φ and hence
cl(U) ∩A = φ. So x /∈ [A]θoω . Therefore, we have f([A]θoω) ⊆ [f(A)]δ.

(vii→viii) Let B be a subset of Y . By (vii) we have f([f−1(B)]θoω) ⊆ [B]δ
and hence [f−1(B)]θoω ⊆ f−1([B]δ).

(viii→i) Let x ∈ X and V be an open set in (Y, σ) containing f(x). Then
G = Y − Int(cl(V )) is regular closed and hence δ-closed in (Y, σ). By (viii),
[f−1(G)]θoω ⊆ f−1(G) and hence f−1(G) is θoω-closed in (X, τ). Therefore,
f−1(Int(cl(V ))) is a θoω−open set in (X, τ) containing x. By Proposition
1.4 there exists an ω-open set U containing x such that x ∈ U ⊆ cl(U) ⊆
f−1(Int(cl(V ))). Therefore, we obtain f(cl(U)) ⊆ Int(cl(V )). This show that
f is almost strongly ω−continuous.

Note that the family of all θoω−open [3] (resp. δ−open [12]) sets in a space
(X, τ) form a topology for X which is denoted by τθoω (resp. τδ).

Theorem 2.5. For a function f : (X, τ)→ (Y, σ), the following are equivalent:

i. f : (X, τ)→ (Y, σ) is almost strongly ω−continuous.

ii. f : (X, τθoω)→ (Y, σ) is almost continuous.

iii. f : (X, τθoω)→ (Y, σδ) is continuous.

Proof. (i→ii) Let V be any regular open set in (Y, σ). By Theorem 2.4 f−1(V )
is θoω-open in (X, τ) and hence open in (X, τθoω), it follows from Theorem 2.2
of [9] that f is almost continuous.
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(ii→iii) Let V be an open in (Y, σδ). Then V is δ-open in (Y, σ) and it is
the union of regular open sets in (Y, σ). By (ii), f−1(V ) is open in (X, τθoω).
Therefore, f : (X, τθoω)→ (Y, σδ) is continuous.

(iii→i) Let V be a regular open set in (Y, σ). Since V is open in (Y, σδ),
by (iii), f−1(V ) is θoω-open in (X, τ) and hence by Theorem 2.4, f is almost
strongly ω-continuous.

The composition of two almost strongly ω−continuous functions need not
be almost strongly ω−continuous as the following examples shows.

Example 2.6. Let X = R, Y = {0, 1} and Z = {1, 2, 3} with the topologies
τ = {φ,X,Q}, σ = {φ, Y, {0}}, ρ = {φ,Z, {1}, {2}, {1, 2}} defined on X, Y and
Z respectively. Let f : (X, τ)→ (Y, σ) be the function defined by

f(x) =

{
0, x ∈ R−Q
1, x ∈ Q

and let g : (Y, σ)→ (Z, ρ) be the function defined by

g(y) =

{
1, y = 1

3, y = 0
.

Then f and g are almost strongly ω−continuous. However g ◦ f is not almost
strongly ω−continuous at x ∈ Q. For more clarify, let x ∈ Q ⊆ X, (g ◦ f)(x) =
g(f(x)) = g(1) = 1 ∈ V = {1} ∈ ρ. Now for every ω−open set W containing x,
cl(W ) = R, therefore (g ◦ f)(clρ(W )) = g(f(R)) = g({0, 1})= {1, 3} 6⊂ {1}.

Theorem 2.7. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, ρ) be functions.
Then the following hold:

a. g ◦f is almost strongly ω-continuous if f is almost strongly ω-continuous and
g is δ-continuous.

b. g ◦f is almost strongly ω-continuous if f is almost strongly ω-continuous and
g is continuous and open.

c. Let p : (X×Y, τ ×σ)→ (X, τ) be the projection function. If (f ◦ p) is almost
strongly ω-continuous, then f is almost strongly ω-continuous.

Proof. The proof of a. follows immediately from Definitions 1.1 and 2.1. Thus
we prove only part b and c.

b) Let x ∈ X and V be any open set in (Z, ρ) such that (g ◦ f)(x) ∈ V .
Therefore f(x) ∈ g−1(V ) which is open in (Y, σ). Since f is almost strongly
ω-continuous, there exists an ω-open set W in (X, τ) such that x ∈ W and
f(cl(W )) ⊆ Int(cl(g−1(V ))). Therefore (g ◦ f)(cl(W )) = g(Int(cl(g−1(V )))) ⊆
Int(cl(V )).
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c) Let x ∈ X and V be any open set in (Y, σ) such that f(x) ∈ V . Choose
y ∈ Y . Then (f ◦ p)(x, y) = f(x) ∈ V . Since (f ◦ p) is almost strongly ω-
continuous, there exists an ω-open set W in X × Y such that (x, y) ∈ W and
(f ◦ p)(clτ×σ(W )) ⊆ Intσ(clσ(V )). Since (x, y) ∈ W , choose W1 ∈ (X, τω) and
W2 ∈ (Y, σω) such that x ∈ W1, y ∈ W2 and (x, y) ∈ W1 ×W2 ⊆ W and so
(f ◦ p)(clτ×σ(W1 ×W2)) = f(cl(W1)) ⊆ (f ◦ p)(clτ×σ(W )) ⊆ Int(cl(V )). Thus
f(clτ (W1)) ⊆Int(cl(V )) and so f is almost strongly ω−continuous.

To show that the assumption g is a continuous open function in part (b) of
Theorem 2.7 is essential and that the projection function p in the same theorem
part (c) can not be replaced by arbitrary open continuous function we consider
the following examples.

Example 2.8. Let X = R with the topologies ρ = {φ,R,Q} and τ = {U ⊆ R :
Q ⊆ U} ∪ {φ} and let Y = {0, 1, 2} with the topology σ = {φ, Y, {0}, {1, 2}}.
Let f : (X, ρ)→ (Y, σ) be the function defined by

f(x) =

{
1, x ∈ R−Q
0, x ∈ Q

and g : (X, τ)→ (X, ρ) be the function defined by

g(x) =

{
1, x ∈ R−Q
x, x ∈ Q

.

Then g is open and continuous but f is not almost strongly ω-continuous. Note
that g−1(Q) = Q ∈ τ and g−1(R) = R, so we get that g is continuous and for
every open set U in (X, τ), g(U) = Q ∈ ρ therefore g is open. Now (f ◦g)(x) = 0
for every x ∈ X and so (f ◦ g) is almost strongly ω-continuous.

Example 2.9. Let X = R with the topology ρ = {φ,R,Q}, let Y = {0, 1}
with the topology σ = {φ, Y, {0}} and let Z = {0, 1, 2} with the topology
τ = {φ,Z, {0}, {1, 2}}. Let f : (X, ρ)→ (Y, σ) be the function defined by

f(x) =

{
0, x ∈ R−Q
1, x ∈ Q

and let g : (Y, σ)→ (Z, τ) defined by

g(y) =

{
2, y = 0

1, y = 1
.

Then f is almost strongly ω-continuous, g is continuous function but not open
and (g ◦ f) is not almost strongly ω-continuous at x ∈ Q.
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Example 2.10. Let x = R with the topology τ = {φ,R,Q} and let Y = {0, 1}
with the topology σ = {φ, Y, {0}}. Let f : (X, τ) → (Y, σ) be the function
defined by

f(x) =

{
0, x ∈ R−Q
1, x ∈ Q

and g : (Y, σ) → (Y, τdis) be the identity function. Then f is almost strongly
ω−continuous function, g is open but not continuous and (g ◦ f) is not almost
strongly ω-continuous. For every open set V in (Y, σ); g(V ) is open in (Y, τdis)
and g−1({0}) /∈ σ and hence is not continuous. To show that (g ◦ f) is not
almost strongly ω-continuous. Let x ∈ Q ⊆ X, (g ◦ f)(x) = g(f(x)) = g(1) =
1 ∈ V = {1} ∈ τdis. Now for every ω-open set W containing x, cl(W ) = R,
therefore (g ◦ f)(clρ(W )) = g(f(R)) = g(Y )= Y 6⊂ Int(cl({1})) = {1}.

Corollary 2.11. Let ∆ be an index set and let fα : (Xα, τα) → (Yα, σα) be a
function for each α ∈ ∆. If the product function f =

∏
α∈∆ fα :

∏
Xα →

∏
Yα

is almost strongly ω-continuous, then fα is almost strongly ω-continuous for
each α ∈ ∆.

Proof. For each β ∈ ∆, we consider the projections pβ :
∏
α∈∆Xα → Xβ and

qβ :
∏
α∈∆ Yα → Yβ. Then we have qβ ◦ f = fβ ◦ pβ for each β ∈ ∆. Since f

is almost strongly ω-continuous and qβ is a continuous open function for each
β ∈ ∆, qβ ◦ f is almost strongly ω-continuous by Theorem 2.7 and hence fβ ◦ pβ
is almost strongly ω-continuous. Thus fβ is almost strongly ω-continuous by
Theorem 2.7 .

Proposition 2.12. Let f : (X, τ) → (Y1 × Y2, σ1 × σ2) be a function, where
(X, τ), (Y1, σ1) and (Y2, σ2) are topological spaces. Let fi : (X, τ) → (Yi, σi) be
defined as fi = pi ◦ f for i = 1, 2 where pi : (Y1 × Y2, σ1 × σ2) → (Yi, σi) is
the projection function. If f is almost strongly ω-continuous, then fi is almost
strongly ω-continuous for i = 1, 2.

Proof. Since pi is a continuous open function and f is almost strongly ω-
continuous, then by Theorem 2.7, fi = pi ◦ f is almost strongly ω-continuous
for i = 1, 2.

Theorem 2.13. Let f : (X, τ) → (Y, σ) be an almost strongly ω-continuous
function. Then the restriction f |A : (A, τA) → (Y, σ) is almost strongly ω-
continuous for any subset A of X.

Proof. Let a ∈ A and V be an open set in (Y, σ) containing f(a). Since f is
almost strongly ω-continuous, there exists an ω-open set W in (X, τ) such that
x ∈ W and f(cl(W )) ⊆ Int(cl(V )). Therefore by Lemma 1.5 W ∩ A ∈ (τA)ω
and (f |A)(cl(W ∩A)) ⊆ Int(cl(V )). And the result follows.

The following example shows that the converse of the previous theorem is
not true in general.
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Example 2.14. Let X = R with the topology τ = {φ,R,Q} and let Y =
{0, 1, 2} with the topology σ = {φ, Y, {0}, {1, 2}}. Let f : (X, τ) → (Y, σ) be
the function defined by

f(x) =

{
0, x ∈ Q
1, x ∈ R−Q

.

Then f is not almost strongly ω-continuous, since if we take x ∈ Q, then f(x) =
0 ∈ {0} ∈ σ and for any ω-open set W containing x, f(cl(W )) = f(R) =
{0, 1} 6⊂ Int(cl({0})) = {0}. Let A = Q. Then A ∈ τ and τA = {φ,A}. Note
that (f |A)(x) = 0 for every x ∈ A and so (f |A) is almost strongly ω-continuous.

Note that if A is a clopen subset of a space (X, τ). Then cl(U∩A) = cl(U)∩A
for every U ⊆ X.

Proposition 2.15. Let f : (X, τ) → (Y, σ) be a function and let x ∈ X. If
there exists a clopen subset A of X containing x and (f |A) is almost strongly
ω-continuous at x, then f is almost strongly ω-continuous at x.

Proof. Let V be an open set in (Y, σ) containing f(x). Since (f |A) is almost
strongly ω-continuous at x, there exists an ω-open set W in (A, τA) such that
x ∈ W and (f |A)(clτA(W )) = f(clτA(W )) ⊆ Int(cl(V )). So by Lemma 1.5
W ∈ (τA)ω = (τω)A and there exists an ω-open set U in (X, τ) such that W =
U ∩A. Therefore W is an ω-open set in (X, τ) and f(clτ (W )) = f(clτ (A∩U)) =
f(clτ (U)∩A) = f(clτ (U ∩A)∩A) = f(clτ (W )∩A) = f(clτA(W )) ⊆ Int(cl(V ))
and the result follows.

The following example shows that if the set A is ω-clopen then the result in
proposition 2.15 need not be true.

Example 2.16. Let f : (X, τ) → (Y, σ) be the function defined in Example
2.14. Then f is not almost strongly ω-continuous. Let A = R − Q. Then A is
an ω-clopen set in (X, τ) and (f |A) is almost strongly ω-continuous. Note that
(f |A)(x) = 1 for every x ∈ A so (f |A)(x) is almost strongly ω-continuous.

3. Basic properties

A space (X, τ) is said to be weakly Hausdorff [10] if each point of X is expressed
by the intersection of regular closed sets of (X, τ) and it is said to be ω∗-regular
if for every ω-open set U and each point x ∈ U there exists an open set V such
that x ∈ U ⊆ cl(U) ⊆ V .

Theorem 3.1. Let f : (X, τ)→ (Y, σ) be a function such that X is ω∗-regular
and let g : (X, τ) → (X × Y, τ × σ) be the graph function of f defined by
g(x) = (x, f(x)) for each x ∈ X. Then g is almost strongly ω−continuous if
and only if f is almost strongly ω−continuous.
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Proof. Necessity. Suppose that g is almost strongly ω−continuous. Let x ∈ X
and V be an open set in (Y, σ) containing f(x). Then X × V is an open set
of X × Y containing g(x). Since g is almost strongly ω-continuous, there exists
an ω-open set U in (X, τ) containing x such that g(cl(U)) ⊆ Int(cl(X × V )).
It follows Int(cl(X × V )) = X × Int(cl(V )). Therefore, we obtain f(cl(U)) ⊆
Int(cl(V )).

Sufficiency. Let x ∈ X and W be any open set of X × Y containing g(x).
There exist open sets U1 ⊆ X and V ⊆ Y such that g(x) = (x, f(x)) ∈ U1×V ⊆
W . Since f is almost strongly ω-continuous, there exists an ω-open set U2 in
(X, τ) containing x such that f(cl(U2)) ⊆ Int(cl(V )). Let U = U1 ∩ U2, then
U is an ω-open in (X, τ) containing x. Since X is ω∗-regular, there exists an
open set Z such that x ∈ Z ⊆ cl(Z) ⊆ U . Therefore, we obtain g(cl(Z)) ⊆
U1 × f(U2) ⊆ Int(cl(W )).

Theorem 3.2. If f, g : (X, τ)→ (Y, σ) are almost strongly ω-continuous func-
tions and (Y, σ) is a Hausdorff space, then the set E = {x ∈ X : f(x) = g(x)}
is θoω-closed in (X, τ).

Proof. By Theorem 2.5 f, g : (X, τθoω)→ (Y, σδ) are continuous functions and
hence A is closed in (X, τθoω). Therefore, A is θoω-closed in (X, τ).

Theorem 3.3. Let f : (X, τ) → (Y, σ) be an almost strongly ω-continuous
injection. If Y is a Hausdorff (resp. weakly Hausdorff) space, then X is an
ω-Urysohn (resp. ω-Hausdorff) space.

Proof. Let (Y, σ) be Hausdorff and x1 6= x2 for any x1, x2 ∈ X and there exist
disjoint open sets V1 and V2 containing f(x1) and f(x2), respectively. Since V1

and V2 are disjoint, we obtain Int(cl(V1)) ∩ Int(cl(V2)) = φ. Since f is almost
strongly ω-continuous, for i = 1, 2, there exists an ω-open set Ui containing xi
such that f(cl(Ui)) ⊆ Int(cl(Vi)). It follows from cl(U1) ∩ cl(U2) = φ that X is
an ω-Urysohn space. Next, let Y be weakly Hausdorff and x1, x2 distinct points
of X. Then f(x1) 6= f(x2) and there exists a regular closed set V of Y such that
f(x1) /∈ V and f(x2) ∈ V . Since f is almost strongly ω-containuous, by Theorem
2.4, there exists an ω-open set U containing x1 such that f(cl(U)) ⊆ Y−V . Then
we have x2 ∈ f−1(V ) ⊆ X − cl(U). This show that (X, τ) is ω-Hausdorff.

For a function f : (X, τ)→ (Y, σ), the subset {x, f(x) : x ∈ X} ⊆ X × Y is
called the graph of f and is denoted by G(f).

The G(f) is said to be θoω-closed with respect to X × Y if for each (x, y) /∈
G(f), there exists an ω-open sets U and V containing x and y, respectively, such
that cl(U ×V )∩G(f) = φ. It is easy to see that G(f) is θoω-closed with respect
to X ×Y if and only if for each (x, y) /∈ G(f) there exist ω-open subsets U ⊆ X
and V ⊆ Y containing x and y, respectively, such that f(cl(U)) ∩ cl(V ) = φ.

Definition 3.4. A subset S of a space X is said to be quasi Hω-closed (resp.
Nω-closed) relative to X if for every cover {Uα : α ∈ ∆} of S by ω-open sets of
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X, there exists a finite subset ∆◦ of ∆ such that S ⊆ ∪{cl(Uα) : α ∈ ∆◦}(resp.
S ⊆ ∪{Int(cl(Uα)) : α ∈ ∆◦}). A space X is said to be quasi Hω-closed (resp.
nearly ω-compact) if the set X is quasi Hω-closed (resp. Nω-closed) relative to
X.

Theorem 3.5. Let f : (X, τ) → (Y, σ) be a function whose graph is θoω-closed
with respect to X × Y . If K is quasi Hω-closed relative to Y , then f−1(K) is
θoω-closed in X.

Proof. Let x ∈ X − f−1(K). For each y ∈ K, (x, y) /∈ G(f) and there exist
ω-open sets Uy and Vy containing x and y, respectively, such that f(cl(Uy)) ∩
cl(Vy) = φ. The family {Vy : y ∈ K} is a cover of K by ω-open sets of Y and
K ⊆ ∪(cl(Vy) : y ∈ K0) for some finite subset K◦ of K. Put U = ∩{Uy : y ∈
K◦}. Then U is an ω-open set containing x and f(cl(U))∩K = φ. Therefore, we
have cl(U) ∩ f−1(K) = φ and hence x /∈ [f−1(K)]θoω . This shows that f−1(K)
is θoω-closed in X.

Theorem 3.6. If f : (X, τ) → (Y, σ) almost strongly ω-continuous and K is
quasi Hω-closed relative to X, then f(K) is Nω-closed relative to Y .

Proof. Let {Vα : α ∈ ∆} be a cover of f(K) by ω-open sets of Y . For each
x ∈ K, there exists αx ∈ ∆ such that f(x) ∈ Vαx . Since f is almost strongly
ω-continuous, there exists an ω-open set Ux containing x such that f(cl(Ux)) ⊆
Int(cl(Vαx)). The family {Ux : x ∈ K} is a cover of K by ω-open sets of (X, τ)
and hence there exists a finite subset K∗ of K such that K ⊆ ∪x∈K∗ cl(Ux).
Therefore, we obtain f(K) ⊆ f(∪x∈K∗ cl(Ux)) ⊆ ∪x∈K∗ Int(cl(Vαx)).

Lemma 3.7. If X is nearly ω-compact and A is regular closed in X, then A is
Nω-closed relative to X (and hence quasi Hω-closed relative to X).

Proof. Let {Uα : α ∈ ∆} be any cover of A by ω-open sets of X. Then
X = ∪{Uα : α ∈ ∆} ∩ (X − A). Since X − A is regular open, it is open and
hence ω-open. Since X is nearly ω−compact, there exists a finite subset ∆◦ of
∆ such that X = [∪{Int(cl(Uα)) : α ∈ ∆◦}]∪Int(cl(X−A)) = (∪{Int(cl(Uα)) :
α ∈ ∆◦})∪(X−A). Therefore, A ⊆ ∪{Int(cl(Uα)) : α ∈ ∆◦} and A is Nω-closed
relative to X.

Theorem 3.8. Let f : (X, τ) → (Y, σ) be a function and (Y, σ) nearly ω-
compact Hausdorff. Then, the following are equivalent:

i. f is almost strongly ω-continuous.

ii. G(f) is θoω-closed with respect to X × Y .

iii. If K is quasi Hω-closed relative to Y , then f−1(K) is θoω-closed in (X, τ).
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Proof. (i→ii) Let (x, y) ∈ X × Y −G(f). Since (Y, σ) is Hausdorff, there exist
two open sets V and W such that y ∈ V , f(x) ∈ W and V ∩W = φ. This
gives cl(V )∩ Int(cl(W )) = φ. By (i), there exists an ω-open set U containing x
such that f(cl(U)) ⊆ Int(cl(W )). Hence f(cl(U)) ∩ cl(V ) = φ, that is, G(f) is
θoω-closed with respect to X × Y .

(ii→iii) This follows from Theorem 3.5.

(iii→i) Let x ∈ X and V be a regular open subset of Y such that f(x) ∈ V .
Then Y − V is a regular closed set and Y is nearly ω-compact, by Lemma 3.7
Y − V is quasi Hω-closed relative to Y . By (iii) f−1(X − V ) is θoω-closed in
X and x /∈ f−1(Y − V ). Hence there exists an ω-open set U containing x such
that cl(U) ∩ f−1(Y − V ) = φ. This implies that f(cl(U)) ⊆ V . Therefore, it
follows from Theorem 2.4 that f is almost strongly θ-continuous.
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