EXTENDED d-HOMOLOGY

S.N. Hosseini
Mathematics Department
Shahid Bahonar University of Kerman
Kerman
Iran
nhoseini@uk.ac.ir

M.Z. Kazemi Baneh*
Mathematics Department
University of Kurdistan
Sanandaj
Iran
zaherkazemi@uok.ac.ir

Abstract

In this article, in more general categories than the abelian categories, we define a homology functor with respest to a kernel transformation d, called the extended d-homology. We then compare the standard homology and the extended d-homology functors.

Keywords: (pre) abelian category, standard homology, extended d-homology, category of R-modules.

1. Introduction and preliminaries

The definition of the standard homology functor has been extended from the category of R-modules to abelian categories in [7]. In [4] we have defined the homology with respect to a kernel transformation d, also called the d-homology, in more general categories. In this section we give the definition of d-homology and some of the results obtained in [4]. In Section 2, we define a second homology functor called the extended homology with respect to a kernel transformation d, or the extended d-homology. We furnish some illustrative examples and also prove the extended d-homology is the cokernel of a certain map. In Section 3, we compare the standard homology as given in [7] and the extended d-homology, by giving a natural transformation from the standard homology functor to the extended d-homology functor. We then consider conditions under which this natural transformation is a natural isomorphism. We also show, in abelian categories, the standard homology is the extended d-homology with respect to a particular kernel transformation d. Some other results are also given at the end of this section.

To this end, for a pointed category \mathcal{C}, following the notation of [4], we recall:

[^0]- For $f: A \longrightarrow B$, the maps $K_{f} \xrightarrow{k_{f}} A, B \xrightarrow{c_{f}} C_{f}$ and $P_{f} \xrightarrow[\pi_{2}]{\pi_{1}} A$ are respectively the kernel, the cokernel and the kernel pair of f.
- The image I_{f} of f is the coequalizer of the kernel pair of $f . f$ can be factorized to $f=m_{f} e_{f}$ that e_{f} is the coequalizer of the kernel pair of f.
- For a pair of maps $A \underset{g}{f} B$, the maps $E q u(f, g) \xrightarrow{e q u(f, g)} A$ and $B \xrightarrow{\operatorname{coe}(f, g)} C o e(f, g)$ are respectively the equalizer and the coequalizer of (f, g).
For a pointed category \mathcal{C} with pullbacks and pushouts, let $\overline{\mathcal{C}}$ be the arrow category and $\hat{\mathcal{C}}$ be the pair-chain category of \mathcal{C}. Let $K: \overline{\mathcal{C}} \longrightarrow \mathcal{C}$ be the kernel functor and $I: \overline{\mathcal{C}} \longrightarrow \mathcal{C}$ be the image functor.
- The functor $j: \hat{\mathcal{C}} \longrightarrow \overline{\mathcal{C}}$ takes the object $(f, g) \in \hat{\mathcal{C}}$ to $j_{f g}$ and the morphism (α, β, γ) to $(I(\alpha, \beta), K(\beta, \gamma))$ and we have the following commutative diagram

- The standard homology or s-homology functor H^{s}, takes $(f, g) \in \hat{\mathcal{C}}$ to $\operatorname{Coker}\left(j_{f g}\right)$, and for a pair chain map $(\alpha, \beta, \gamma):(f, g) \longrightarrow\left(f^{\prime}, g^{\prime}\right)$, we have the following commutative diagram

where $q=\operatorname{coker}\left(j_{f g}\right)$ and $q^{\prime}=\operatorname{coker}\left(j_{f^{\prime} g^{\prime}}\right)$.

2. Extended homology with respect to a kernel transformation

In this section, unless stated otherwise, \mathcal{C} is a pointed category with pullbacks and pushouts.

Definition 2.1. Let $m: A \longrightarrow C$ and $j: B \longrightarrow C$ be two maps in \mathcal{C}. Define $A+{ }_{C} B$ also denoted by $A+B$ by the pushout:

where $B \leftarrow^{\gamma} P_{j m} \xrightarrow{\alpha} A$ is the pullback of (j, m).

With $S: \mathcal{C} \longrightarrow \mathcal{C}$ the squaring functor, taking $a \xrightarrow{f} b$ to $a^{2} \xrightarrow{f^{2}} b^{2}$, a kernel transformation is a natural transformation $d: S \circ K \longrightarrow K: \overline{\mathcal{C}} \longrightarrow \mathcal{C}$, such that for all $(f, g) \in \hat{\mathcal{C}}$ and diagonal map Δ we have the maps $m_{d_{g} \Delta_{g}}: I_{d_{g} \Delta_{g}} \longrightarrow$ K_{g} (such that $m_{d_{g} \Delta_{g}} e_{d_{g} \Delta_{g}}=d_{g} \Delta_{g}$) and $j_{f g}: I_{f} \longrightarrow K_{g}$. The sum $I_{d_{g} \Delta}+I_{f}$ is therefore obtained by the following diagrams:

Since $m_{d_{g} \Delta_{g}} \alpha=j_{f g} \gamma$, there is a unique map $\beta: I_{d_{g} \Delta_{g}}+I_{f} \longrightarrow K_{g}$ making the following triangles commutative

Letting $m=m_{d_{g} \Delta_{g}}, e=e_{d_{g} \Delta_{g}}$ and $j=j_{f g}$ for simplicity and setting $\bar{H}_{f g}^{d}=C_{\beta}$, the cokernel of β, we have:

Lemma 2.2. For each morphism $(\sigma, \delta, \zeta):(f, g) \longrightarrow\left(f^{\prime}, g^{\prime}\right)$ in $\hat{\mathcal{C}}$, there is a unique $\operatorname{map} \bar{H}^{d}(\sigma, \delta, \zeta): \bar{H}_{f g}^{d} \longrightarrow \bar{H}_{f^{\prime} g^{\prime}}^{d}$, such that the following diagram commutes:

Proof. Consider the following diagram in which the back squares commute by naturality of d and Δ

It follows that $(K(\delta, \zeta), K(\delta, \zeta)): d_{g} \Delta_{g} \longrightarrow d_{g^{\prime}} \Delta_{g^{\prime}}$ is a map in $\overline{\mathcal{C}}$ and so we get the map $l=I(K(\delta, \zeta), K(\delta, \zeta)): I_{d_{g} \Delta_{g}} \longrightarrow I_{d_{g^{\prime}} \Delta_{g^{\prime}}}$ such that $l e=e^{\prime} K(\delta, \zeta)$. Since e is epic, $K(\delta, \zeta) m=m^{\prime} l$. On the other hand $j^{\prime} I(\sigma, \delta)=K(\delta, \zeta) j$ and we get $m^{\prime} l \alpha=K(\delta, \zeta) m \alpha=K(\delta, \zeta) j \gamma=j^{\prime} I(\sigma, \delta) \gamma$. So there is a unique map $y: P_{j m} \longrightarrow P_{j^{\prime} m^{\prime}}$ such that $\gamma^{\prime} y=I(\sigma, \delta) \gamma$ and $\alpha^{\prime} y=l \alpha$. So in the diagram:

the front and back squares are pushouts, and the left and top squares are commutative. It follows that there is a unique map z such that: $z i=i^{\prime} I(\sigma, \delta)$ and $z h=h^{\prime} l$. We then get

$$
\beta^{\prime} z i=\beta^{\prime} i I(\sigma, \delta)=j^{\prime} I(\sigma, \delta)=K(\delta, \zeta) j=K(\delta, \zeta) \beta i
$$

and

$$
K(\delta, \zeta) \beta h=K(\delta, \zeta) m=m^{\prime} l \gamma=\beta^{\prime} h^{\prime} l=\beta^{\prime} z h
$$

Pushoutness of $I_{d_{g} \Delta_{g}}+I_{f}$ implies $K(\delta, \zeta) \beta=\beta^{\prime} z$.

Now $c_{\beta^{\prime}} K(\delta, \zeta) \beta=c_{\beta^{\prime}} \beta^{\prime} z=0$ and so there is a unique $\bar{H}^{d}(\sigma, \delta, \zeta): \bar{H}^{d}{ }_{f g} \longrightarrow$ $\bar{H}^{d}{ }_{f^{\prime} g^{\prime}}$ making the right square in the following diagram commutative:

Theorem 2.3. The mapping $\bar{H}^{d}: \hat{\mathcal{C}} \longrightarrow \mathcal{C}$ that takes the object $(f, g) \in \hat{\mathcal{C}}$ to $\bar{H}_{f g}^{d}$ and the morphism (α, β, γ) to $\bar{H}^{d}(\alpha, \beta, \gamma)$ is a functor.

The functor $\bar{H}^{d}: \hat{\mathcal{C}} \longrightarrow \mathcal{C}$ is called the extended d-homology or the extended homology functor with respect to the kernel transformation d.

Example 2.4. Let $\mathcal{C}=R m o d$ and $d=+(r \times s)=r p r_{1}+s p r_{2}$ with $r, s \in R$. If $A \xrightarrow{f} B \xrightarrow{g} C$ with $g f=0$, Then:

$$
\bar{H}_{f g}^{d}=\frac{K_{g}}{(r+s) K_{g}+I_{f}}
$$

Example 2.5. As a special case of the above example, let $\mathcal{C}=\operatorname{Abgrp}$, for $d=+(r \times s)$ with $r, s \in \mathbb{Z}, K_{g}=\mathbb{Z}, I_{f}=n \mathbb{Z}$, we have:

$$
\bar{H}=\frac{\mathbb{Z}}{(r+s) \mathbb{Z}+n \mathbb{Z}}=\frac{\mathbb{Z}}{(r+s, n) \mathbb{Z}}=\mathbb{Z}_{(r+s, n)}
$$

where $(r+s, n)$ is the greatest common divisor of $r+s$ and n.
Example 2.6 ([7, 4]). Let \mathcal{C} be the category, $S h_{R}$, of short exact sequences of R-modules, $(F, G) \in \hat{\mathcal{C}}$ and $d=+(r \times s) r, s \in R$. Then:

where $I_{g \beta}$ is the image of the restriction of g to K_{β} and $\bar{\alpha}\left(f(a)+K_{\beta}\right)=\alpha(a)$. We also have:

where $K_{2}=\left\{a \in K_{\beta^{\prime}} \mid(r+s) a=0\right\}$ and K_{3} is the image of the restriction of g^{\prime} to K_{2}. So the extended homology is:

$$
\bar{H}_{F G}^{d} \quad 0 \longrightarrow K_{\hat{g}} \longrightarrow \frac{K_{\beta^{\prime}}}{I_{\beta}+(r+s) K_{\beta^{\prime}}} \xrightarrow{\hat{g}} \frac{I_{g^{\prime} \beta^{\prime}}}{I_{\gamma}+(r+s) I_{g^{\prime} \beta^{\prime}}} \longrightarrow 0
$$

where \hat{g} is the quotient of the restriction of g^{\prime} to $K_{\beta^{\prime}}$.
Example 2.7. Let $d=0$. For any $(f, g) \in \hat{\mathcal{C}}, \bar{H}_{f g}^{d}=H_{f g}^{s}$.
Lemma 2.8. Let $d=p r_{1}$ or $d=p r_{2}$. For any $(f, g) \in \hat{\mathcal{C}}, \bar{H}_{f g}^{d}=0$.
Proof. Since $p_{1} \Delta=1, I_{d_{g} \Delta_{g}}=K_{g}, P_{j m}=I_{f}$ and $I_{f}+I_{d_{g} \Delta_{g}}=K_{g}, \beta=1$ and $\bar{H}_{f g}^{d}=0$. Similar argument holds for $d=p r_{2}$.

Calling the projection transformations, $p r_{1}$ and $p r_{2}$, and the zero transformation, the trivial transformations we have:

Proposition 2.9 ([4, 5]). The only kernel transformations in the categories, $T_{o p_{*}}$, of pointed topological spaces, Set ${ }_{*}$, of pointed sets and the category, $\overrightarrow{S e t}$, of partial sets, are the trivial ones.

Example 2.10. Let \mathcal{C} be the category, Set $_{*}$, of pointed sets ($\overrightarrow{S e t}$, of partial sets or $T o p_{*}$, of pointed topological spaces). For $d=p r_{1}$ and $d=p r_{2}, \beta=1$ and for $d=0, \beta=j$. Therefore $\bar{H}_{f g}^{d}=0$ or $\bar{H}_{f g}^{d}=H_{f g}^{s}$.

Given $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ in \mathcal{C}, let $A \not{ }^{i} P_{f g}{ }^{j} B$ be the pullback of (f, g), and $A \xrightarrow{m} A+B^{n} B$ be the pushout of (i, j). We know there is a unique $\beta: A+B \longrightarrow C$ such that $\beta m=f$ and $\beta n=g$. Let $A \coprod B$ be the coproduct of A and B with injections l_{1} and l_{2}. Then $\beta(m \oplus n)=f \oplus g$.

Lemma 2.11. Let $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in \mathcal{C}. Then:
(i) There is a regular epi $\sigma: A+B \longrightarrow I_{f \oplus g}$ such that $\sigma(m \oplus n)=e_{f \oplus g}$.
(ii) If β is monic, then $A+B \cong I_{f \oplus g}$ and $m_{f \oplus g}$ is monic.
(iii) $c_{f \oplus g} \cong c_{\beta}$.

Proof. (i) Since $A+B$ is the pushout of $(i, j), m \oplus n: A \amalg B \longrightarrow A+B$ is the coequalizer of $P_{f g} \xrightarrow[l_{2} j]{l_{1} i} A \amalg B$. On the other hand, since $(f \oplus g) l_{1} i=$ $f i=g j=(f \oplus g) l_{2} j$, and $P_{f \oplus g}$ is the kernel pair of $f \oplus g$, there is a unique $\xi: P_{f g} \longrightarrow P_{f \oplus g}$ such that $\pi_{1} \xi=l_{1} i$ and $\pi_{2} \xi=l_{2} j$. So we have the following diagram in which the top and bottom rows are coequalizers and the square commutes

$$
\begin{gathered}
P_{f g} \xrightarrow{\xrightarrow[l_{2} j]{l_{1} i}} A \amalg B \xrightarrow{m \oplus n} A+B \\
\xi \downarrow \\
P_{f \oplus g} \xrightarrow[\pi_{2}]{\pi_{1}} A \amalg B \underset{e_{f \oplus g}}{\longrightarrow} I_{f \oplus g}
\end{gathered}
$$

So there is a unique map $\sigma: A+B \longrightarrow I_{f \oplus g}$ such that $\sigma(m \oplus n)=e_{f \oplus g}$ and σ is regular epic.
(ii) Since $\beta(m \oplus n)=f \oplus g=m_{f \oplus g} e_{f \oplus g}=m_{f \oplus g} \sigma(m \oplus n)$ and $m \oplus n$ is epic, $\beta=m_{f \oplus g} \sigma$. If β is monic, then σ will be monic and so is an isomorphism. Then $m_{f \oplus g}$ is monic.
(iii) Since $e_{f \oplus g}$ and σ are epic, we have $c_{f \oplus g}=\operatorname{coker}(f \oplus g) \cong \operatorname{coker}\left(m_{f \oplus g} e_{f \oplus g}\right)$ $\cong \operatorname{coker}\left(m_{f \oplus g}\right) \cong \operatorname{coker}\left(m_{f \oplus g} \sigma\right) \cong \operatorname{coker}(\beta)=c_{\beta}$.
Theorem 2.12. Let $(f, g) \in \hat{\mathcal{C}}$ and d be a kernel transformation. Then $\bar{H}_{f g}^{d} \cong$ $C_{j \oplus m}$.
Proof. Replace the maps f and g of the previous lemma respectively by the maps $j: I_{f} \longrightarrow K_{g}$ and $m: I_{d_{g} \Delta_{g}} \longrightarrow K_{g}$.

Lemma 2.13. Let \mathcal{C} be a pre abelian category and $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in \mathcal{C}. Then:
(i) There is a regular epi $\delta: I_{f \oplus g} \longrightarrow A+B$ such that $\delta e_{f \oplus g}=m \oplus n$.
(ii) If $m_{f \oplus g}$ is monic, then $A+B \cong I_{f \oplus g}$ and β is monic.

Proof. Since $f \oplus g=f p r_{1}+g p r_{2}, f p r_{1}\left(\pi_{1}-\pi_{2}\right)=g p r_{2}\left(\pi_{2}-\pi_{1}\right)$. The result then follows similar to the proof given in Lemma 2.11.

Theorem 2.14. Let \mathcal{C} be a pre abelian category and $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in \mathcal{C}. Then β is monic if and only if $m_{f \oplus g}$ is monic. In this case $A+B \cong I_{f \oplus g}$.
Proof. Follows from Lemmas 2.11 and 2.13.
Example 2.15 ([4]). Let \mathcal{C} be the category, $S h_{R}$, of short exact sequences of Rmodules. Then for any pair $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in $S h_{R}, \beta$ is monic, since $m_{f \oplus g}$ is.
Example 2.16. Let \mathcal{C} be any abelian category. Then for any pair $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in \mathcal{C}, β is monic, since $m_{f \oplus g}$ is.

3. Standard homology versus extended d-homology

In this section, unless stated otherwise, we assume \mathcal{C} is a category with a zero object, pullbacks and pushouts, and we investigate the relation between the standard homology and the extended d-homology.

Lemma 3.1. Let d be a kernel transformation in \mathcal{C}. There is a natural transformation $p: H^{s} \longrightarrow \bar{H}^{d}$. Furthermore p is pointwise regular epic.

Proof. For $(f, g) \in \hat{\mathcal{C}}, p_{f g}$ is obtained by applying Lemma 2.2 of [4] to the following diagram

To show naturality, given $(\sigma, \delta, \zeta):(f, g) \rightarrow\left(f^{\prime}, g^{\prime}\right)$ in $\hat{\mathcal{C}}$, we have $p_{f^{\prime} g^{\prime}} H^{s}(\sigma, \delta, \zeta) c_{j}$ $=p_{f^{\prime} g^{\prime}} c_{j^{\prime}} K(\delta, \zeta)=c_{\beta^{\prime}} K(\delta, \zeta)=\bar{H}^{d}(\sigma, \delta, \zeta) c_{\beta}=\bar{H}^{d}(\sigma, \delta, \zeta) p_{f g} c_{j}$. Since c_{j} is epic, $p_{f^{\prime} g^{\prime}} H^{s}(\sigma, \delta, \zeta)=\bar{H}^{d}(\sigma, \delta, \zeta) p_{f g}$.

Lemma 3.2. If for $(f, g) \in \hat{\mathcal{C}}, i: I_{f} \longrightarrow I_{f}+I_{d_{g} \Delta_{g}}$ is epic, then $p_{f g}: H_{f g}^{s} \cong \bar{H}_{f g}^{d}$ is an isomorphism.

Proof. $\bar{H}_{f g}^{d}=\operatorname{Coker}(\beta) \cong \operatorname{Coker}(\beta i)=\operatorname{Coker}(j)=H_{f g}^{s}$.
Corollary 3.3. If $d \Delta=0$ (hence if $d=0$), then $\bar{H}^{d} \cong{ }_{n} H^{s}$, i.e., \bar{H}^{d} is naturally isomorphic to H^{s}.

Proof. Let $(f, g) \in \hat{\mathcal{C}}$. Since $d_{g} \Delta_{g}=0, I_{d_{g} \Delta_{g}}=I_{0}=0$. It can be easily shown that $I_{f}+I_{d_{g} \Delta_{g}}=I_{f}+0=I_{j}^{c}$, where I_{j}^{c} is the cokernel of kernel of j, see [4], and $i: I_{f} \longrightarrow I_{f}+0=I_{j}^{c}$ is the map $c_{k_{j}}$ and is therefore epic. The result then follows from Lemma 3.2.

Corollary 3.4. Let \mathcal{C} be an abelian category, $d=+(r \times s)$. If $(r+s) K_{g}=0$, then $\bar{H}_{f g}^{d} \cong H_{f g}^{s}$.

Proof. Since $I_{d_{g} \Delta_{g}}=(r+s) K_{g}=0$, the result follows.
Corollary 3.5. Let \mathcal{C} be an abelian category and $d=+(r \times-r)$. Then $\bar{H}^{d} \cong{ }_{n}$ H^{s}. In particular $\bar{H}^{-} \cong{ }_{n} H^{s}$.

Proof. Follows from the Corollary 3.3.
Theorem 3.6. Let \mathcal{C} be an abelian category. For $(f, g) \in \hat{\mathcal{C}}, p_{f g}: H_{f g}^{s} \longrightarrow \bar{H}_{f g}^{d}$ is an isomorphism if and only if $i: I_{f} \longrightarrow I_{f}+I_{d_{g} \Delta_{g}}$ is an isomorphism.

Proof. In an abelian category j and β are monic and so $\beta=\operatorname{ker}(\operatorname{coker}(\beta))=$ $\operatorname{ker}\left(c_{\beta}\right)$ and $j=\operatorname{ker}(\operatorname{coker}(j))=\operatorname{ker}\left(c_{j}\right)$. So in the following diagram the rows are equalizers and the right square commutes

By dual of Lemma 2.2 in [4], i is a regular mono and if $p_{f g}$ is a mono, i is an isomorphism.

The converse has been shown previously.
Lemma 3.7. Let \mathcal{C} be an abelian category. For $(f, g) \in \hat{\mathcal{C}}, i: I_{f} \longrightarrow I_{f}+I_{d_{g} \Delta_{g}}$ is an isomorphism if and only if $I_{d_{g} \Delta_{g}}$ is a subobject of I_{f}, i.e., $m: I_{d_{g} \Delta_{g}} \longrightarrow K_{g}$ factors through $j: I_{f} \longrightarrow K_{g}$.

Proof. Straightforward.
Corollary 3.8. Let \mathcal{C} be an abelian category. For $(f, g) \in \hat{\mathcal{C}}, p_{f g}: H_{f g}^{s} \cong \bar{H}_{f g}^{d}$ is an isomorphism if and only if $I_{d_{g} \Delta_{g}}$ is a subobject of I_{f}.

Theorem 3.9. Let \mathcal{C} be the category, Rmod. If $H_{f g}^{s} \cong H_{f^{\prime} g^{\prime}}^{s}$, then $\bar{H}_{f g}^{d} \cong \bar{H}_{f^{\prime} g^{\prime}}^{d}$ and $H_{f g}^{d} \cong H_{f^{\prime} g^{\prime}}^{d}$.

Proof. Let $(f, g),\left(f^{\prime}, g^{\prime}\right) \in \hat{\mathcal{C}}$ and suppose $\psi: \frac{K_{g}}{I_{f}} \cong \frac{K_{g^{\prime}}}{I_{f^{\prime}}}$. Since in Rmod, $d=+(r \times s)$ for some $r, s \in R \bmod , H_{f g}^{s}=\frac{K_{g}}{I_{f}}$ and $\bar{H}_{f g}^{d}=\frac{K_{g}}{(r+s) K_{g}+I_{f}}$, we have an epi $\phi: K_{g} \longrightarrow \frac{K_{g^{\prime}}}{(r+s) K_{g^{\prime}}+I_{f^{\prime}}}$, which is the composition of the epis $q: K_{g} \longrightarrow \frac{K_{g}}{I_{f}}$, $\psi: \frac{K_{g}}{I_{f}} \longrightarrow \frac{K_{g^{\prime}}}{I_{f^{\prime}}}$ and $p_{f^{\prime} g^{\prime}}: \frac{K_{g^{\prime}}}{I_{f^{\prime}}} \longrightarrow \frac{K_{g^{\prime}}}{(r+s) K_{g^{\prime}}+I_{f^{\prime}}}$. Some computations show that $K_{\phi}=(r+s) K_{g}+I_{f}$. The result then follows.

The proof of the second equality follows from the fact that $H_{f g}^{d}=\{[a] \mid a \in$ $\left.K_{g}\right\}$, where $[a]=\left\{b \in K_{g} \mid r(a-b) \in(r+s) K_{g}+I_{f}\right\}=\left\{b \in K_{g} \mid s(a-b) \in\right.$ $\left.(r+s) K_{g}+I_{f}\right\}$, see [4].

References

[1] J. Adamek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990.
[2] F. Borceux, D. Bourn, MalCev, Protomodular, Homological and SemiAbelian Categories, Kluwer Academic Publishers, 2004.
[3] P. Freyd, Abelian Categories, Harper and Row, 1964.
[4] S.N. Hosseini, M.Z. Kazemi Baneh, Homology with respect to a Kernel Transformation, Turk. J. of Math., 34 (2010), 1-18, TÜBITAC.
[5] S.N. Hosseini, M.V. Mielke, Universal Monos in Partial Morphism Categories, Appl. Categor. Struct., 17 (2009), 435-444.
[6] S. MacLane, Categories for the Working Mathematician, 2nd edition, Springer-Verlag, 1998.
[7] M.S. Osborne, Basic Homological Algebra, Springer-Verlag, 2000.
Accepted: 12.07.2017

[^0]: *. Corresponding author

