EXTENDED *d*-HOMOLOGY

S.N. Hosseini

Mathematics Department Shahid Bahonar University of Kerman Kerman Iran nhoseini@uk.ac.ir

M.Z. Kazemi Baneh*

Mathematics Department University of Kurdistan Sanandaj Iran zaherkazemi@uok.ac.ir

Abstract. In this article, in more general categories than the abelian categories, we define a homology functor with respect to a kernel transformation d, called the extended d-homology. We then compare the standard homology and the extended d-homology functors.

Keywords: (pre) abelian category, standard homology, extended d-homology, category of R-modules.

1. Introduction and preliminaries

The definition of the standard homology functor has been extended from the category of R-modules to abelian categories in [7]. In [4] we have defined the homology with respect to a kernel transformation d, also called the d-homology, in more general categories. In this section we give the definition of d-homology and some of the results obtained in [4]. In Section 2, we define a second homology functor called the extended homology with respect to a kernel transformation d, or the extended d-homology. We furnish some illustrative examples and also prove the extended d-homology as given in [7] and the extended d-homology, by giving a natural transformation from the standard homology functor to the extended d-homology functor. We then consider conditions under which this natural transformation is a natural isomorphism. We also show, in abelian categories, the standard homology is the extended d-homology with respect to a particular kernel transformation d. Some other results are also given at the end of this section.

To this end, for a pointed category \mathcal{C} , following the notation of [4], we recall:

^{*.} Corresponding author

- For $f: A \longrightarrow B$, the maps $K_f \xrightarrow{k_f} A$, $B \xrightarrow{c_f} C_f$ and $P_f \xrightarrow{\pi_1} A$ are respectively the kernel, the cokernel and the kernel pair of f.
- The image I_f of f is the coequalizer of the kernel pair of f. f can be factorized to $f = m_f e_f$ that e_f is the coequalizer of the kernel pair of f.
- For a pair of maps $A \xrightarrow{f} B$, the maps $Equ(f,g) \xrightarrow{equ(f,g)} A$ and

 $B \xrightarrow{coe(f,g)} Coe(f,g)$ are respectively the equalizer and the coequalizer of (f,g).

For a pointed category \mathcal{C} with pullbacks and pushouts, let $\overline{\mathcal{C}}$ be the arrow category and $\hat{\mathcal{C}}$ be the pair-chain category of \mathcal{C} . Let $K:\overline{\mathcal{C}} \longrightarrow \mathcal{C}$ be the kernel functor and $I:\overline{\mathcal{C}} \longrightarrow \mathcal{C}$ be the image functor.

• The functor $j : \hat{\mathcal{C}} \longrightarrow \bar{\mathcal{C}}$ takes the object $(f,g) \in \hat{\mathcal{C}}$ to j_{fg} and the morphism (α, β, γ) to $(I(\alpha, \beta), K(\beta, \gamma))$ and we have the following commutative diagram

• The standard homology or s-homology functor H^s , takes $(f,g) \in \hat{\mathcal{C}}$ to $Coker(j_{fg})$, and for a pair chain map $(\alpha, \beta, \gamma) : (f,g) \longrightarrow (f',g')$, we have the following commutative diagram

$$\begin{array}{c|c} K_g & \stackrel{q}{\longrightarrow} H^s_{fg} \\ k(\beta,\gamma) \bigg| & & & \downarrow H^s(\alpha,\beta,\gamma) \\ K_{g'} & \stackrel{q'}{\longrightarrow} H^s_{f'g'} \end{array}$$

where $q = coker(j_{fg})$ and $q' = coker(j_{f'q'})$.

2. Extended homology with respect to a kernel transformation

In this section, unless stated otherwise, C is a pointed category with pullbacks and pushouts.

Definition 2.1. Let $m : A \longrightarrow C$ and $j : B \longrightarrow C$ be two maps in C. Define $A +_C B$ also denoted by A + B by the pushout:

$$\begin{array}{c|c} P_{jm} & \xrightarrow{\alpha} & A \\ \gamma & po & h \\ B & \xrightarrow{i} & A +_C B \end{array}$$

where $B \stackrel{\gamma}{\longleftrightarrow} P_{jm} \stackrel{\alpha}{\longrightarrow} A$ is the pullback of (j,m).

With $S: \mathcal{C} \longrightarrow \mathcal{C}$ the squaring functor, taking $a \xrightarrow{f} b$ to $a^2 \xrightarrow{f^2} b^2$, a kernel transformation is a natural transformation $d: S \circ K \longrightarrow K: \overline{\mathcal{C}} \longrightarrow \mathcal{C}$, such that for all $(f,g) \in \hat{\mathcal{C}}$ and diagonal map Δ we have the maps $m_{d_g\Delta_g}: I_{d_g\Delta_g} \longrightarrow K_g$ (such that $m_{d_g\Delta_g}e_{d_g\Delta_g} = d_g\Delta_g$) and $j_{fg}: I_f \longrightarrow K_g$. The sum $I_{d_g\Delta} + I_f$ is therefore obtained by the following diagrams:

$$\begin{array}{c|c} P_{jm} \xrightarrow{\alpha} I_{d_g \Delta_g} & \text{and} & P_{jm} \xrightarrow{\alpha} I_{d_g \Delta_g} \\ \gamma \middle| & \text{pb} & \downarrow^{m_{d_g \Delta_g}} & \gamma \middle| & \text{po} & \downarrow^h \\ I_f \xrightarrow{-j_{fg}} K_g & I_f \xrightarrow{-j_i} I_{d_g \Delta_g} + I_f \end{array}$$

Since $m_{d_g\Delta_g}\alpha = j_{fg}\gamma$, there is a unique map $\beta : I_{d_g\Delta_g} + I_f \longrightarrow K_g$ making the following triangles commutative

Letting $m = m_{d_g \Delta_g}$, $e = e_{d_g \Delta_g}$ and $j = j_{fg}$ for simplicity and setting $\bar{H}_{fg}^d = C_\beta$, the cokernel of β , we have:

Lemma 2.2. For each morphism $(\sigma, \delta, \zeta) : (f, g) \longrightarrow (f', g')$ in $\hat{\mathcal{C}}$, there is a unique map $\bar{H}^d(\sigma, \delta, \zeta) : \bar{H}^d_{fg} \longrightarrow \bar{H}^d_{f'g'}$, such that the following diagram commutes:

$$\begin{array}{c|c} K_{g} & \stackrel{c_{\beta}}{\longrightarrow} \bar{H}_{fg}^{d} \\ K(\delta,\zeta) & & & & \downarrow \bar{H}^{d}(\sigma,\delta,\zeta) \\ K_{g'} & \stackrel{c_{\beta'}}{\longrightarrow} \bar{H}_{f'g'}^{d} \end{array}$$

Proof. Consider the following diagram in which the back squares commute by naturality of d and Δ

It follows that $(K(\delta,\zeta), K(\delta,\zeta)) : d_g \Delta_g \longrightarrow d_{g'} \Delta_{g'}$ is a map in $\overline{\mathcal{C}}$ and so we get the map $l = I(K(\delta,\zeta), K(\delta,\zeta)) : I_{d_g \Delta_g} \longrightarrow I_{d_{g'} \Delta_{g'}}$ such that $le = e'K(\delta,\zeta)$. Since *e* is epic, $K(\delta,\zeta)m = m'l$. On the other hand $j'I(\sigma,\delta) = K(\delta,\zeta)j$ and we get $m'l\alpha = K(\delta,\zeta)m\alpha = K(\delta,\zeta)j\gamma = j'I(\sigma,\delta)\gamma$. So there is a unique map $y: P_{jm} \longrightarrow P_{j'm'}$ such that $\gamma'y = I(\sigma,\delta)\gamma$ and $\alpha'y = l\alpha$. So in the diagram:

the front and back squares are pushouts, and the left and top squares are commutative. It follows that there is a unique map z such that: $zi = i'I(\sigma, \delta)$ and zh = h'l. We then get

$$\beta' z i = \beta' i I(\sigma, \delta) = j' I(\sigma, \delta) = K(\delta, \zeta) j = K(\delta, \zeta) \beta i$$

and

$$K(\delta,\zeta)\beta h = K(\delta,\zeta)m = m'l\gamma = \beta'h'l = \beta'zh$$

Pushoutness of $I_{d_q\Delta_q} + I_f$ implies $K(\delta, \zeta)\beta = \beta' z$.

Now $c_{\beta'}K(\delta,\zeta)\beta = c_{\beta'}\beta'z = 0$ and so there is a unique $\bar{H^d}(\sigma,\delta,\zeta): \bar{H^d}_{fg} \longrightarrow \bar{H^d}_{f'g'}$ making the right square in the following diagram commutative:

$$\begin{split} I_{d_{g}\Delta_{g}} + I_{f} &\xrightarrow{\beta} K_{g} \xrightarrow{c_{\beta}} \bar{H^{d}}_{fg} \\ z \\ \downarrow & \downarrow K(\delta,\zeta) \\ I_{d_{g'}\Delta_{g'}} + I_{f'} \xrightarrow{\beta'} K_{g'} \xrightarrow{c_{\beta'}} \bar{H^{d}}_{f'g'} \end{split}$$

Theorem 2.3. The mapping $\overline{H}^d : \hat{\mathcal{C}} \longrightarrow \mathcal{C}$ that takes the object $(f,g) \in \hat{\mathcal{C}}$ to \overline{H}^d_{fg} and the morphism (α, β, γ) to $\overline{H}^d(\alpha, \beta, \gamma)$ is a functor.

The functor $\overline{H}^d: \hat{\mathcal{C}} \longrightarrow \mathcal{C}$ is called the extended d-homology or the extended homology functor with respect to the kernel transformation d.

Example 2.4. Let $\mathcal{C} = Rmod$ and $d = +(r \times s) = rpr_1 + spr_2$ with $r, s \in R$. If $A \xrightarrow{f} B \xrightarrow{g} C$ with gf = 0, Then:

$$\bar{H}_{fg}^d = \frac{K_g}{(r+s)K_g + I_f}$$

Example 2.5. As a special case of the above example, let C = Abgrp, for $d = +(r \times s)$ with $r, s \in \mathbb{Z}$, $K_g = \mathbb{Z}$, $I_f = n\mathbb{Z}$, we have:

$$\bar{H} = \frac{\mathbb{Z}}{(r+s)\mathbb{Z} + n\mathbb{Z}} = \frac{\mathbb{Z}}{(r+s,n)\mathbb{Z}} = \mathbb{Z}_{(r+s,n)}$$

where (r + s, n) is the greatest common divisor of r + s and n.

Example 2.6 ([7, 4]). Let C be the category, Sh_R , of short exact sequences of R-modules, $(F, G) \in \hat{C}$ and $d = +(r \times s) r, s \in R$. Then:

where $I_{g\beta}$ is the image of the restriction of g to K_{β} and $\bar{\alpha}(f(a) + K_{\beta}) = \alpha(a)$. We also have:

where $K_2 = \{a \in K_{\beta'} | (r+s)a = 0\}$ and K_3 is the image of the restriction of g' to K_2 . So the extended homology is:

$$\bar{H}^d_{FG} \qquad 0 \longrightarrow K_{\hat{g}} \longrightarrow \frac{K_{\beta'}}{I_{\beta} + (r+s)K_{\beta'}} \xrightarrow{\hat{g}} \frac{I_{g'\beta'}}{I_{\gamma} + (r+s)I_{g'\beta'}} \longrightarrow 0$$

where \hat{g} is the quotient of the restriction of g' to $K_{\beta'}$.

Example 2.7. Let d = 0. For any $(f,g) \in \hat{\mathcal{C}}$, $\bar{H}^d_{fg} = H^s_{fg}$.

Lemma 2.8. Let $d = pr_1$ or $d = pr_2$. For any $(f, g) \in \hat{\mathcal{C}}$, $\bar{H}_{fg}^d = 0$.

Proof. Since $pr_1\Delta = 1$, $I_{d_g\Delta_g} = K_g$, $P_{jm} = I_f$ and $I_f + I_{d_g\Delta_g} = K_g$, $\beta = 1$ and $\bar{H}_{fg}^d = 0$. Similar argument holds for $d = pr_2$.

Calling the projection transformations, pr_1 and pr_2 , and the zero transformation, the trivial transformations we have:

Proposition 2.9 ([4, 5]). The only kernel transformations in the categories, Top_{*}, of pointed topological spaces, Set_{*}, of pointed sets and the category, \overrightarrow{Set} , of partial sets, are the trivial ones.

Example 2.10. Let C be the category, Set_* , of pointed sets (\vec{Set} , of partial sets or Top_* , of pointed topological spaces). For $d = pr_1$ and $d = pr_2$, $\beta = 1$ and for d = 0, $\beta = j$. Therefore $\bar{H}_{fg}^d = 0$ or $\bar{H}_{fg}^d = H_{fg}^s$.

Given $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ in C, let $A \xleftarrow{i} P_{fg} \xrightarrow{j} B$ be the pullback of (f,g), and $A \xrightarrow{m} A + B \xrightarrow{n} B$ be the pushout of (i,j). We know there is a unique $\beta : A + B \longrightarrow C$ such that $\beta m = f$ and $\beta n = g$. Let $A \coprod B$ be the coproduct of A and B with injections l_1 and l_2 . Then $\beta(m \oplus n) = f \oplus g$.

Lemma 2.11. Let $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in C. Then:

- (i) There is a regular epi $\sigma: A + B \longrightarrow I_{f \oplus q}$ such that $\sigma(m \oplus n) = e_{f \oplus q}$.
- (ii) If β is monic, then $A + B \cong I_{f \oplus q}$ and $m_{f \oplus q}$ is monic.
- (*iii*) $c_{f\oplus g} \cong c_{\beta}$.

Proof. (i) Since A + B is the pushout of (i, j), $m \oplus n : A \coprod B \longrightarrow A + B$ is the coequalizer of $P_{fg} \xrightarrow[l_{2j}]{i_{2j}} A \coprod B$. On the other hand, since $(f \oplus g)l_1i =$ $fi = gj = (f \oplus g)l_2j$, and $P_{f \oplus g}$ is the kernel pair of $f \oplus g$, there is a unique $\xi : P_{fg} \longrightarrow P_{f \oplus g}$ such that $\pi_1 \xi = l_1 i$ and $\pi_2 \xi = l_2 j$. So we have the following diagram in which the top and bottom rows are coequalizers and the square commutes

So there is a unique map $\sigma : A + B \longrightarrow I_{f \oplus g}$ such that $\sigma(m \oplus n) = e_{f \oplus g}$ and σ is regular epic.

(ii) Since $\beta(m \oplus n) = f \oplus g = m_{f \oplus g} e_{f \oplus g} = m_{f \oplus g} \sigma(m \oplus n)$ and $m \oplus n$ is epic, $\beta = m_{f \oplus g} \sigma$. If β is monic, then σ will be monic and so is an isomorphism. Then $m_{f \oplus g}$ is monic.

(iii) Since $e_{f\oplus g}$ and σ are epic, we have $c_{f\oplus g} = coker(f\oplus g) \cong coker(m_{f\oplus g}e_{f\oplus g})$ $\cong coker(m_{f\oplus g}) \cong coker(m_{f\oplus g}\sigma) \cong coker(\beta) = c_{\beta}.$

Theorem 2.12. Let $(f,g) \in \hat{\mathcal{C}}$ and d be a kernel transformation. Then $\bar{H}_{fg}^d \cong C_{j\oplus m}$.

Proof. Replace the maps f and g of the previous lemma respectively by the maps $j: I_f \longrightarrow K_g$ and $m: I_{d_q \Delta_q} \longrightarrow K_g$.

Lemma 2.13. Let C be a pre abelian category and $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in C. Then:

- (i) There is a regular epi $\delta : I_{f \oplus q} \longrightarrow A + B$ such that $\delta e_{f \oplus q} = m \oplus n$.
- (ii) If $m_{f\oplus q}$ is monic, then $A + B \cong I_{f\oplus q}$ and β is monic.

Proof. Since $f \oplus g = fpr_1 + gpr_2$, $fpr_1(\pi_1 - \pi_2) = gpr_2(\pi_2 - \pi_1)$. The result then follows similar to the proof given in Lemma 2.11.

Theorem 2.14. Let C be a pre abelian category and $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in C. Then β is monic if and only if $m_{f \oplus g}$ is monic. In this case $A + B \cong I_{f \oplus g}$. **Proof.** Follows from Lemmas 2.11 and 2.13.

Example 2.15 ([4]). Let C be the category, Sh_R , of short exact sequences of R-modules. Then for any pair $A \xrightarrow{f} C$ and $B \xrightarrow{g} C$ be in Sh_R , β is monic, since $m_{f \oplus g}$ is.

Example 2.16. Let \mathcal{C} be any abelian category. Then for any pair $A \xrightarrow{J} C$ and $B \xrightarrow{g} C$ be in \mathcal{C} , β is monic, since $m_{f \oplus q}$ is.

3. Standard homology versus extended *d*-homology

In this section, unless stated otherwise, we assume C is a category with a zero object, pullbacks and pushouts, and we investigate the relation between the standard homology and the extended *d*-homology.

Lemma 3.1. Let d be a kernel transformation in C. There is a natural transformation $p: H^s \longrightarrow \overline{H}^d$. Furthermore p is pointwise regular epic.

Proof. For $(f,g) \in \hat{\mathcal{C}}$, p_{fg} is obtained by applying Lemma 2.2 of [4] to the following diagram

To show naturality, given $(\sigma, \delta, \zeta) : (f,g) \to (f',g')$ in $\hat{\mathcal{C}}$, we have $p_{f'g'}H^s(\sigma, \delta, \zeta)c_j$ = $p_{f'g'}c_{j'}K(\delta,\zeta) = c_{\beta'}K(\delta,\zeta) = \bar{H}^d(\sigma,\delta,\zeta)c_{\beta} = \bar{H}^d(\sigma,\delta,\zeta)p_{fg}c_j$. Since c_j is epic, $p_{f'g'}H^s(\sigma,\delta,\zeta) = \bar{H}^d(\sigma,\delta,\zeta)p_{fg}$.

Lemma 3.2. If for $(f,g) \in \hat{\mathcal{C}}$, $i: I_f \longrightarrow I_f + I_{d_g \Delta_g}$ is epic, then $p_{fg}: H^s_{fg} \cong \overline{H}^d_{fg}$ is an isomorphism.

Proof.
$$\bar{H}_{fg}^d = Coker(\beta) \cong Coker(\beta i) = Coker(j) = H_{fg}^s$$
.

Corollary 3.3. If $d\Delta = 0$ (hence if d = 0), then $\overline{H}^d \cong_n H^s$, i.e., \overline{H}^d is naturally isomorphic to H^s .

Proof. Let $(f,g) \in \hat{\mathcal{C}}$. Since $d_g \Delta_g = 0$, $I_{d_g \Delta_g} = I_0 = 0$. It can be easily shown that $I_f + I_{d_g \Delta_g} = I_f + 0 = I_j^c$, where I_j^c is the cokernel of kernel of j, see [4], and $i: I_f \longrightarrow I_f + 0 = I_j^c$ is the map c_{k_j} and is therefore epic. The result then follows from Lemma 3.2.

Corollary 3.4. Let C be an abelian category, $d = +(r \times s)$. If $(r+s)K_g = 0$, then $\bar{H}^d_{fg} \cong H^s_{fg}$.

Proof. Since $I_{d_q\Delta_q} = (r+s)K_g = 0$, the result follows.

Corollary 3.5. Let C be an abelian category and $d = +(r \times -r)$. Then $\overline{H}^d \cong_n H^s$. In particular $\overline{H}^- \cong_n H^s$.

Proof. Follows from the Corollary 3.3.

Theorem 3.6. Let \mathcal{C} be an abelian category. For $(f,g) \in \hat{\mathcal{C}}$, $p_{fg} : H^s_{fg} \longrightarrow \bar{H}^d_{fg}$ is an isomorphism if and only if $i : I_f \longrightarrow I_f + I_{d_g \Delta_g}$ is an isomorphism.

Proof. In an abelian category j and β are monic and so $\beta = ker(coker(\beta)) = ker(c_{\beta})$ and $j = ker(coker(j)) = ker(c_j)$. So in the following diagram the rows are equalizers and the right square commutes

By dual of Lemma 2.2 in [4], i is a regular mono and if p_{fg} is a mono, i is an isomorphism.

The converse has been shown previously.

Lemma 3.7. Let C be an abelian category. For $(f,g) \in \hat{C}$, $i:I_f \longrightarrow I_f + I_{d_g \Delta_g}$ is an isomorphism if and only if $I_{d_g \Delta_g}$ is a subobject of I_f , i.e., $m:I_{d_g \Delta_g} \longrightarrow K_g$ factors through $j:I_f \longrightarrow K_g$.

Proof. Straightforward.

Corollary 3.8. Let C be an abelian category. For $(f,g) \in \hat{C}$, $p_{fg} : H^s_{fg} \cong \bar{H}^d_{fg}$ is an isomorphism if and only if $I_{d_g \Delta_g}$ is a subobject of I_f .

Theorem 3.9. Let C be the category, Rmod. If $H_{fg}^s \cong H_{f'g'}^s$, then $\bar{H}_{fg}^d \cong \bar{H}_{f'g'}^d$ and $H_{fg}^d \cong H_{f'g'}^d$.

Proof. Let $(f,g), (f',g') \in \hat{C}$ and suppose $\psi : \frac{K_g}{I_f} \cong \frac{K_{g'}}{I_{f'}}$. Since in Rmod, $d = +(r \times s)$ for some $r, s \in Rmod$, $H_{fg}^s = \frac{K_g}{I_f}$ and $\bar{H}_{fg}^d = \frac{K_g}{(r+s)K_g+I_f}$, we have an epi $\phi : K_g \longrightarrow \frac{K_{g'}}{(r+s)K_{g'}+I_{f'}}$, which is the composition of the epis $q : K_g \longrightarrow \frac{K_g}{I_f}$, $\psi : \frac{K_g}{I_f} \longrightarrow \frac{K_{g'}}{I_{f'}}$ and $p_{f'g'} : \frac{K_{g'}}{I_{f'}} \longrightarrow \frac{K_{g'}}{(r+s)K_{g'}+I_{f'}}$. Some computations show that $K_{\phi} = (r+s)K_g + I_f$. The result then follows.

The proof of the second equality follows from the fact that $H_{fg}^d = \{[a] | a \in K_g\}$, where $[a] = \{b \in K_g | r(a-b) \in (r+s)K_g + I_f\} = \{b \in K_g | s(a-b) \in (r+s)K_g + I_f\}$, see [4].

References

- J. Adamek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990.
- [2] F. Borceux, D. Bourn, MalCev, Protomodular, Homological and Semi-Abelian Categories, Kluwer Academic Publishers, 2004.
- [3] P. Freyd, Abelian Categories, Harper and Row, 1964.

- [4] S.N. Hosseini, M.Z. Kazemi Baneh, Homology with respect to a Kernel Transformation, Turk. J. of Math., 34 (2010), 1-18, TÜBITAC.
- [5] S.N. Hosseini, M.V. Mielke, Universal Monos in Partial Morphism Categories, Appl. Categor. Struct., 17 (2009), 435-444.
- [6] S. MacLane, *Categories for the Working Mathematician*, 2nd edition, Springer-Verlag, 1998.
- [7] M.S. Osborne, *Basic Homological Algebra*, Springer-Verlag, 2000.

Accepted: 12.07.2017