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Abstract. In this article, in more general categories than the abelian categories, we
define a homology functor with respest to a kernel transformation d, called the extended
d-homology. We then compare the standard homology and the extended d-homology
functors.
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1. Introduction and preliminaries

The definition of the standard homology functor has been extended from the
category of R-modules to abelian categories in [7]. In [4] we have defined the
homology with respect to a kernel transformation d, also called the d-homology,
in more general categories. In this section we give the definition of d-homology
and some of the results obtained in [4]. In Section 2, we define a second homology
functor called the extended homology with respect to a kernel transformation
d, or the extended d-homology. We furnish some illustrative examples and also
prove the extended d-homology is the cokernel of a certain map. In Section 3,
we compare the standard homology as given in [7] and the extended d-homology,
by giving a natural transformation from the standard homology functor to the
extended d-homology functor. We then consider conditions under which this
natural transformation is a natural isomorphism. We also show, in abelian
categories, the standard homology is the extended d-homology with respect to
a particular kernel transformation d. Some other results are also given at the
end of this section.

To this end, for a pointed category C, following the notation of [4], we recall:

x. Corresponding author
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k
For f:A — B, the maps Kf*f>A, Bi>Cf and Py *)LA are
™2
respectively the kernel, the cokernel and the kernel pair of f.

The image Iy of f is the coequalizer of the kernel pair of f. f can be
factorized to f = myey that ey is the coequalizer of the kernel pair of f.

) equ(f,g) A and

/
For a pair of maps A —= B, the maps Fqu(f,g
g

of (f,9).

For a pointed category C with pullbacks and pushouts, let _é be the arrow
category and C be the pair-chain category of C. Let K :C — C be the
kernel functor and I :C — C be the image functor.

Coe(f,g) arerespectively the equalizer and the coequalizer

The functor j :C —» C takes the object (f,g) € C to Jfg and the morphism
(ar, B,7) to (I(er, B), K(B,7)) and we have the following commutative dia-
gram

a J{I(a,ﬂ) lK(ﬁﬁ) J{ﬁ
/ N /
fl

The standard homology or s-homology functor H?®, takes (f,g) € C to
Coker(jtq), and for a pair chain map (o, 8,7) : (f,9) — (f’,¢’), we have
the following commutative diagram

K, —~ H3,
k(ﬁry)l le(a,Bn)

Kg/ T) H;’g’

where ¢ = coker(jfq) and ¢ = coker(jpq).

2. Extended homology with respect to a kernel transformation

In this section, unless stated otherwise, C is a pointed category with pullbacks

and pushouts.
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Definition 2.1. Let m: A — C and j : B — C be two maps in C. Define
A +¢ B also denoted by A + B by the pushout:

Pjy —2— A
'Yi po lh
B——>A+cB

where B < Pjm —— A is the pullback of (j,m).

With S : C — C the squaring functor, taking a N b to a? i> b2, a
kernel transformation is a natural transformation d : SoK — K : C — C, such
that for all (f,g) € C and diagonal map A we have the maps ma,n, da,n, —
K, (such that mg,a eq,n, = dgAy) and jyg :[; —> K4 The sum Ig A + Iy is

therefore obtained by the following diagrams:

}?nlgggénL%Ag and }?nz @ -L@Ag
vi pb \LmdgAg 'yi po ih
IfT)Kg If*?IdQAg—l—ff

Since mg,a, o = jgg7, there is a unique map 3 : Ig a, + Iy —> K, making
the following triangles commutative

[}
Pj IdQAQ

’Y\L po \Lh
Mdgng

If 47 IdgAg + If

RN

Jfg Kg

Letting m = mg,a,, € = eq,n, and j = jy, for simplicity and setting
H]‘?g = (Cpg, the cokernel of 3, we have:

Lemma 2.2. For each morphism (0,6,¢) : (f,g) — (f',¢") in C, there is a

unique map H(o,8,¢) : ﬁ}ig — ﬁj‘f/g/, such that the following diagram com-
mutes:

cB rd

Ky —— Hfg

K(&C)i in(m&C)

[7d
Kg/ TW) Hf/g/
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Proof. Consider the following diagram in which the back squares commute by
naturality of d and A

Ay dg
K, K K,
m
e
(5.0) Ia,a, 60 |K@Q)
A;/ dys
Kg/ l KQZ/ Kg/
Idg/Ag/

It follows that (K (6,¢), K(6,¢)) : dgAy — dy Ay is a map in C and so we
get the map | = I(K(4,(), K(3,¢)) :lgyn, — la,a, such that le = 'K (4, ().
Since e is epic, K (0 ,C)m = m/l. On the other hand j'I(c,0) = K(§,{)j and
we get m'la = K(0,()m K(0,¢)jy = j'I(0,9)y. So there is a unique map
Y :Pjy, — Pjrpy such that ’y/y = I(0,d)y and o'y = la. So in the diagram:

P]m = IdgAg
X \
v Pj/m, hLa Idg/Ag/
If G ; IdgAg + If h
Tz
1(5,0) -

Iq,n, +1Ip

the front and back squares are pushouts, and the left and top squares are
commutative. It follows that there is a unique map z such that: zi = i'I(o,0)
and zh = h/l. We then get

B'zi = Blil(0,0) = j'I(0,8) = K(5,¢)j = K(6,()Bi

and
K(6,¢)8h = K(5,Q)m = m'ly = §''l = §'zh

Pushoutness of Iy a, + Iy implies K(9,() = 'z
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~ Now cgr K(8,()8 = cgr8'z = 0 and so there is a unique H(0,6,¢) : Hlpy —
Hdp o making the right square in the following diagram commutative:

B _
Ija +1;,—=K, —25 Hd
dgAg f g fg

l iK(&C) H(0,5,0)
/ \

Liya, +1p ==Ky — = Hipy

O
Theorem 2.3. The mapping H? :? — C that takes the object (f,g) € C to
H?g and the morphism (o, 3,7) to H*(«, 8,7) is a functor.
The functor H? : C — C is called the extended d-homology or the extended
homology functor with respect to the kernel transformation d.
Example 2.4. Let C = Rmod and d = +(r X s) = rpry + spro with r;s € R. If
A—L- B2, ¢ with gf =0, Then:

rrd Kg

gl — 9
fa (7" + S)Kg + If

Example 2.5. As a special case of the above example, let C = Abgrp, for

d= —|—(7’ X S) with TS E Z7 Kg = Z7 If = n27 we have:

Z oz
(r+8)Z+nZ (r+sn)Z (r+s.m)

H=
where (r 4 s,n) is the greatest common divisor of r + s and n.

Example 2.6 ([7, 4] ): Let C be the category, Shg, of short exact sequences of
R-modules, (F,G) € C and d = +(r x s) r,s € R. Then:

M 0 a—Ll.p_2.¢ 0
7| S .
N 0 A NG 0
‘| A
P 0 A" — o B O —— 0
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where I 3 is the image of the restriction of g to Kz and a(f(a) + Kg) = a(a).
We also have:

]f’o/+K2 KBI Iglﬁl

IdGAG 0 Ko Ko Ks 0
Kg 0 Ky Kg/ Ig/ﬂl 0

where Ky = {a € Kg|(r + s)a = 0} and K3 is the image of the restriction of ¢’
to Ks. So the extended homology is:

Kﬁ’ g Ig/B/
I[.;—I—(T—i-S)KB/ ]7+(T+S)Iglﬁl

rrd
where § is the quotient of the restriction of ¢’ to K.

Example 2.7. Let d = 0. For any (f,g) € C, ﬁ?g = Hj,.

Lemma 2.8. Let d =pry ord = pry. For any (f,g) € é, fl}ig =0.

Proof. Since priA =1, Iyn, = Ky, Pj = Iy and Iy + Ign, = Ky, B =1
and H}lg = 0. Similar argument holds for d = prs. O

Calling the projection transformations, pr; and prs, and the zero transfor-
mation, the trivial transformations we have:

Proposition 2.9 ([4, 5]). The only kernel transformations in the catego%,

Top., of pointed topological spaces, Set,, of pointed sets and the category, Set,
of partial sets, are the trivial ones.

—
Example 2.10. Let C be the category, Set,, of pointed sets ( Set, of partial
sets or Top,, of pointed topologigal spaces).iFor d=pri and d = pro, B =1
and for d =0, 8 = j. Therefore H}lg =0or H}lg = H3,.

Given A—f>C’ and B—2>C in C, let AéPfg—j;B be the pull-

back of (f,g), and A—" A+ B~ B be the pushout of (i,7). We know
there is a unique 3 :A + B — C such that fm = f and fn = g. Let A][ B be
the coproduct of A and B with injections Iy and ly. Then B(m @& n) = f @ g.

Lemma 2.11. Let A——>C and B—2~C be in C. Then:
(i) There is a regular epi o :A+ B — Iygq such that o(m & n) = efay.
(1) If B is monic, then A+ B = Ity and mygq is monic.

(ifi) crog = c5.
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Proof. (i) Since A + B is the pushout of (i,j), m@&n:A[[B — A+ B is
iy

the coequalizer of Py, :;” A[IB . On the other hand, since (f & g)l1i =
laj

fi =95 = (f ®g)lag, and Prgq is the kernel pair of f @ g, there is a unique

§ 1Pty — Prgg such that m& = 14 and m& = laj. So we have the following

diagram in which the top and bottom rows are coequalizers and the square

commutes

i

Pr,—=A[[B2Y A+ B
I2J

§i J/lA]_[B o
T \

Preg ?AHB erog Iraq

So there is a unique map o :A + B — I, such that o(m@®n) = efqq and
o is regular epic.

(ii) Since B(m @ n) = f © g = msagerpg = Mrago(m & n) and m @ n is
epic, 8 = mygg0. If 8 is monic, then o will be monic and so is an isomorphism.
Then m g, is monic.

(iii) Since e rg4 and o are epic, we have crqq = coker(f@g)=Zcoker(m g€ fag)
Zcoker(mypgg) = coker(myggo) = coker () = cg. O

Theorem 2.12. Let (f,g) € C and d be a kernel transformation. Then ﬁ]‘?g =
Ciom-

Proof. Replace the maps f and g of the previous lemma respectively by the
maps j : [y — Ky and m :Ig n, — Kj. O

Lemma 2.13. Let C be a pre abelian category and A NENS C and B—2>C
be in C. Then:

(i) There is a regular epi 6 :lfgq — A+ B such that dejgy = m @ n.
(1) If mygq is monic, then A+ B = Ity and (3 is monic.
Proof. Since f @ g = fpry + gpre, fpri(m — m3) = gpre(me — m1). The result

then follows similar to the proof given in Lemma 2.11. O

Theorem 2.14. Let C be a pre abelian category and A N C and B—1>C
be in C. Then (3 is monic if and only if myag is monic. In this case A+B = Itg,.

Proof. Follows from Lemmas 2.11 and 2.13. [
Example 2.15 ([4]). Let C be the category, Shg, of short exact sequences of R-
modules. Then for any pair A I C and B—2~C bein Shg, 8 is monic,

since myqq 1s.

Example 2.16. Let C be any abelian category. Then for any pair A L C

g . . L .
and B ——C bein C, § is monic, since myq, is.
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3. Standard homology versus extended d-homology

In this section, unless stated otherwise, we assume C is a category with a zero
object, pullbacks and pushouts, and we investigate the relation between the
standard homology and the extended d-homology.

Lemma 3.1. Let d be a kernel transformation in C. There is a natural trans-
formation p :H® — H®. Furthermore p is pointwise reqular epic.

Proof. For (f,g) € C, Dfg is obtained by applying Lemma 2.2 of [4] to the
following diagram

Cj

Iy K, H;g
ll llKg pfg
\
If + IdgAg 8 KQ s HJU‘lg

To show naturality, given (0,9,() :(f,g) = (f', ') in_é, we have py g H?(0, 6, ¢)c;
= prrgciK(6,0) = cgK(4,() = H%0,6,()cs = HY (0,0, ¢)pfgcj. Since c;j is
epic, pf’g/HS(U> 51 g) = Hd(07 57 C)pfg O

Lemma 3.2. If for (f,g) € C,i Iy — Iy + la,n, is epic, thenpyg : Hf = ﬁ}ig
s an tsomorphism.

Proof. I:I;lg = Coker(B) = Coker(Bi) = Coker(j) = Hj},. O

Corollary 3.3. If dA = 0 (hence if d = 0), then H? =, H®, i.e., H? is
naturally isomorphic to H®.

Proof. Let (f,g) € C. Since dgAg =0, Ig,n, = Ip = 0. It can be easily shown
that Iy + Iy, = Iy + 0 = I, where I is the cokernel of kernel of j, see 4],
and ¢ :If — Iy + 0= I7 is the map ¢i; and is therefore epic. The result then
follows from Lemma 3.2. O

Corollary 3.4. Let C be an abelian category, d = +(r x s). If (r +s)K,; =0,
then I:I]ng = Hj,.

Proof. Since Iy,n, = (7 + s) K, = 0, the result follows. O

Corollary 3.5. Le_t C be an abelian category and d = +(r x —r). Then H? ==,
H?. In particular H— =, H®.

Proof. Follows from the Corollary 3.3. O

Theorem 3.6. Let C be an abelian category. For (f,g) € C, prg :Hj, — Fljﬁlg
is an isomorphism if and only if i : Iy — Iy + Iq,a, is an isomorphism.



EXTENDED d-HOMOLOGY 705

Proof. In an abelian category j and (8 are monic and so 8 = ker(coker(5)) =
ker(cg) and j = ker(coker(j)) = ker(c;j). So in the following diagram the rows
are equalizers and the right square commutes

J Cj

Iy HZ,

i Ik, Pfg
v

r7d
If +Id9Ag Kg cs Hfg
By dual of Lemma 2.2 in [4], 7 is a regular mono and if ps, is a mono, ¢ is
an isomorphism. O

The converse has been shown previously.

Lemma 3.7. Let C be an abelian category. For (f,g) € C,i Ay — Iy + Igyn,
is an isomorphism if and only if Iq, A, is a subobject of Iy, i.e., m :Ig . n, — K,
factors through j :Iy — K.

Proof. Straightforward. O

Corollary 3.8. Let C be an abelian category. For (f,g) € C, pfgt Hj) = ﬁ?g
is an isomorphism if and only if Iq, A, is a subobject of Iy.

Theorem 3.9. Let C be the category, Rmod. If H;;g = Hs

[7d o~ 17d
p g g then Hfg - Hf’g’
and Hfg :Hf/g/.

Proof. Let (f,9),(f,¢) € C and suppose ¢ : %g & % Since in Rmod,
— Kg

d = +(r x s) for some r,s € Rmod, Hj‘ig =1 and HJ‘?Q = ;> we have

Ky
(r+s)Kg+

anepi¢ K, — which is the composition of the epis ¢ :K; — II(TQ?

Kg/
(r+s)Kyr+1p1°
K K K/ K
1/} Ing — ng, and Prg :ﬁ — 7(T+S)I(gg/+1f/'
Ky = (r+5)Ky+ Iy. The result then follows.
The proof of the second equality follows from the fact that H Jﬁlg = {[a]la €
Ky}, where [a] = {b € Kylr(a —b) € (r+ s)Ky+ I} = {b € Kyls(a —b) €
(r+s)Kg+ 1}, see [4]. O

Some computations show that
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