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Abstract. Let G be a finite group. The character degree graph Γ(G) of G is the
graph whose vertices are the prime divisors of character degrees of G and two vertices p
and q are joined by an edge if pq divides some character degree of G. Let Ln(q) be the
projective special linear group of degree n over finite field of order q. Xu et al. proved
that the Mathieu groups are characterized by the order and one irreducible character
degree. Recently Khosravi et al. have proven that the simple groups L2(p

2), and L2(p)
where p ∈ {7, 8, 11, 13, 17, 19} are characterizable by the degree graphs and their orders.
In this paper, we give a new characterization of Mathieu groups by using the character
degree graphs and their orders.
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1. Introduction

All groups in this note are finite. Let G be a finite group and let Irr(G) be the
set of irreducible characters of G. Denote by cd(G) = {χ(1) : χ ∈ Irr(G)}, the
set of character degrees of G. Some author have studied the Mathieu groups by
considering the properties of element orders [1, 11]. Some authors studied the
properties of groups by investigating the character degrees [13]. In this paper,
we will study the groups by considering the character degree graph. Recall that
the graph Γ(G) is called character degree graph whose vertices are the prime
divisors of character degrees of the group G and two vertices p and q are joined
by an edge if pq divides some character degree of G [10]. Xu et al. in [13] have
shown that Mathieu groups are determined by some character degree and their
orders. Khosravi et. al. in [6, 15, 9] proved that the groups L2(p

2), where p is a
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prime, and L3(q) where q ∈ {4, 5, 7, 8, 9}, are characterizable by their character
degree graphs and orders. Khosravi et. al. in [5] investigated the influence of
the character degree graph and order of the simple groups of order less than
6000, on the structure of group. As the development of this topic, we give a
new characterization of the Mathieu groups by their character degree graphs
and orders. The following theorem is proved.

Main Theorem 1.1. The following statements hold

(1) Let L ∈ {M11,M23,M24} . If G is a finite group such that Γ(G) = Γ(L)
and |G| = |L|, then G ∼= L.

(2) Let L := M12. If G is a finite group such that Γ(G) = Γ(L) and |G| = |L|,
then G ∼= L or G ∼= A4 ×M11.

We introduce some notation here. Let Sn be the symmetric group of degree
n. Let Ln(q) be the projective special linear group of degree n over finite field
of order q. Let G be a group and let r be a prime, then denote the set of Sylow
r-subgroups Gr of G by Sylr(G). If H is a characteristic subgroup of G, we
write H chG. All other symbols are standard (see [2]).

2. Some preliminary results

In this section, we give some lemmas to prove the main theorem.

Lemma 2.1. Let AEG be abelian. Then χ(1) divides |G : A| for all χ ∈ Irr(G).

Proof. See Theorem 6.5 of [4].

Lemma 2.2. Let N EG and let χ ∈ Irr(G). Let θ be an irreducible constituent
of χN and suppose that θ1, · · · , θt are distinct conjugates of θ in G. Then χN =
e
∑t

i=1 θi, where e = [χN , θ] and t = |G : IG(θ)|. Also θ(1) | χ(1) and χ(1)
θ(1) | |G|

|N | .

Proof. Theorems 6.2, 6.8 and 11.29 of [4].

Lemma 2.3. Let G be a non-solvable group. Then G has a normal series
1 E H E K E G, such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K|

∣∣|Out(K/H)|.

Proof. See Lemma 1 of [12].

Lemma 2.4. Let G be a finite solvable group of order pa11 pa22 · · · pann , where
p1, p2, · · · , pn are distinct primes. If kpn + 1 - paii for each i ≤ n− 1 and k > 0,
then the Sylow pn-subgroup is normal in G.

Proof. See Lemma 2 of [13].

We also need the structure of non-abelian simple groups whose largest prime
divisor is 11 or 23.
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Lemma 2.5. If S is a finite non-abelian simple group such that {11} ⊆ π(S) ⊆
{2, 3, 5, 11}, then S is isomorphic to one of the following simple groups listed as
in Table 1.

Proof. See [14].

Table 1. Simple groups S with {11} ⊆ π(S) ⊆ {2, 3, 5, 7, 11}
S Order of S Out(S) S Order of S |Out(S)|

U5(2) 210 · 35 · 5 · 11 2 U6(2) 215 · 36 · 5 · 7 · 11 6
L2(11) 22 · 3 · 5 · 11 2 M11 24 · 32 · 5 · 11 1
M12 26 · 33 · 5 · 11 2 M22 27 · 32 · 5 · 7 · 11 2
HS 29 · 32 · 53 · 7 · 11 2 M cL 27 · 36 · 53 · 7 · 11 2
A11 27 · 34 · 52 · 7 · 11 2 A12 29 · 35 · 52 · 7 · 11 2

Lemma 2.6. If S is a finite non-abelian simple group except for alternating
group such that {23} ⊆ π(S) ⊆ {2, 3, 5, 7, 11, 13, 17, 19, 23}, then S is isomorphic
to one of the following simple groups listed as in Table 2.

Proof. See [14].

Table 2. Simple group S with {23} ⊆ π(S) ⊆ {2, 3, 5, 7, 11, 13, 17, 19, 23}
S Order of S |Out(S)|

L2(23) 23 · 3 · 11 · 23 2
U3(23) 27 · 32 · 11 · 132 · 232 4
M23 27 · 32 · 5 · 7 · 11 · 23 1
M24 210 · 33 · 5 · 7 · 11 · 23 1
Co3 210 · 37 · 53 · 7 · 11 · 23 1
Co2 218 · 36 · 53 · 7 · 11 · 23 1
Co1 221 · 39 · 54 · 72 · 11 · 13 · 23 1
Fi23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23 1

3. The proof of Main Theorem

In this section, we will prove the main theorem.

Proof of Main Theorem

Proof. We prove the results by the following cases.

Case 1. L = M11.

Then |L| = 24 · 32 · 5 · 11. It is easy to get from [2], that cd(L) = {1, 10,
11, 16, 44, 45, 55}. So the graph Γ(L) has the vertices {2, 3, 5, 11}, the prime
5 is adjacent to the primes 2, 3, and 11, but the prime 3 is not adjacent to the
primes 2 and 11. By in Γ(G), there is a character χ such that χ(1) is divisible
by 55.

We can conclude that O11(G) = 1 = O5(G). In fact, if O11(G) ̸= 1, then
since |G11| = 11, then O11(G) is a Sylow 11-subgroup. Then by Lemma 2.1,
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there is a character χ ∈ Irr(G) such that χ(1)
∣∣|G : O11(G)|, a contradiction.

Hence we have O11(G) = 1. Similarly, O5(G) = 1.

Assumed that G is a solvable group. Let M be a minimal normal subgroup
of G. Then M is an elementary abelian p-group where p = 2 or p = 3. Since in
Γ(G) the prime 5 is adjacent to the primes 2 and 3, then we can assume that
|M |

∣∣23 or |M | = 3.

Case 1.1. Let M be a 3-group. Let H/M be a Hall subgroup of order
24 · 5 · 11. Then |G/M : H/M | = 3 and so (G/M)/(L/M) ↪→ S3, where
L/M = CoreG/M (H/M). Therefore 11

∣∣|L/M |. By Lemma 2.4, Q/M is normal
in L/M , where Q/M is a Sylow 11-subgroup of L/M . Hence QEG and |Q| = 33.
Therefore O11(G) ̸= 1, a contradiction.

Case 1.2. Let M be a 2-group. Then |M | = 2k with 1 ≤ k ≤ 3. Let H/M
be a Hall subgroup of order 33 · 5 · 11. Then |G/M : H/M | = 24−k.

Let k = 3, 2 or 1. Then G/HG ↪→ S2, G/HG ↪→ S4 or G/HG ↪→ S8

respectively. Then in these three cases, 11
∣∣|HG|. By Lemma 2.4, Q/M , the

Sylow 11-subgroup of HG/M , is also normal in HG/M . It follows that Q E G.
Since |Q| = 2k·11, thenG11EHG chG and soG11 is normal inG, a contradiction.

Therefore G is non-solvable and so by Lemma 2.3, G has a normal series
1 EH EK E G, such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K|

∣∣|Out(K/H)|.
We will prove that 11 ∈ π(K/H). Assume the contrary, then obviously by

Lemma 6(d) of [7] and Lemma 2.13 of [8], |Out(K/H)| is not divisible by 11.
If 11

∣∣|H|, then there is a Hall {p, 7}-subgroup D of H, where p is a prime and
p ∈ {2, 3, 5}, then by considering group order and Lemma 2.4, D is cyclic and so
D is abelian. By Lemma 2.1, χ(1)

∣∣|G : D|, a contradiction. Therefore 11
∣∣|K/H|.

In Γ(G), the prime 3 is not adjacent to the primes 2 and 11 and so, by
Lemma 2.5 and order consideration, K/H is isomorphic to one of the simple
groups: L2(11) or L.

LetK/M ∼= L2(11). By [2], cd(L2(11)) = {1, 5, 10, 11, 12} and so in Γ(L2(11)),
the prime 11 is adjacent to the prime 3. It follows that the prime 2 is adjacent
to the prime 3 in Γ(G), a contradiction.

Let K/M ∼= L. Then M = 1 and G ∼= L by order consideration.

Case 2. L = M12.

Then |L| = 26 · 33 · 5 · 11. By [2], cd(L) = {1, 11, 16, 45, 54, 55, 66, 99, 120,
144, 176} and so the graph Γ(G) is complete with vertex set {2, 3, 5, 11}.

Similarly as Case 1, we can prove that O11(G) = 1.

Assumed that G is a solvable group. Let M be a minimal normal subgroup
of G. Then M is an elementary abelian p-group where p = 2 or p = 3(in fact,
if p = 5, then since |G5| = 5 = |M |, there is a character χ ∈ Irr(G) such that
χ(1)

∣∣|G : M |, contradicting Lemma 2.1).

Let M be a 3-group. Then |M | = 3k with 1 ≤ k ≤ 2 since Γ(G) is complete.
Let H/M be a Hall subgroup of order 26 · 5 · 11. Then |G/M : H/M | = 33−k

and so G
HG

↪→ S9 when k = 1 or G
HG

↪→ S3 when k = 2. It follows that 11
∣∣|HG|.
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Let Q/M be a Sylow 11-subgroup of HG/M . Since |HG/M |
∣∣|H/M | = 26 · 5 · 11,

then Q/M is normal in HG and so Q E G. Since |Q| = 3k · 11, then O11(G) is
normal in G, a contradiction.

Let M be a 2-group. Then |M | = 2k with 1 ≤ k ≤ 5 since Γ(G) is complete.
Let H/M be a Hall subgroup of order 33 · 5 · 11 of G/M . Then |G/M : H/M | =
26−k.

Let 3 ≤ k ≤ 5. Then G/HG
∼= S8 when k = 3, G/HG

∼= S4 when k = 4, or
G/HG

∼= S2 when k = 5. In these three cases, 11
∣∣|HG|. Let Q/M be a Sylow

11-subgroup of HG/M . Since |HG/M |
∣∣|H/M | = 33 · 5 · 11, then Q/M is normal

in HG/M and so Q E G. Since |Q| = 2k · 11, then O11(G) is normal in G, a
contradiction.

Let 1 ≤ k ≤ 2. Let Q/M be a Sylow 11-subgroup of H/M . Then by Lemma
2.4, Q/M is normal in H/M , in particularly, QEH. Since |Q| = 2k ·11, then G11

is normal in H and so N/C := NG(G11)
CG(G11)

/ Z10. If N/C ∼= Z10 or N/C ∼= Z5, then

CG(G11) is a {2, 3, 11}-group. It is easy to see that G11 chC and so G11 EG. If
N/C ∼= Z2, then N/C is a {2, 3, 5, 11}-group and so G11 chC and so G11 E G.
If N = C, then also we have G11 E G. So in these cases, we rule out since
O11(G) = 1.

Therefore, G is non-solvable and so by Lemma 2.3, G has a normal series
1 EH EK E G, such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K|

∣∣|Out(K/H)|. Similarly as Case 1, we can show that
11

∣∣|K/H|. Therefore by Lemma 2.5, K/H is isomorphic to L2(11), M11 or L.

Let K/H ∼= L2(11). Then L2(11) ≤ G/H ≤ Aut(L2(11)) and |G/K| |
|Out(L2(11))| = 2. If G/H ∼= L2(11), then |H| = 22 · 3. By [2], cd(L2(11)) =
{1, 5, 10, 11, 12} and so in Γ(L2(11)), the primes 2, 3 are not adjacent to the
prime 11. Since 5 - |H|, then this case can’t occur. Similarly we can rule out
the two cases G/H ∼= Z2.L2(11) and G/H ∼= SL2(11).

Let K/H ∼= M11. Since |Out(M11)| = 1 and cd(M11) = {1, 10, 11, 16, 44,
45, 55}, then G/H ∼= M11 and |H| = 12. On the other hand, in Γ(M11), the
prime 3 is not adjacent to the primes 2 and 11. Therefore G = A4 ×M11.

Let K/H ∼= L. Then H = 1 and so order consideration implies that G ∼= L.

Case 3. L = M23.

Then |L| = 27 · 32 · 5 · 7 · 11 · 23 and |Out(L)| = 1.

By [2], cd(L) = {1, 22, 45, 230, 231, 253, 770, 896, 990, 1035, 2024} and so
in Γ(L), the prime 7 is not adjacent to the prime 23.

We will prove O23(G) = 1. Assume the contrary, then O23(G) is normal in
G. But |G|23 = 23 and so O23(G) is an abelian normal Sylow 23-subgroup of G.
It follows that for all χ ∈ Irr(G), χ(1)

∣∣|G : O23(G)|, contradicting Lemma 2.1.
Similarly, we can conclude that O11(G) = O7(G) = O5(G) = 1.

Assumed that G is a solvable group. Let M be a minimal normal subgroup
of G. Then M is an elementary abelian p-group where p = 2 or p = 3.

Let M be a 3-group. Then |M | = 3 since in Γ(G) the prime 3 is adjacent
to the prime 23. Let H/M be a Hall subgroup of order 27 · 5 · 7 · 11 · 23. Then



SHITIAN LIU, XIANHUA LI 676

|G/M : H/M | = 3 and so G
HG

↪→ S3. It follows that 23
∣∣|HG|. Let Q/M be a

Sylow 23-subgroup of HG/M . Since |HG/M |
∣∣|H/M | = 27 · 5 · 7 · 11 · 23, then

Q/M is normal in HG/M and so Q E G. Since |Q| = 3 · 23, then O23(G) is
normal in G, a contradiction.

Let M be a 2-group. Then |M | = 2k with 1 ≤ k ≤ 6 since in Γ(G), the
prime 2 is adjacent to the prime 23. Let H/M be a Hall subgroup of order
32 · 5 · 7 · 11 · 23 of G/M . Then |G/M : H/M | = 27−k.

Let 3 ≤ k ≤ 6. Then G/HG
∼= S16 when k = 3, G/HG

∼= S8 when k = 4,
G/HG

∼= S4 when k = 5, or G/HG
∼= S2 when k = 6. In these four cases,

23
∣∣|HG|. Let Q/M be a Sylow 23-subgroup of HG/M . Since |HG/M |

∣∣|H/M | =
32 ·5 ·7 ·11 ·23, then Q/M is normal in HG/M and so QEHG. Since |Q| = 2k ·23,
then G23 is normal in G.

Let 1 ≤ k ≤ 2. Let Q/M be a Sylow 23-subgroup of H/M . Then by Lemma
2.4, Q/M is normal in H/M , in particularly, Q EH. Since |Q| = 2k · 23, then
G23 is normal in H and so N/C := NG(G23)

CG(G23)
/ Z22. If N/C ∼= Z11 or Z22, then

C is a {2, 3, 5, 7, 23}-group and by Lemma 2.4 G23 is normal in C. If N/C ∼= Z2,
then C is a {2, 3, 5, 7, 11, 23}-group and also G23 is normal in C. In these cases,
we have O23(G) ̸= 1, a contradiction.

Therefore, G is non-solvable and so by Lemma 2.3, G has a normal series
1 EH EK E G, such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K|

∣∣|Out(K/H)|. Similarly as Case 1, we can show that
7, 11, 23

∣∣|K/H|. Therefore by Lemma 2.6, K/H is isomorphic to L.

It is easy to get that G is isomorphic to L by group order.

Case 4. L = M24.

In this case, |L| = 210 · 33 · 5 · 7 · 11 · 23 and Mult(L) = 1.

Similarly as Case 1, we can prove that O23(G) = O11(G) = O7(G) =
O5(G) = 1.

By [2], cd(L) = {1, 23, 45, 231, 252, 253, 483, 770, 990, 1035, 1265, 1771,
2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395}. It means that the graph Γ(G)
is complete.

Assumed that G is a solvable group. Let M be a minimal normal subgroup
of G. Then M is an elementary abelian p-group with p = 2 or 3.

Let M be a 3-group. Let H/M be a Hall subgroup of G/M of order 210 ·5 ·7 ·
11 · 23. Then similarly as Case 1, we can get that G/HG ↪→ S9 or G/HG ↪→ S3

since Γ(G) is complete. In both cases, 23 | |HG|. By Lemma 2.4, we know that
G23M/M is normal in HG/M(note that the Sylow 23-subgroup of HG is also a
Sylow 23-subgroup of G) and so G23M E G. We know that G23 E G23M . But
HG chG. Hence G23 EG, a contradiction.

Let M be a 2-group. Let H/M be a Hall subgroup of G/M with order
33 · 5 · 7 · 11 · 23. Let Q/M be a Sylow 23-subgroup of H/M . Then by Lemma
2.4, Q/M is normal in H/M and so QEH. We have |Q| = 2k ·23 and G23 chQ.
So G23 is normal in H. Similarly as Case 2, G23 is normal in G, a contradiction.
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Therefore, G is non-solvable and so by Lemma 2.3, G has a normal series
1 EH EK E G, such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K|

∣∣|Out(K/H)|. Similarly as Case 1, we can show that
5, 7, 11, 23

∣∣|K/H|. Therefore by Lemma 2.6, K/H is isomorphic to M23 or L.
If K/H ∼= M23, then G/H ∼= M23 since Mult(M23) = 1 and Out(M23) = 1.

It follows that |H| is a {2, 3}. Since in Γ(M23), the prime 7 is not adjacent to
the prime 23 and Γ(G) is complete, then we can rule out this case.

If K/H ∼= L, then H = 1 and so order consideration forces G ∼= L.
This completes the proof of Main Theorem.

4. Some applications

Huppert in [3] gave the following conjecture related to character degrees of finite
simple groups.
Conjecture[3] Let H be any simple nonabelian group and G a group such that
cd(G) = cd(H). Then G ∼= H ×A, where A is abelian.

Then we have the following theorem.

Corollary 4.1. Let L ∈ {M11,M12,M23,M24} and G a group such that cd(G) =
cd(L). Then G ∼= L×A, where A is abelian.

We first show the following easy result.

Lemma 4.2. Let G be a finite group. If pa
∣∣χ(1) for some χ ∈ Irr(G) and

pa+1 - η(1) for all η ∈ Irr(G). Then pa
∣∣|G|. In particular, if a = 1 and G is

simple group, then |G|p = p.

Proof. It is easy to get from lemma 2.1. If a = 1 and G is simple, then by
Problem 3.4 of [4], have |G|p = p.

Proof of Corollary 4.1.

Proof. By Lemma 4.2, and Main Theorem 1.1, G/H ∼= L. Order consideration
implies the result.

This completes the proof.
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