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Abstract. Let G be a group. We denote by nse(G) := {my | k € 7.(G)}, where
7e(G) is the set of element orders of G and my, is the number of elements of order & in
G. In this paper, we characterize simple linear group Ls(p) uniquely by set nse(La(p))
when p € {19, 23}.
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1. Introduction

Throughout this paper, all groups are finite and GG denotes a group. We denote
by 7(G) the set of prime divisors of |G|, .(G) the set of element orders of G.
We call G a simple K,-group if G is simple with |7(G)| = n. If r € n(G),
then P, and n,(G) denote a Sylow r-subgroup of G' and the number of Sylow
r-subgroups of G, respectively. Let n be an integer. We denote by ¢(n) the
FEuler function of n.

The prime graph GK(G) of a group G is defined as a graph with vertex set
7m(G) and two distinct primes p,q € 7(G) are adjacent if G contains an element
of order pg. Moreover, the connected components of GK(G) are denoted by
mi, 1 < i < t(G), where t(G) is the number of connected components of G. In
particular, we define by m; the component containing the prime 2 for a group
of even order.

Let k € 7.(G) and my be the number of elements of order k in G. Set
nse(G) == {my | k € m(G)}. In 1987, Thompson gave an example showing that
not all groups can be characterized by nse(G) and |G|: Let G; = (Cy x Ca x
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Cy x Cy) x A7 and Gy = L3(4) x Cy be two maximal subgroups of Mss. Then
nse(G1) = nse(G2) and |G| = |Gal, but G1 2 Ga.

So it is an interesting topic to study class of groups G which can be charac-
terized by the group order |G| and the set nse(G). Then authors of [8] proved
that all simple K4-groups can be uniquely determined by nse(G) and |G|. Also
in [9], it is proved that La(3) = A4, La(4) = La(5) = As and Lo(9) = Ag are
uniquely determined by nse(G). M. Khatami, B. Khosravi and Z. Akhlaghi
([4]) deduced that simple groups La(p) is characterizable by uniquely the set
nse(La(p)) if p € {7,8,11,13}. Recently, the authors of this paper ([6]) proved
that simple linear groups Lo(p) with p € {17,27,29} can be uniquely determined
by its set nse(La(q)).

By using prime graph of a group as a new skill, in this present paper we prove
that simple linear group Ls(p) can be determined by exactly the set nse(La(p))
if p € {19,23}. Our main theorem is:

Theorem A. Let G be a group and p € {19,23}. Then G = Ly(p) if and only
if nse(G) = nse(La(p)).

Throughout this paper, we denote n,(G) by n, and my(G) by my if there
is no confusion. Further unexplained notation is standard, readers may refer
to [2].

2. Preliminaries

In this section we give some lemmas which will be used in the sequel.

Lemma 2.1. Let G be a group. Let k € me(G) and my, be the number of elements
of order k in G. Then ¢(k) | my. In particular, if there exists some odd integer
n € nse(G), then 2 € w(G) and mg = n. Moreover, my # n for any k > 3.

Proof. Let t be the number of the cyclic subgroups of order k of G, where
1 # k € me(G). Then my, = tp(k), yielding to ¢(k) | mg. In particular, if there
exists some odd integer n € nse(G), then ma = n, since otherwise, (k) is even
for any k£ > 3. 0

Lemma 2.2 ([3]). Let G be a group and m be a positive integer dividing |G|. If
L, (G) ={g € Glg™ = 1}, then m | |L,,(G)|.

Lemma 2.3 ([7, Lemma 2.3]). Let G be a group and P be a cyclic Sylow p-
subgroup of G. Assume further that |P| = p® and r is an integer such that
pr € me(G). Then mpa, = mp(Cq(P))mye. In particular, o(r)mpe | mpa,.

Lemma 2.4 ([5]). Let G be a group and p € w(G) be odd. Suppose that P is a
Sylow p-subgroup of G and n = p*m, where (p,m) = 1. If P is not cyclic and
s > 1, then the number of elements of order n is always a multiple of p°.
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Recall that G is a 2-Frobenius group, if there G has a normal series 1 <
H < K <G such that G/H and K are Frobenius groups with K/H and H as
Frobenius kernels, respectively.

Lemma 2.5 ([11, Theorem]|). Let G be a group such that t(G) > 2. Then G
has one of the following structures:

(a) G is a Frobenius or 2-Frobenius group.

(b) G has a normal series 1 <H <K QG such that m(H)Un(K/H) C 7 and
K/H is a nonabelian simple group.

Lemma 2.6 ([1, Theorem 2]). If G is a 2-Frobenius group of even order, then
t(G) = 2 and G has a normal series 1 < H I K I G such that m(K/H) = 7,
m(H)Un(G/K) = m, |G/K| | |Aut (K/H)|, G/K and K/H are cyclic. In
particular, |G/K| < |K/H| and G is solvable.

Lemma 2.7. Let G be a simple group. If 7(G) = {2,3,5,19}, then G = Lo(19);
if 1(Q) = {2,3,11,23}, then G = Ly(23).

Proof. It follows immediately from [10, Corollary 2] and [10, Corollary 4]. O

Lemma 2.8 ([8, Lemma 2.5]). Let G be a group with a normal series: K<JL<G.
Suppose that P € Syl,(G), where p € n(G). If P < L and p { |K|, then the
following statements hold:

(1) |G : Ng(P)| = |L : N(P)|, that is, ny(G) = n,(L);

(2) |IL/K : Nk (PK/K)|t = |G : No(P)| = |L: NL(P)|, that is, ny(L/K)t =
np(G) = ny(L) for some positive integer t. Furthermore, [Nk (P)|t = |K]|.

3. Proof of Theorem A

Proof. The necessity of the theorem is obvious. We only prove the sufficiency
and we will discuss it case by case.
Case 1. nse(G) = {1,171,684, 380,1140, 360} = nse(Ly(19)).

By Lemma 2.1 and Lemma 2.2, we see that 2 € n(G) C {2,3,5,7,19} and
mg = 171. Let exp(P,) = 2°. Then s < 4 since ¢(2°) | mas by Lemma 2.1.
Moreover, |P,| < 2% by Lemma 2.2. Next we show that 7(G) = {2,3,5,19}.

If 7 € n(G), then Lemma 2.2 gives m7 = 1140. More, 7% & 7.(G) since
©(7?) | m72 by Lemma 2.1. Therefore, |P;| = 7 as |P7| | (1+m7) by Lemma 2.2.
If 14 € 7. (G), then m7 = my4 by Lemma 2.3, against 14 | (1+mg+m7+mi4) by
Lemma 2.2. As a consequence, P; acts fixed-point-freely on Qs := {all elements
of order 2 in G}, leading to 7 | mg. This contradiction forces 7(G) C {2,3,5,19}.

Similarly, if 3 € 7(G), then m3 = 380 and exp(P3) < 32. Assume that
exp(P3) = 9. Then mg = 1140 by Lemma 2.1 and Lemma 2.2, which implies
that P5 is cyclic by Lemma 2.4. In this case, ng = mg/¢(9) = 2-5-19 and thus
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m(G) = {2,3,5,19}, we are done. On the other hand, if exp(Ps;) = 3, we also
have 7(G) = {2,3,5,19}.

Assume now 5 € 7(G). By a similar argument, we obtain that ms; = 684
and exp(P5) < 52. More, if exp(P5) = 52, then mgos; = 1140 and |P5| = 5% by
Lemma 2.2. In this case, ns = mas/¢(25) = 3-19, implying 7(G) = {2, 3,5, 19};
if exp(Ps) = 5, then |P5| = 5, leading to ns = ms/¢(5) = 3% - 19, which also
deduces that 7(G) = {2, 3,5,19}, as we need.

As a consequence, we may consider G as a {2,19}-group. Note that G is
not a 2-group since exp(P») < 24 and |nse(G)| = 6. Thus 19 € 7(G). Lemma
2.2 shows that 192 ¢ 7.(G). Moreover, |Pyg| | 19%2. Assume that |Pjg| = 19.
Then nig = mig/p(19) = 22 -5, a contradiction. Hence |Pyg| = 192. Since
m(G) C{1,2,--- ,24} U {19,19-2,--- ,19- 23}, we obtain that

(1) |G| = 2736 + 684k, + 380k + 1140k; + 360k,
with 3}, k; < 3. That is,
(2) 2¢-19% =2%.32.19422.3% .19k +2%-5-19ky +2%-3-5-19k3 + 23 - 3% - 5ky.

Except 23 - 3% - 5ky, 19 divides both sides of the equation (2), we get ky = 0
as Z?Zl k; < 3. Thus,

(3) 2072.19 = 2% . 3% 4 3%k + 5ky + 3 - 5ks.

Recall that a < 6. Then the unique equation of (3) is k1 = k4 = 0,ky =
ks = 2 with a = 4, against Z?Zl k; < 3. Consequently, 7(G) = {2,3,5,19}, as
required.

We claim that |Ps| = 5, |Pig| = 19, where P5; and Pjg are Sylow 5-subgroup
and Sylow 19-subgroup of G, respectively. Further, 197 & 7.(G) and 5s & 7.(G)
for 2 # s € w(G).

Suppose that |Pyg| = 192. If |Ps| = 25, then exp(Ps) = 52. One has
ns = mg5/g0(25) =3-19, implying 19 ‘ ’Ng(Pg))’ Let Nyig € Syhg(Ng(Pg))). By
Sylow’s Theorem, it follows that Psx N1g < G, leading to 52-19 € 7.(G), against
©(19)ms2 | ms2.19 by Lemma 2.3. Assume that |P;| = 5. In this case, ns =
ms/p(5) = 32 - 19, implying 19 | [Ng(Ps)|. By Sylow’s Theorem, Ps x Pig < G
with Pjg a Sylow 19-subgroup of Ng(Ps). Hence 5 - 19 € 7.(G), contrary to
©(19)ms | ms.19 by Lemma 2.3. Consequently, |Pig| = 19. Furthermore, if there
exists some primer r such that 19r € 7.(G), then ¢(r)mig | mig,. This forces
r = 2 and my9 = msg. However, under this situation, 38 t (1+mg+myg+mss) =
892, against Lemma 2.2.

Analogously, we may prove that |Ps| = 5. If not, |Ps| = 5% and P5 acts
fixed-point-freely on 19 := { all elements of order 19 of G}. Hence, 25 | m19, a
contradiction. As a result, |P5;| = 5. Further, and 5s ¢ 7.(G) for any 2 # s €
m(G), as required.

As a result, t(G) > 2. Assume that G = K x H is a Frobenius group. Then
either 19 | |K| or 19 | |H|. If the former holds, then |K| =19 as ¢t(G) = 2. In
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this case, m1g = 18 € nse(G). This contradiction shows that 19 | |[H|. Let K,
be a Sylow r-subgroup of K with r € w(K) and Hig be a Sylow 19-subgroup of
H. Then K, x Hjg is also a Frobenius group, which implies that 19 | (| K| — 1),
a contradiction if we consider the order of K.
Suppose then that G is a 2-Frobenius group, then G has the following normal
series:
I1<H<aK<G

with |[K/H| =19 and |G/K| | |[Aut(K/H)| by Lemma 2.6. Hence 5 | |H| and
thus ms = 4, a contradiction.
By Lemma 2.5, G has the following normal series:

I19H<KK <G

with K/H a non-solvable simple group and 7(H)Un(G/K) C 7. If K/H is a
simple K3-group, then 19 { |K/H| by [2], which leading to 19 | |H| or 19 | |G/K]|.
Assume that the former holds. Notice that 5 | |K/H|. Let K5 be a Sylow 5-
subgroup of K and Hig be a Sylow 19-subgroup of H. Then K5 x Hig < G,
yielding to 5 - 19 € 7m.(G), which is a contradiction to the argument above.
Similarly, it will also deduce a contradiction if 19 | |G/H|.

As a consequence, K/H is a non-solvable simple Kj-group, yielding to
K/H = Ly(19) by Lemma 2.7. Moreover, it follows by Lemma 2.8 that nig(K/H)
= ny19 and |Ng(Pio)|t = |H|. Since mig = mig(K/H), we obtain njo(K/H) =
n19, which follows that ¢ = 1 and thus H = Ny (Pig). Note that H < G. Then
HPyg = H x Pig <G. As 19r ¢ 7.(G) for any prime r € n(G), we get H = 1.
Hence K = L9(19) and |G/K]| | 2. If G = K.2, then by [2], ma = 361 & nse(G).
This contradiction implies that G = L(19).

Case 2. nse(G) = {1,253,506, 2760, 1012, 528} = nse(L2(23)).

By Lemma 2.1 and Lemma 2.2, we see that 2 € n(G) C {2,3,11,23,1013}
and mg = 253. Moreover, exp(P,) < 2° and |Py| < 26.

If 1013 € TI'(G), then mqg13 = 1012, leading to |P1013| = 1013 and Pi913 <G,
where Pjg13 is a Sylow 1013-subgroup of G. Let 3 := { all elements of order 2 in
G}. We claim that Pjg13 acts fixed-point-freely on . Otherwise, 2026 € .(G)
and mao2e = 1012 since ¢(2026) ’ mMo026, against magze ’ (1 + mo + mio13 +
ma.1013) by Lemma 2.2. As a consequence, | P3| divides |{23| = ma, again a
contradiction. Therefore, 7(G) C {2,3,11,23}.

We assert that 7(G) = {2,3,11,23}. Assume first that 11 € 7(G). Then
Lemma 2.2 gives m1; = 2760, 112 ¢ 7.(G) and |Pi1| = 11. By Sylow’s Theorem,
|G : Ng(P11)| = mi1/¢(11) = 22.3-23. This indicates that 7(G) = {2,3,11, 23},
we are done.

Suppose then that 3 € n(G). We see that mz = 506 by Lemma 2.2. Let
exp(P;) = 3°. Then s < 3% as ¢(3%) | mgs. If exp(P3) = 3%, then mg =
528. Lemma 2.4 implies that Pz is cyclic. Hence n3 = mg/p(9) = 23 - 11; if
exp(Ps) = 3, the same arguments gives ng = 11-23. As a result, we always have
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11 € n(Q) if 3 € m(G). By the argument in the previous paragraph, we also
have 7(G) = {2, 3,11, 23}.

Consequently, we may consider G as a {2,23}-group. Note that exp(P) <
25, If G is a 2-group, then |G| = 5060, which is not a power of 2, a contradiction.
Thus 23 € 7(G). In this case, mo3 = 528 and exp(Pa3) < 232. If 232 € 7.(G),
then mgyg2 = 506 or 1012 , against 232 | (1 + maz + mgy32) = 1035 or 1541 by
Lemma 2.2. Hence exp(Pp3) = 23. It follows by Lemma 2.2 that | P3| | 232
Assume that |Pag| = 23, then nag = mas/p(23) = 23 - 3, a contradiction. Hence
|Po3| = 232. Moreover, m.(G) C {1,2,22,23 24 25} U{23,2 23,22 . 23,23 .
23,24 .23}, We show that 2° ¢ 7.(G). Otherwise, P3 act fixed-point-freely on
Qs := { all elements of order 2° in G}, which implies that |Py3| | mys, which is
a contradiction since mys = 528. Thus 7.(G) C {1,2,22,23 24} u{23,2-23,22.
23,23 .23,2%.23}. Further,

(4) |G| = 2% - 23% = 5060 + 506k + 2760ky + 1012k3 + 528k,
with S0, k; < 4. That is,
(5) 2%-23% = 22.5-11-23+2-11-23k; +23-3-5-23ky +2%-11-23k3 +2%-3 - 11ky.

Since 23 divides both sides of equation (5) except 24 -3 - 11ky, we have k4 = 0.
Then the equation becomes

(6) 201,923 =2.5. 11 + 11k; +2* -3 - 5ky + 2 - 11ks3.

Recall that a < 6 and 37, k; < 4. It follows that 44 < 11k; +22-3-5ky +2-
11ks < 240. Hence the unique possibility is a = 4, k1 = k4 =0, ko = 1, k3 = 4,
contrary to Z?Zl k; < 4. This contradiction shows that 7(G) = {2, 3,11, 23}.

Recall that |Pj1| = 11. If there exists some prime r such that 11r € 7.(G),
then (r — 1) - myy | mi1, by Lemma 2.3, yielding that » = 2 and magg = 2760.
In this case, 22 1 (1 + mg + m11 + mao2) = 5774, against Lemma 2.2. Therefore,
11 || |G| and 117 & 7(G) for any r € 7(G).

Now we prove that |Pp3| = 23. If not, |Py3| = 232. Moreover, Po3 acts
fixed-point-freely on Q17 := { all elements of order 11 in G}. As a consequence,
| Pog| | m11, which is a contradiction. Hence |Pa3| = 23. Further, if there exists
some prime r such that 23r € 7.(G), then Lemma 2.3 shows that » = 2. In this
case, 2-231 (1 + ma + ma3 + ma.o3), against Lemma 2.2. That is to say, for any
prime r € 7(G), we always have 11r & 7.(G), yielding that ¢(G) > 3.

By Lemma 2.5, we see that GG is non-solvable and has the following normal
series: 1 I H <K <G with K/H a simple Ky-group and 7(H)Un(G/K) C .

We see from Lemma 2.7 that K/H = L5(23). Moreover, Lemma 2.8 gives
N (Pas)|t = |H| and nos(K/H)t = na3. Since K/H = L5(23), we have
mos(K/H) = mas, yielding nos(K/H) = no3(K) and thus ¢ = 1. Further,
H < Ng(P»3), and hence H x Po3 < G. Note that 23r ¢ m.(G). Then H = 1.
As a result, K = L9(23) and |G/K]| | 2. Assume that G = K.2, then by [2],
ma = 529 ¢ nse(G). This contradiction indicates that G = K = Lo(23). O
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