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Abstract. Let G be a group. We denote by nse(G) := {mk | k ∈ πe(G)}, where
πe(G) is the set of element orders of G and mk is the number of elements of order k in
G. In this paper, we characterize simple linear group L2(p) uniquely by set nse(L2(p))
when p ∈ {19, 23}.
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1. Introduction

Throughout this paper, all groups are finite and G denotes a group. We denote
by π(G) the set of prime divisors of |G|, πe(G) the set of element orders of G.
We call G a simple Kn-group if G is simple with |π(G)| = n. If r ∈ π(G),
then Pr and nr(G) denote a Sylow r-subgroup of G and the number of Sylow
r-subgroups of G, respectively. Let n be an integer. We denote by φ(n) the
Euler function of n.

The prime graph GK(G) of a group G is defined as a graph with vertex set
π(G) and two distinct primes p, q ∈ π(G) are adjacent if G contains an element
of order pq. Moreover, the connected components of GK(G) are denoted by
πi, 1 ≤ i ≤ t(G), where t(G) is the number of connected components of G. In
particular, we define by π1 the component containing the prime 2 for a group
of even order.

Let k ∈ πe(G) and mk be the number of elements of order k in G. Set
nse(G) := {mk | k ∈ πe(G)}. In 1987, Thompson gave an example showing that
not all groups can be characterized by nse(G) and |G|: Let G1 = (C2 × C2 ×
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C2 × C2) o A7 and G2 = L3(4) o C2 be two maximal subgroups of M23. Then
nse(G1) = nse(G2) and |G1| = |G2|, but G1 � G2.

So it is an interesting topic to study class of groups G which can be charac-
terized by the group order |G| and the set nse(G). Then authors of [8] proved
that all simple K4-groups can be uniquely determined by nse(G) and |G|. Also
in [9], it is proved that L2(3) ∼= A4, L2(4) ∼= L2(5) ∼= A5 and L2(9) ∼= A6 are
uniquely determined by nse(G). M. Khatami, B. Khosravi and Z. Akhlaghi
([4]) deduced that simple groups L2(p) is characterizable by uniquely the set
nse(L2(p)) if p ∈ {7, 8, 11, 13}. Recently, the authors of this paper ([6]) proved
that simple linear groups L2(p) with p ∈ {17, 27, 29} can be uniquely determined
by its set nse(L2(q)).

By using prime graph of a group as a new skill, in this present paper we prove
that simple linear group L2(p) can be determined by exactly the set nse(L2(p))
if p ∈ {19, 23}. Our main theorem is:

Theorem A. Let G be a group and p ∈ {19, 23}. Then G ∼= L2(p) if and only
if nse(G) = nse(L2(p)).

Throughout this paper, we denote nr(G) by nr and mk(G) by mk if there
is no confusion. Further unexplained notation is standard, readers may refer
to [2].

2. Preliminaries

In this section we give some lemmas which will be used in the sequel.

Lemma 2.1. Let G be a group. Let k ∈ πe(G) and mk be the number of elements
of order k in G. Then φ(k) | mk. In particular, if there exists some odd integer
n ∈ nse(G), then 2 ∈ π(G) and m2 = n. Moreover, mk ̸= n for any k ≥ 3.

Proof. Let t be the number of the cyclic subgroups of order k of G, where
1 ̸= k ∈ πe(G). Then mk = tφ(k), yielding to φ(k) | mk. In particular, if there
exists some odd integer n ∈ nse(G), then m2 = n, since otherwise, φ(k) is even
for any k ≥ 3.

Lemma 2.2 ([3]). Let G be a group and m be a positive integer dividing |G|. If
Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.

Lemma 2.3 ([7, Lemma 2.3]). Let G be a group and P be a cyclic Sylow p-
subgroup of G. Assume further that |P | = pa and r is an integer such that
par ∈ πe(G). Then mpar = mr(CG(P ))mpa. In particular, φ(r)mpa | mpar.

Lemma 2.4 ([5]). Let G be a group and p ∈ π(G) be odd. Suppose that P is a
Sylow p-subgroup of G and n = psm, where (p,m) = 1. If P is not cyclic and
s > 1, then the number of elements of order n is always a multiple of ps.



QINHUI JIANG, CHANGGUO SHAO 626

Recall that G is a 2-Frobenius group, if there G has a normal series 1 ▹
H ▹K ▹ G such that G/H and K are Frobenius groups with K/H and H as
Frobenius kernels, respectively.

Lemma 2.5 ([11, Theorem]). Let G be a group such that t(G) ≥ 2. Then G
has one of the following structures:

(a) G is a Frobenius or 2-Frobenius group.

(b) G has a normal series 1EH EKEG such that π(H)∪π(K/H) ⊆ π1 and
K/H is a nonabelian simple group.

Lemma 2.6 ([1, Theorem 2]). If G is a 2-Frobenius group of even order, then
t(G) = 2 and G has a normal series 1 EH EK E G such that π(K/H) = π2,
π(H)

∪
π(G/K) = π1, |G/K| | |Aut (K/H)|, G/K and K/H are cyclic. In

particular, |G/K| < |K/H| and G is solvable.

Lemma 2.7. Let G be a simple group. If π(G) = {2, 3, 5, 19}, then G ∼= L2(19);
if π(G) = {2, 3, 11, 23}, then G ∼= L2(23).

Proof. It follows immediately from [10, Corollary 2] and [10, Corollary 4].

Lemma 2.8 ([8, Lemma 2.5]). Let G be a group with a normal series: KELEG.
Suppose that P ∈ Sylp(G), where p ∈ π(G). If P ≤ L and p - |K|, then the
following statements hold:

(1) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);

(2) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )| , that is, np(L/K)t =
np(G) = np(L) for some positive integer t. Furthermore, |NK(P )|t = |K|.

3. Proof of Theorem A

Proof. The necessity of the theorem is obvious. We only prove the sufficiency
and we will discuss it case by case.

Case 1. nse(G) = {1, 171, 684, 380, 1140, 360} = nse(L2(19)).

By Lemma 2.1 and Lemma 2.2, we see that 2 ∈ π(G) ⊆ {2, 3, 5, 7, 19} and
m2 = 171. Let exp(P2) = 2s. Then s ≤ 4 since φ(2s) | m2s by Lemma 2.1.
Moreover, |P2| ≤ 26 by Lemma 2.2. Next we show that π(G) = {2, 3, 5, 19}.

If 7 ∈ π(G), then Lemma 2.2 gives m7 = 1140. More, 72 ̸∈ πe(G) since
φ(72) | m72 by Lemma 2.1. Therefore, |P7| = 7 as |P7| | (1+m7) by Lemma 2.2.
If 14 ∈ πe(G), then m7 = m14 by Lemma 2.3, against 14 | (1+m2+m7+m14) by
Lemma 2.2. As a consequence, P7 acts fixed-point-freely on Ω2 := {all elements
of order 2 in G}, leading to 7 | m2. This contradiction forces π(G) ⊆ {2, 3, 5, 19}.

Similarly, if 3 ∈ π(G), then m3 = 380 and exp(P3) ≤ 32. Assume that
exp(P3) = 9. Then m9 = 1140 by Lemma 2.1 and Lemma 2.2, which implies
that P3 is cyclic by Lemma 2.4. In this case, n3 = m9/φ(9) = 2 · 5 · 19 and thus
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π(G) = {2, 3, 5, 19}, we are done. On the other hand, if exp(P3) = 3, we also
have π(G) = {2, 3, 5, 19}.

Assume now 5 ∈ π(G). By a similar argument, we obtain that m5 = 684
and exp(P5) ≤ 52. More, if exp(P5) = 52, then m25 = 1140 and |P5| = 52 by
Lemma 2.2. In this case, n5 = m25/φ(25) = 3 ·19, implying π(G) = {2, 3, 5, 19};
if exp(P5) = 5, then |P5| = 5, leading to n5 = m5/φ(5) = 32 · 19, which also
deduces that π(G) = {2, 3, 5, 19}, as we need.

As a consequence, we may consider G as a {2, 19}-group. Note that G is
not a 2-group since exp(P2) ≤ 24 and |nse(G)| = 6. Thus 19 ∈ π(G). Lemma
2.2 shows that 192 ̸∈ πe(G). Moreover, |P19| | 192. Assume that |P19| = 19.
Then n19 = m19/φ(19) = 22 · 5, a contradiction. Hence |P19| = 192. Since
πe(G) ⊆ {1, 2, · · · , 24} ∪ {19, 19 · 2, · · · , 19 · 23}, we obtain that

(1) |G| = 2736 + 684k1 + 380k2 + 1140k3 + 360k4

with
∑4

i=1 ki ≤ 3. That is,

(2) 2a ·192 = 24 ·32 ·19+22 ·32 ·19k1+22 ·5 ·19k2+22 ·3 ·5 ·19k3+23 ·32 ·5k4.

Except 23 · 32 · 5k4, 19 divides both sides of the equation (2), we get k4 = 0
as

∑4
i=1 ki ≤ 3. Thus,

(3) 2a−2 · 19 = 22 · 32 + 32k1 + 5k2 + 3 · 5k3.

Recall that a ≤ 6. Then the unique equation of (3) is k1 = k4 = 0, k2 =
k3 = 2 with a = 4, against

∑4
i=1 ki ≤ 3. Consequently, π(G) = {2, 3, 5, 19}, as

required.
We claim that |P5| = 5, |P19| = 19, where P5 and P19 are Sylow 5-subgroup

and Sylow 19-subgroup of G, respectively. Further, 19r ̸∈ πe(G) and 5s ̸∈ πe(G)
for 2 ̸= s ∈ π(G).

Suppose that |P19| = 192. If |P5| = 25, then exp(P5) = 52. One has
n5 = m25/φ(25) = 3 · 19, implying 19 | |NG(P5)|. Let N19 ∈ Syl19(NG(P5)). By
Sylow’s Theorem, it follows that P5×N19 ≤ G, leading to 52 ·19 ∈ πe(G), against
φ(19)m52 | m52·19 by Lemma 2.3. Assume that |P5| = 5. In this case, n5 =
m5/φ(5) = 32 · 19, implying 19 | |NG(P5)|. By Sylow’s Theorem, P5 × P19 ≤ G
with P19 a Sylow 19-subgroup of NG(P5). Hence 5 · 19 ∈ πe(G), contrary to
φ(19)m5 | m5·19 by Lemma 2.3. Consequently, |P19| = 19. Furthermore, if there
exists some primer r such that 19r ∈ πe(G), then φ(r)m19 | m19r. This forces
r = 2 andm19 = m38. However, under this situation, 38 - (1+m2+m19+m38) =
892, against Lemma 2.2.

Analogously, we may prove that |P5| = 5. If not, |P5| = 52 and P5 acts
fixed-point-freely on Ω19 := { all elements of order 19 of G}. Hence, 25 | m19, a
contradiction. As a result, |P5| = 5. Further, and 5s ̸∈ πe(G) for any 2 ̸= s ∈
π(G), as required.

As a result, t(G) ≥ 2. Assume that G = K oH is a Frobenius group. Then
either 19 | |K| or 19 | |H|. If the former holds, then |K| = 19 as t(G) = 2. In
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this case, m19 = 18 ∈ nse(G). This contradiction shows that 19 | |H|. Let Kr

be a Sylow r-subgroup of K with r ∈ π(K) and H19 be a Sylow 19-subgroup of
H. Then Kr oH19 is also a Frobenius group, which implies that 19 | (|Kr|− 1),
a contradiction if we consider the order of K.

Suppose then that G is a 2-Frobenius group, then G has the following normal
series:

1▹H ▹K ▹G

with |K/H| = 19 and |G/K| | |Aut(K/H)| by Lemma 2.6. Hence 5 | |H| and
thus m5 = 4, a contradiction.

By Lemma 2.5, G has the following normal series:

1EH EK EG

with K/H a non-solvable simple group and π(H) ∪ π(G/K) ⊆ π1. If K/H is a
simpleK3-group, then 19 - |K/H| by [2], which leading to 19 | |H| or 19 | |G/K|.
Assume that the former holds. Notice that 5 | |K/H|. Let K5 be a Sylow 5-
subgroup of K and H19 be a Sylow 19-subgroup of H. Then K5 × H19 ≤ G,
yielding to 5 · 19 ∈ πe(G), which is a contradiction to the argument above.
Similarly, it will also deduce a contradiction if 19 | |G/H|.

As a consequence, K/H is a non-solvable simple K4-group, yielding to
K/H ∼= L2(19) by Lemma 2.7. Moreover, it follows by Lemma 2.8 that n19(K/H)
= n19 and |NH(P19)|t = |H|. Since m19 = m19(K/H), we obtain n19(K/H) =
n19, which follows that t = 1 and thus H = NH(P19). Note that H EG. Then
HP19 = H × P19 ≤ G. As 19r ̸∈ πe(G) for any prime r ∈ π(G), we get H = 1.
Hence K ∼= L2(19) and |G/K| | 2. If G = K.2, then by [2], m2 = 361 ̸∈ nse(G).
This contradiction implies that G ∼= L2(19).

Case 2. nse(G) = {1, 253, 506, 2760, 1012, 528} = nse(L2(23)).

By Lemma 2.1 and Lemma 2.2, we see that 2 ∈ π(G) ⊆ {2, 3, 11, 23, 1013}
and m2 = 253. Moreover, exp(P2) ≤ 25 and |P2| ≤ 26.

If 1013 ∈ π(G), then m1013 = 1012, leading to |P1013| = 1013 and P1013 EG,
where P1013 is a Sylow 1013-subgroup of G. Let Ω2 := { all elements of order 2 in
G}. We claim that P1013 acts fixed-point-freely on Ω. Otherwise, 2026 ∈ πe(G)
and m2026 = 1012 since φ(2026) | m2026, against m2026 | (1 + m2 + m1013 +
m2·1013) by Lemma 2.2. As a consequence, |P1013| divides |Ω2| = m2, again a
contradiction. Therefore, π(G) ⊆ {2, 3, 11, 23}.

We assert that π(G) = {2, 3, 11, 23}. Assume first that 11 ∈ π(G). Then
Lemma 2.2 gives m11 = 2760, 112 ̸∈ πe(G) and |P11| = 11. By Sylow’s Theorem,
|G : NG(P11)| = m11/φ(11) = 22 ·3·23. This indicates that π(G) = {2, 3, 11, 23},
we are done.

Suppose then that 3 ∈ π(G). We see that m3 = 506 by Lemma 2.2. Let
exp(P3) = 3s. Then s ≤ 32 as φ(3s) | m3s . If exp(P3) = 32, then m9 =
528. Lemma 2.4 implies that P3 is cyclic. Hence n3 = m9/φ(9) = 23 · 11; if
exp(P3) = 3, the same arguments gives n3 = 11 ·23. As a result, we always have
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11 ∈ π(G) if 3 ∈ π(G). By the argument in the previous paragraph, we also
have π(G) = {2, 3, 11, 23}.

Consequently, we may consider G as a {2, 23}-group. Note that exp(P2) ≤
25. If G is a 2-group, then |G| = 5060, which is not a power of 2, a contradiction.
Thus 23 ∈ π(G). In this case, m23 = 528 and exp(P23) ≤ 232. If 232 ∈ πe(G),
then m232 = 506 or 1012 , against 232 | (1 + m23 + m232) = 1035 or 1541 by
Lemma 2.2. Hence exp(P23) = 23. It follows by Lemma 2.2 that |P23| | 232.
Assume that |P23| = 23, then n23 = m23/φ(23) = 23 · 3, a contradiction. Hence
|P23| = 232. Moreover, πe(G) ⊆ {1, 2, 22, 23, 24, 25} ∪{23, 2 · 23, 22 · 23, 23 ·
23, 24 · 23}. We show that 25 ̸∈ πe(G). Otherwise, P23 act fixed-point-freely on
Ω25 := { all elements of order 25 in G}, which implies that |P23| | m25 , which is
a contradiction since m25 = 528. Thus πe(G) ⊆ {1, 2, 22, 23, 24} ∪{23, 2 · 23, 22 ·
23, 23 · 23, 24 · 23}. Further,

(4) |G| = 2a · 232 = 5060 + 506k1 + 2760k2 + 1012k3 + 528k4

with
∑4

i=1 ki ≤ 4. That is,

(5) 2a ·232 = 22 ·5 ·11 ·23+2 ·11 ·23k1+23 ·3 ·5 ·23k2+22 ·11 ·23k3+24 ·3 ·11k4.

Since 23 divides both sides of equation (5) except 24 · 3 · 11k4, we have k4 = 0.
Then the equation becomes

(6) 2a−1 · 23 = 2 · 5 · 11 + 11k1 + 22 · 3 · 5k2 + 2 · 11k3.

Recall that a ≤ 6 and
∑4

i=1 ki ≤ 4. It follows that 44 ≤ 11k1+22 ·3 ·5k2+2 ·
11k3 ≤ 240. Hence the unique possibility is a = 4, k1 = k4 = 0, k2 = 1, k3 = 4,
contrary to

∑4
i=1 ki ≤ 4. This contradiction shows that π(G) = {2, 3, 11, 23}.

Recall that |P11| = 11. If there exists some prime r such that 11r ∈ πe(G),
then (r − 1) · m11 | m11r by Lemma 2.3, yielding that r = 2 and m22 = 2760.
In this case, 22 - (1 +m2 +m11 +m22) = 5774, against Lemma 2.2. Therefore,
11 ∥ |G| and 11r ̸∈ πe(G) for any r ∈ π(G).

Now we prove that |P23| = 23. If not, |P23| = 232. Moreover, P23 acts
fixed-point-freely on Ω11 := { all elements of order 11 in G}. As a consequence,
|P23| | m11, which is a contradiction. Hence |P23| = 23. Further, if there exists
some prime r such that 23r ∈ πe(G), then Lemma 2.3 shows that r = 2. In this
case, 2 · 23 - (1+m2 +m23 +m2·23), against Lemma 2.2. That is to say, for any
prime r ∈ π(G), we always have 11r ̸∈ πe(G), yielding that t(G) ≥ 3.

By Lemma 2.5, we see that G is non-solvable and has the following normal
series: 1EH EK EG with K/H a simple K4-group and π(H)∪ π(G/K) ⊆ π1.

We see from Lemma 2.7 that K/H ∼= L2(23). Moreover, Lemma 2.8 gives
|NH(P23)|t = |H| and n23(K/H)t = n23. Since K/H ∼= L2(23), we have
m23(K/H) = m23, yielding n23(K/H) = n23(K) and thus t = 1. Further,
H ≤ NG(P23), and hence H × P23 ≤ G. Note that 23r ̸∈ πe(G). Then H = 1.
As a result, K ∼= L2(23) and |G/K| | 2. Assume that G = K.2, then by [2],
m2 = 529 ̸∈ nse(G). This contradiction indicates that G = K ∼= L2(23).
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