A NEW CHARACTERIZATION OF $L_2(p)$ WITH $p \in \{19, 23\}$ BY NSE

Qinhui Jiang

School of Mathematical Sciences University of Jinan 250022, Shandong China syjqh2001@163.com

Changguo Shao*

School of Mathematical Sciences University of Jinan 250022, Shandong China shaoguozi@163.com

Abstract. Let G be a group. We denote by $nse(G) := \{m_k \mid k \in \pi_e(G)\}$, where $\pi_e(G)$ is the set of element orders of G and m_k is the number of elements of order k in G. In this paper, we characterize simple linear group $L_2(p)$ uniquely by set $nse(L_2(p))$ when $p \in \{19, 23\}$.

Keywords: Finite groups, numbers of elements with the same order, linear groups.

1. Introduction

Throughout this paper, all groups are finite and G denotes a group. We denote by $\pi(G)$ the set of prime divisors of |G|, $\pi_e(G)$ the set of element orders of G. We call G a simple K_n -group if G is simple with $|\pi(G)| = n$. If $r \in \pi(G)$, then P_r and $n_r(G)$ denote a Sylow r-subgroup of G and the number of Sylow r-subgroups of G, respectively. Let n be an integer. We denote by $\varphi(n)$ the Euler function of n.

The prime graph GK(G) of a group G is defined as a graph with vertex set $\pi(G)$ and two distinct primes $p, q \in \pi(G)$ are adjacent if G contains an element of order pq. Moreover, the connected components of GK(G) are denoted by $\pi_i, 1 \leq i \leq t(G)$, where t(G) is the number of connected components of G. In particular, we define by π_1 the component containing the prime 2 for a group of even order.

Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. Set $nse(G) := \{m_k \mid k \in \pi_e(G)\}$. In 1987, Thompson gave an example showing that not all groups can be characterized by nse(G) and |G|: Let $G_1 = (C_2 \times C_2 \times C_2)$

^{*.} Corresponding author

 $C_2 \times C_2) \rtimes A_7$ and $G_2 = L_3(4) \rtimes C_2$ be two maximal subgroups of M_{23} . Then $nse(G_1) = nse(G_2)$ and $|G_1| = |G_2|$, but $G_1 \ncong G_2$.

So it is an interesting topic to study class of groups G which can be characterized by the group order |G| and the set nse(G). Then authors of [8] proved that all simple K_4 -groups can be uniquely determined by nse(G) and |G|. Also in [9], it is proved that $L_2(3) \cong A_4$, $L_2(4) \cong L_2(5) \cong A_5$ and $L_2(9) \cong A_6$ are uniquely determined by nse(G). M. Khatami, B. Khosravi and Z. Akhlaghi ([4]) deduced that simple groups $L_2(p)$ is characterizable by uniquely the set $nse(L_2(p))$ if $p \in \{7, 8, 11, 13\}$. Recently, the authors of this paper ([6]) proved that simple linear groups $L_2(p)$ with $p \in \{17, 27, 29\}$ can be uniquely determined by its set $nse(L_2(q))$.

By using prime graph of a group as a new skill, in this present paper we prove that simple linear group $L_2(p)$ can be determined by exactly the set $nse(L_2(p))$ if $p \in \{19, 23\}$. Our main theorem is:

Theorem A. Let G be a group and $p \in \{19, 23\}$. Then $G \cong L_2(p)$ if and only if $nse(G) = nse(L_2(p))$.

Throughout this paper, we denote $n_r(G)$ by n_r and $m_k(G)$ by m_k if there is no confusion. Further unexplained notation is standard, readers may refer to [2].

2. Preliminaries

In this section we give some lemmas which will be used in the sequel.

Lemma 2.1. Let G be a group. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. Then $\varphi(k) \mid m_k$. In particular, if there exists some odd integer $n \in nse(G)$, then $2 \in \pi(G)$ and $m_2 = n$. Moreover, $m_k \neq n$ for any $k \geq 3$.

Proof. Let t be the number of the cyclic subgroups of order k of G, where $1 \neq k \in \pi_e(G)$. Then $m_k = t\varphi(k)$, yielding to $\varphi(k) \mid m_k$. In particular, if there exists some odd integer $n \in nse(G)$, then $m_2 = n$, since otherwise, $\varphi(k)$ is even for any $k \geq 3$.

Lemma 2.2 ([3]). Let G be a group and m be a positive integer dividing |G|. If $L_m(G) = \{g \in G | g^m = 1\}$, then $m \mid |L_m(G)|$.

Lemma 2.3 ([7, Lemma 2.3]). Let G be a group and P be a cyclic Sylow psubgroup of G. Assume further that $|P| = p^a$ and r is an integer such that $p^a r \in \pi_e(G)$. Then $m_{p^a r} = m_r(C_G(P))m_{p^a}$. In particular, $\varphi(r)m_{p^a} \mid m_{p^a r}$.

Lemma 2.4 ([5]). Let G be a group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n = p^s m$, where (p, m) = 1. If P is not cyclic and s > 1, then the number of elements of order n is always a multiple of p^s .

Recall that G is a 2-Frobenius group, if there G has a normal series $1 \lhd H \lhd K \lhd G$ such that G/H and K are Frobenius groups with K/H and H as Frobenius kernels, respectively.

Lemma 2.5 ([11, Theorem]). Let G be a group such that $t(G) \ge 2$. Then G has one of the following structures:

- (a) G is a Frobenius or 2-Frobenius group.
- (b) G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi(K/H) \subseteq \pi_1$ and K/H is a nonabelian simple group.

Lemma 2.6 ([1, Theorem 2]). If G is a 2-Frobenius group of even order, then t(G) = 2 and G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(K/H) = \pi_2$, $\pi(H) \bigcup \pi(G/K) = \pi_1$, $|G/K| \mid |Aut (K/H)|$, G/K and K/H are cyclic. In particular, |G/K| < |K/H| and G is solvable.

Lemma 2.7. Let G be a simple group. If $\pi(G) = \{2, 3, 5, 19\}$, then $G \cong L_2(19)$; if $\pi(G) = \{2, 3, 11, 23\}$, then $G \cong L_2(23)$.

Proof. It follows immediately from [10, Corollary 2] and [10, Corollary 4]. \Box

Lemma 2.8 ([8, Lemma 2.5]). Let G be a group with a normal series: $K \trianglelefteq L \trianglelefteq G$. Suppose that $P \in Syl_p(G)$, where $p \in \pi(G)$. If $P \le L$ and $p \nmid |K|$, then the following statements hold:

- (1) $|G: N_G(P)| = |L: N_L(P)|$, that is, $n_p(G) = n_p(L)$;
- (2) $|L/K: N_{L/K}(PK/K)|t = |G: N_G(P)| = |L: N_L(P)|$, that is, $n_p(L/K)t = n_p(G) = n_p(L)$ for some positive integer t. Furthermore, $|N_K(P)|t = |K|$.

3. Proof of Theorem A

Proof. The necessity of the theorem is obvious. We only prove the sufficiency and we will discuss it case by case.

Case 1. $nse(G) = \{1, 171, 684, 380, 1140, 360\} = nse(L_2(19)).$

By Lemma 2.1 and Lemma 2.2, we see that $2 \in \pi(G) \subseteq \{2, 3, 5, 7, 19\}$ and $m_2 = 171$. Let $\exp(P_2) = 2^s$. Then $s \leq 4$ since $\varphi(2^s) \mid m_{2^s}$ by Lemma 2.1. Moreover, $|P_2| \leq 2^6$ by Lemma 2.2. Next we show that $\pi(G) = \{2, 3, 5, 19\}$.

If $7 \in \pi(G)$, then Lemma 2.2 gives $m_7 = 1140$. More, $7^2 \notin \pi_e(G)$ since $\varphi(7^2) \mid m_{7^2}$ by Lemma 2.1. Therefore, $|P_7| = 7$ as $|P_7| \mid (1+m_7)$ by Lemma 2.2. If $14 \in \pi_e(G)$, then $m_7 = m_{14}$ by Lemma 2.3, against $14 \mid (1+m_2+m_7+m_{14})$ by Lemma 2.2. As a consequence, P_7 acts fixed-point-freely on $\Omega_2 := \{$ all elements of order 2 in $G \}$, leading to $7 \mid m_2$. This contradiction forces $\pi(G) \subseteq \{2, 3, 5, 19\}$.

Similarly, if $3 \in \pi(G)$, then $m_3 = 380$ and $\exp(P_3) \leq 3^2$. Assume that $\exp(P_3) = 9$. Then $m_9 = 1140$ by Lemma 2.1 and Lemma 2.2, which implies that P_3 is cyclic by Lemma 2.4. In this case, $n_3 = m_9/\varphi(9) = 2 \cdot 5 \cdot 19$ and thus

 $\pi(G) = \{2, 3, 5, 19\}$, we are done. On the other hand, if $\exp(P_3) = 3$, we also have $\pi(G) = \{2, 3, 5, 19\}$.

Assume now $5 \in \pi(G)$. By a similar argument, we obtain that $m_5 = 684$ and $\exp(P_5) \leq 5^2$. More, if $\exp(P_5) = 5^2$, then $m_{25} = 1140$ and $|P_5| = 5^2$ by Lemma 2.2. In this case, $n_5 = m_{25}/\varphi(25) = 3 \cdot 19$, implying $\pi(G) = \{2, 3, 5, 19\}$; if $\exp(P_5) = 5$, then $|P_5| = 5$, leading to $n_5 = m_5/\varphi(5) = 3^2 \cdot 19$, which also deduces that $\pi(G) = \{2, 3, 5, 19\}$, as we need.

As a consequence, we may consider G as a $\{2, 19\}$ -group. Note that G is not a 2-group since $\exp(P_2) \leq 2^4$ and |nse(G)| = 6. Thus $19 \in \pi(G)$. Lemma 2.2 shows that $19^2 \notin \pi_e(G)$. Moreover, $|P_{19}| \mid 19^2$. Assume that $|P_{19}| = 19$. Then $n_{19} = m_{19}/\varphi(19) = 2^2 \cdot 5$, a contradiction. Hence $|P_{19}| = 19^2$. Since $\pi_e(G) \subseteq \{1, 2, \dots, 2^4\} \cup \{19, 19 \cdot 2, \dots, 19 \cdot 2^3\}$, we obtain that

(1)
$$|G| = 2736 + 684k_1 + 380k_2 + 1140k_3 + 360k_4$$

with $\sum_{i=1}^{4} k_i \leq 3$. That is,

$$(2) \ 2^{a} \cdot 19^{2} = 2^{4} \cdot 3^{2} \cdot 19 + 2^{2} \cdot 3^{2} \cdot 19k_{1} + 2^{2} \cdot 5 \cdot 19k_{2} + 2^{2} \cdot 3 \cdot 5 \cdot 19k_{3} + 2^{3} \cdot 3^{2} \cdot 5k_{4}.$$

Except $2^3 \cdot 3^2 \cdot 5k_4$, 19 divides both sides of the equation (2), we get $k_4 = 0$ as $\sum_{i=1}^4 k_i \leq 3$. Thus,

(3)
$$2^{a-2} \cdot 19 = 2^2 \cdot 3^2 + 3^2 k_1 + 5k_2 + 3 \cdot 5k_3.$$

Recall that $a \leq 6$. Then the unique equation of (3) is $k_1 = k_4 = 0, k_2 = k_3 = 2$ with a = 4, against $\sum_{i=1}^{4} k_i \leq 3$. Consequently, $\pi(G) = \{2, 3, 5, 19\}$, as required.

We claim that $|P_5| = 5$, $|P_{19}| = 19$, where P_5 and P_{19} are Sylow 5-subgroup and Sylow 19-subgroup of G, respectively. Further, $19r \notin \pi_e(G)$ and $5s \notin \pi_e(G)$ for $2 \neq s \in \pi(G)$.

Suppose that $|P_{19}| = 19^2$. If $|P_5| = 25$, then $\exp(P_5) = 5^2$. One has $n_5 = m_{25}/\varphi(25) = 3 \cdot 19$, implying $19 \mid |N_G(P_5)|$. Let $N_{19} \in \operatorname{Syl}_{19}(N_G(P_5))$. By Sylow's Theorem, it follows that $P_5 \times N_{19} \leq G$, leading to $5^2 \cdot 19 \in \pi_e(G)$, against $\varphi(19)m_{5^2} \mid m_{5^2 \cdot 19}$ by Lemma 2.3. Assume that $|P_5| = 5$. In this case, $n_5 = m_5/\varphi(5) = 3^2 \cdot 19$, implying $19 \mid |N_G(P_5)|$. By Sylow's Theorem, $P_5 \times P_{19} \leq G$ with P_{19} a Sylow 19-subgroup of $N_G(P_5)$. Hence $5 \cdot 19 \in \pi_e(G)$, contrary to $\varphi(19)m_5 \mid m_{5\cdot 19}$ by Lemma 2.3. Consequently, $|P_{19}| = 19$. Furthermore, if there exists some primer r such that $19r \in \pi_e(G)$, then $\varphi(r)m_{19} \mid m_{19r}$. This forces r = 2 and $m_{19} = m_{38}$. However, under this situation, $38 \nmid (1+m_2+m_{19}+m_{38}) = 892$, against Lemma 2.2.

Analogously, we may prove that $|P_5| = 5$. If not, $|P_5| = 5^2$ and P_5 acts fixed-point-freely on $\Omega_{19} := \{$ all elements of order 19 of $G \}$. Hence, $25 \mid m_{19}$, a contradiction. As a result, $|P_5| = 5$. Further, and $5s \notin \pi_e(G)$ for any $2 \neq s \in \pi(G)$, as required.

As a result, $t(G) \ge 2$. Assume that $G = K \rtimes H$ is a Frobenius group. Then either 19 | |K| or 19 | |H|. If the former holds, then |K| = 19 as t(G) = 2. In this case, $m_{19} = 18 \in nse(G)$. This contradiction shows that $19 \mid |H|$. Let K_r be a Sylow *r*-subgroup of *K* with $r \in \pi(K)$ and H_{19} be a Sylow 19-subgroup of *H*. Then $K_r \rtimes H_{19}$ is also a Frobenius group, which implies that $19 \mid (|K_r| - 1)$, a contradiction if we consider the order of *K*.

Suppose then that G is a 2-Frobenius group, then G has the following normal series:

$$1 \lhd H \lhd K \lhd G$$

with |K/H| = 19 and $|G/K| | |\operatorname{Aut}(K/H)|$ by Lemma 2.6. Hence 5 | |H| and thus $m_5 = 4$, a contradiction.

By Lemma 2.5, G has the following normal series:

$$1 \trianglelefteq H \trianglelefteq K \trianglelefteq G$$

with K/H a non-solvable simple group and $\pi(H) \cup \pi(G/K) \subseteq \pi_1$. If K/H is a simple K_3 -group, then $19 \nmid |K/H|$ by [2], which leading to $19 \mid |H|$ or $19 \mid |G/K|$. Assume that the former holds. Notice that $5 \mid |K/H|$. Let K_5 be a Sylow 5-subgroup of K and H_{19} be a Sylow 19-subgroup of H. Then $K_5 \times H_{19} \leq G$, yielding to $5 \cdot 19 \in \pi_e(G)$, which is a contradiction to the argument above. Similarly, it will also deduce a contradiction if $19 \mid |G/H|$.

As a consequence, K/H is a non-solvable simple K_4 -group, yielding to $K/H \cong L_2(19)$ by Lemma 2.7. Moreover, it follows by Lemma 2.8 that $n_{19}(K/H) = n_{19}$ and $|N_H(P_{19})|t = |H|$. Since $m_{19} = m_{19}(K/H)$, we obtain $n_{19}(K/H) = n_{19}$, which follows that t = 1 and thus $H = N_H(P_{19})$. Note that $H \leq G$. Then $HP_{19} = H \times P_{19} \leq G$. As $19r \notin \pi_e(G)$ for any prime $r \in \pi(G)$, we get H = 1. Hence $K \cong L_2(19)$ and $|G/K| \mid 2$. If G = K.2, then by [2], $m_2 = 361 \notin nse(G)$. This contradiction implies that $G \cong L_2(19)$.

Case 2. $nse(G) = \{1, 253, 506, 2760, 1012, 528\} = nse(L_2(23)).$

By Lemma 2.1 and Lemma 2.2, we see that $2 \in \pi(G) \subseteq \{2, 3, 11, 23, 1013\}$ and $m_2 = 253$. Moreover, $\exp(P_2) \leq 2^5$ and $|P_2| \leq 2^6$.

If $1013 \in \pi(G)$, then $m_{1013} = 1012$, leading to $|P_{1013}| = 1013$ and $P_{1013} \leq G$, where P_{1013} is a Sylow 1013-subgroup of G. Let $\Omega_2 := \{$ all elements of order 2 in $G\}$. We claim that P_{1013} acts fixed-point-freely on Ω . Otherwise, $2026 \in \pi_e(G)$ and $m_{2026} = 1012$ since $\varphi(2026) \mid m_{2026}$, against $m_{2026} \mid (1 + m_2 + m_{1013} + m_{2\cdot1013})$ by Lemma 2.2. As a consequence, $|P_{1013}|$ divides $|\Omega_2| = m_2$, again a contradiction. Therefore, $\pi(G) \subseteq \{2, 3, 11, 23\}$.

We assert that $\pi(G) = \{2, 3, 11, 23\}$. Assume first that $11 \in \pi(G)$. Then Lemma 2.2 gives $m_{11} = 2760, 11^2 \notin \pi_e(G)$ and $|P_{11}| = 11$. By Sylow's Theorem, $|G: N_G(P_{11})| = m_{11}/\varphi(11) = 2^2 \cdot 3 \cdot 23$. This indicates that $\pi(G) = \{2, 3, 11, 23\}$, we are done.

Suppose then that $3 \in \pi(G)$. We see that $m_3 = 506$ by Lemma 2.2. Let $\exp(P_3) = 3^s$. Then $s \leq 3^2$ as $\varphi(3^s) \mid m_{3^s}$. If $\exp(P_3) = 3^2$, then $m_9 = 528$. Lemma 2.4 implies that P_3 is cyclic. Hence $n_3 = m_9/\varphi(9) = 2^3 \cdot 11$; if $\exp(P_3) = 3$, the same arguments gives $n_3 = 11 \cdot 23$. As a result, we always have

 $11 \in \pi(G)$ if $3 \in \pi(G)$. By the argument in the previous paragraph, we also have $\pi(G) = \{2, 3, 11, 23\}.$

Consequently, we may consider G as a $\{2, 23\}$ -group. Note that $\exp(P_2) \leq 2^5$. If G is a 2-group, then |G| = 5060, which is not a power of 2, a contradiction. Thus $23 \in \pi(G)$. In this case, $m_{23} = 528$ and $\exp(P_{23}) \leq 23^2$. If $23^2 \in \pi_e(G)$, then $m_{23^2} = 506$ or 1012, against $23^2 \mid (1 + m_{23} + m_{23^2}) = 1035$ or 1541 by Lemma 2.2. Hence $\exp(P_{23}) = 23$. It follows by Lemma 2.2 that $|P_{23}| \mid 23^2$. Assume that $|P_{23}| = 23$, then $n_{23} = m_{23}/\varphi(23) = 2^3 \cdot 3$, a contradiction. Hence $|P_{23}| = 23^2$. Moreover, $\pi_e(G) \subseteq \{1, 2, 2^2, 2^3, 2^4, 2^5\} \cup \{23, 2 \cdot 23, 2^2 \cdot 23, 2^3 \cdot 23, 2^4 \cdot 23\}$. We show that $2^5 \notin \pi_e(G)$. Otherwise, P_{23} act fixed-point-freely on $\Omega_{2^5} := \{$ all elements of order 2^5 in $G\}$, which implies that $|P_{23}| \mid m_{2^5}$, which is a contradiction since $m_{2^5} = 528$. Thus $\pi_e(G) \subseteq \{1, 2, 2^2, 2^3, 2^4\} \cup \{23, 2 \cdot 23, 2^2 \cdot 23, 2^2 \cdot 23, 2^3 \cdot 23, 2^4 \cdot 23\}$. Further,

(4)
$$|G| = 2^a \cdot 23^2 = 5060 + 506k_1 + 2760k_2 + 1012k_3 + 528k_4$$

with $\sum_{i=1}^{4} k_i \leq 4$. That is,

(5)
$$2^a \cdot 23^2 = 2^2 \cdot 5 \cdot 11 \cdot 23 + 2 \cdot 11 \cdot 23k_1 + 2^3 \cdot 3 \cdot 5 \cdot 23k_2 + 2^2 \cdot 11 \cdot 23k_3 + 2^4 \cdot 3 \cdot 11k_4.$$

Since 23 divides both sides of equation (5) except $2^4 \cdot 3 \cdot 11k_4$, we have $k_4 = 0$. Then the equation becomes

(6)
$$2^{a-1} \cdot 23 = 2 \cdot 5 \cdot 11 + 11k_1 + 2^2 \cdot 3 \cdot 5k_2 + 2 \cdot 11k_3.$$

Recall that $a \leq 6$ and $\sum_{i=1}^{4} k_i \leq 4$. It follows that $44 \leq 11k_1 + 2^2 \cdot 3 \cdot 5k_2 + 2 \cdot 11k_3 \leq 240$. Hence the unique possibility is a = 4, $k_1 = k_4 = 0$, $k_2 = 1$, $k_3 = 4$, contrary to $\sum_{i=1}^{4} k_i \leq 4$. This contradiction shows that $\pi(G) = \{2, 3, 11, 23\}$.

Recall that $|P_{11}| = 11$. If there exists some prime r such that $11r \in \pi_e(G)$, then $(r-1) \cdot m_{11} \mid m_{11r}$ by Lemma 2.3, yielding that r = 2 and $m_{22} = 2760$. In this case, $22 \nmid (1 + m_2 + m_{11} + m_{22}) = 5774$, against Lemma 2.2. Therefore, $11 \parallel |G|$ and $11r \notin \pi_e(G)$ for any $r \in \pi(G)$.

Now we prove that $|P_{23}| = 23$. If not, $|P_{23}| = 23^2$. Moreover, P_{23} acts fixed-point-freely on $\Omega_{11} := \{$ all elements of order 11 in $G \}$. As a consequence, $|P_{23}| \mid m_{11}$, which is a contradiction. Hence $|P_{23}| = 23$. Further, if there exists some prime r such that $23r \in \pi_e(G)$, then Lemma 2.3 shows that r = 2. In this case, $2 \cdot 23 \nmid (1 + m_2 + m_{23} + m_{2\cdot 23})$, against Lemma 2.2. That is to say, for any prime $r \in \pi(G)$, we always have $11r \notin \pi_e(G)$, yielding that $t(G) \geq 3$.

By Lemma 2.5, we see that G is non-solvable and has the following normal series: $1 \leq H \leq K \leq G$ with K/H a simple K_4 -group and $\pi(H) \cup \pi(G/K) \subseteq \pi_1$.

We see from Lemma 2.7 that $K/H \cong L_2(23)$. Moreover, Lemma 2.8 gives $|N_H(P_{23})|t = |H|$ and $n_{23}(K/H)t = n_{23}$. Since $K/H \cong L_2(23)$, we have $m_{23}(K/H) = m_{23}$, yielding $n_{23}(K/H) = n_{23}(K)$ and thus t = 1. Further, $H \leq N_G(P_{23})$, and hence $H \times P_{23} \leq G$. Note that $23r \notin \pi_e(G)$. Then H = 1. As a result, $K \cong L_2(23)$ and $|G/K| \mid 2$. Assume that G = K.2, then by [2], $m_2 = 529 \notin nse(G)$. This contradiction indicates that $G = K \cong L_2(23)$. \Box

Acknowledgements. The authors are supported by the NNSF of China (No. 11301218) and the Nature Science Fund of Shandong Province (No. ZR2014AM020).

References

- G.Y. Chen. On structure of Frobenius group and 2-Frobenius group. Journal of Southwest China Normal University (Natural Science), 20(5):185– 187, 1995.
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of Finite Groups. Oxford Univ. Press, London, 1985.
- [3] G. Frobenius. Verallgemeinerung des Sylowschen Satze. Berliner sitz, pages 981–993, 1895.
- [4] Khosravi M. Khatami, B and Z. Akhlaghi. A new characterization for some linear groups. *Monatsh. Math.*, 163:39–50, 2011.
- [5] G. A. Miller. Addition to a theorem due to Frobenius. Bull. Am. Math. Soc., 11:6–7, 1904.
- [6] C.G. Shao and Q.H. Jiang. Characterization of groups $L_2(q)$ by NSE where $q \in \{17, 27, 29\}$. *Chin. Ann. Math.* In press.
- [7] C.G. Shao and Q.H. Jiang. A new characterization of some linear groups by NSE. J. Algebra Appl., 13, 2004.
- [8] C.G. Shao and Q.H. Jiang. Characterization of simple K₄-groups. Front. Math. China, 3:355–370, 2008.
- [9] R.L. Shen, C.G. Shao, Q.H. Jiang, W.J. Shi, and V. Mazurov. A new characterization of A₅. Monatsh. Math., 160:337–341, 2010.
- [10] W.J. Shi. On simple K_4 -groups (in Chinese). Chinese Sci. Bull., 36(17):1281–1283, 1991.
- [11] J.S. William. Prime graph components of finite simple groups. J. Algebra, 69(1):487–573, 1981.

Accepted: 22.06.2017