(ε)-KENMOTSU MANIFOLDS ADMITTING A
SEMI-SYMMETRIC METRIC CONNECTION

Venkatesha*
Vishnuvardhana S.V.
Department of Mathematics
Kuvempu University
Shankaraghatta - 577 451
Shimoga, Karnataka
INDIA
vensmath@gmail.com
svvishnuvardhana@gmail.com

Abstract. The object of the present paper is to study some properties of quasi-conformal and concircular curvature tensor on (ε)-Kenmotsu manifolds with respect to a semi-symmetric metric connection.

Keywords: Quasi-conformally flat, φ-concircularly flat, (ε)-Kenmotsu manifold, semi-symmetric metric connection, η-Einstein manifold.

1. Introduction

Takahashi [19] studied Sasakian manifold with associated pseudo-Riemannian metrics and are known as (ε)-Sasakian manifolds. Bejancu and Duggal [3] shows the existence of (ε)-almost contact metric structures and provide an example of (ε)-Sasakian manifolds. Further investigation on this manifold was taken up by Xufeng and Xiaoli [23] and Rakesh kumar et al [13].

The study of manifolds with indefinite metric has a great relevance from the standpoint of geometrization of physics and relativity. Recently De and Sarkar [7] introduced indefinite metrics on Kenmotsu manifold, and are called as (ε)-Kenmotsu manifolds. Here they studied conformally flat, Weyl semisymmetric, φ-recurrent (ε)-Kenmotsu manifolds. Further, Singh et al [18] and Haseeb et al [9] established the relation between Levi-Civita connection and semi-symmetric metric connection and obtained the relation between curvature tensors of Levi-Civita connection and semi-symmetric metric connection in an (ε)-Kenmotsu manifold.

After the introduction of an idea of semi-symmetric linear connection in a differentiable manifold [8], Hayden [10] defined a semi-symmetric metric connection on a Riemannian manifold and this was further studied by Yano [24], Barua et al [2], De and Biswas [5].

* Corresponding author.
Quasi-conformal curvature tensor and concircular curvature tensor are the important curvature tensors from the differential geometry point of view. A quasi-conformal transformation is the one which transforms infinitesimal circles into infinitesimal ellipses, whereas a concircular transformation transforms every geodesic circle of an \(n \)-dimensional Riemannian manifold \(M \) into a geodesic circle.

The quasi-conformal curvature tensor \(\tilde{C} \) [25] and concircular curvature tensor \(\tilde{Z} \) [26] with respect to the semi-symmetric metric connection are respectively given by

\[
\tilde{C}(X, Y)Z = a\tilde{R}(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y
+ g(Y, Z)\tilde{Q}X - g(X, Z)\tilde{Q}Y]
- \frac{\tilde{r}}{n}\left\{\frac{a}{(n - 1)} + 2b\right\}[g(Y, Z)X - g(X, Z)Y],
\]

(1.1)

\[
\tilde{Z}(X, Y)Z = \tilde{R}(X, Y)Z - \frac{\tilde{r}}{n(n - 1)}[g(Y, Z)X - g(X, Z)Y].
\]

(1.2)

The paper is organized as follows: Section 2 contains the preliminaries of \((\epsilon)\)-Kenmotsu manifold and a semi-symmetric metric connection on an \((\epsilon)\)-Kenmotsu manifold. Section 3 and 4 are devoted to the study of quasi-conformally flat and quasi-conformally semisymmetric \((\epsilon)\)-Kenmotsu manifold admitting a semi-symmetric metric connection. In the next section we study \(\phi\)-concircularly flat \((\epsilon)\)-Kenmotsu manifold admitting a semi-symmetric metric connection and shown that \(\phi\)-concircularly flat \((\epsilon)\)-Kenmotsu manifold admitting a semi-symmetric metric connection is an \(\eta\)-Einstein manifold. Further in section 6, we prove \((\epsilon)\)-Kenmotsu manifold admitting a semi-symmetric metric connection satisfying \(\tilde{Z}(X, Y) \cdot S(U, W) = 0\) is an \(\eta\)-Einstein manifold.

2. Preliminaries

An almost contact structure on a \(n \)-dimensional differentiable manifold \(M \) is a triple \((\phi, \xi, \eta)\), where \(\phi \) is a tensor field of type \((1, 1)\), \(\eta \) is a 1-form and \(\xi \) is a vector field such that

\[
\phi^2 = -I + \eta \circ \xi,
\]

(2.1)

\[
\eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta \circ \phi = 0.
\]

(2.2)

A differential manifold with an almost contact structure is called an almost contact manifold. An almost contact metric manifold is an almost contact manifold endowed with a compatible metric \(g \). An almost contact metric manifold \(M \) is said to be an \((\epsilon)\)-almost contact metric manifold if

\[
g(\xi, \xi) = \pm 1 = \epsilon,
\]

(2.3)

\[
\eta(X) = \epsilon g(X, \xi), \quad \text{rank}(\phi) = n - 1,
\]

(2.4)

\[
g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X)\eta(Y), \quad \forall X, Y \in \Gamma(TM),
\]

(2.5)
holds, where ξ is space-like or time-like but it is never a light like vector field. We say that (ϕ, ξ, η, g) is an (ϵ)-contact metric structure if we have

\begin{equation}
(2.6) \quad d\eta(X, Y) = g(X, \phi Y).
\end{equation}

In this case, M is an (ϵ)-contact metric manifold. An (ϵ)-contact metric manifold is called an (ϵ)-Kenmotsu manifold [7] if

\begin{equation}
(2.7) \quad (\nabla_X \phi)Y = -g(X, \phi Y)\xi - \epsilon\eta(Y)\phi X,
\end{equation}

holds, where ∇ is the Riemannian connection of g. An (ϵ)-almost contact metric manifold is a (ϵ)-Kenmotsu manifold if and only if

\begin{equation}
(2.8) \quad \nabla_X\xi = \epsilon(X - \eta(X)\xi).
\end{equation}

The following conditions holds in an (ϵ)-Kenmotsu manifold [7]:

\begin{align}
(2.9) & \quad (\nabla_X\eta)(Y) = g(X, Y) - \epsilon\eta(X)\eta(Y), \\
(2.10) & \quad \eta(R(X, Y)Z) = \epsilon\{g(X, Z)Y - g(Y, Z)X\}, \\
(2.11) & \quad R(X, Y)\xi = \eta(X)Y - \eta(Y)X, \quad R(\xi, X)Y = \eta(Y)X - \epsilon g(X, Y)\xi, \\
(2.12) & \quad S(X, \xi) = -(n-1)\eta(X), \quad Q\xi = -\epsilon(n-1)\xi, \\
(2.13) & \quad S(\phi X, \phi Y) = S(X, Y) + \epsilon(n-1)\eta(X)\eta(Y).
\end{align}

A semi-symmetric metric connection $\tilde{\nabla}$ on an n-dimensional (ϵ)-Kenmotsu manifold is given by [18],

\begin{equation}
(2.14) \quad \tilde{\nabla}_XY = \nabla_XY + \eta(Y)X - g(X, Y)\xi.
\end{equation}

A relation between the curvature tensor \bar{R}, Ricci curvature \bar{S} and the scalar curvature \bar{r} of M with respect to semi-symmetric metric connection $\tilde{\nabla}$ and R, S and r of M with respect to the Riemannian connection ∇ are given by

\begin{align}
\bar{R}(X, Y)Z & = R(X, Y)Z + (2 + \epsilon)[g(X, Z)Y - g(Y, Z)X] \\
& + (1 + \epsilon)[g(Y, Z)\eta(X) - g(X, Z)\eta(Y)]\xi \\
& + (1 + \epsilon)\eta(Z)\eta(Y)X - \eta(X)Y, \\
\bar{S}(Y, Z) & = S(Y, Z) + [(\epsilon + 2)\eta(Y) + 2]g(Y, Z) \\
& + (1 + \epsilon)(n-2\epsilon)\eta(Y)\eta(Z), \\
\bar{r} & = r + n[(\epsilon + 2)\eta(Y) + 2] + \epsilon(n + 2\epsilon).
\end{align}

3. Quasi-conformally flat (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection

Definition 3.1. An (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection is said to be quasi-conformally flat if $\bar{C}(X, Y)Z = 0$.
Suppose (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection is quasi-conformally flat. Then from (1.1) we have
\[
a \bar{R}(X, Y)Z = b[S(X, Z)Y - S(Y, Z)X + g(X, Z)\bar{Q}Y - g(Y, Z)\bar{Q}X]
\]
\[
+ \frac{\bar{r}}{n} \left\{ \frac{a}{n-1} + 2b \right\} [g(Y, Z)X - g(X, Z)Y].
\]
(3.1)

Taking an inner product of the above equation with ξ, we get
\[
a g(R(X, Y)Z, \xi) = a\epsilon\{g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\} + b[\epsilon S(X, Z)\eta(Y)
\]
\[
- \epsilon S(Y, Z)\eta(X) + \{g(X, Z)Y - g(Y, Z)X\} \{4\epsilon - 3n\epsilon - 2n + 3\}]
\]
\[
+ \epsilon \left\{ \frac{\bar{r}}{n} \left\{ \frac{a}{n-1} + 2b \right\} [g(Y, Z)\eta(X) - g(X, Z)\eta(Y)] \right\}.
\]
(3.2)

Setting $X = \xi$ in (3.2) and then using (2.2), (2.3), (2.10) and (2.12), we obtain
\[
S(Y, Z) = Ag(Y, Z) + B\eta(Y)\eta(Z),
\]
(3.3)

where
\[
A = \frac{2a}{b} - (4 - 3n) + (2n - 3)\epsilon
\]
\[
+ \left\{ \frac{r + n[(\epsilon + 2)(\epsilon - n) + 2] + \epsilon(1 + \epsilon)(n - 2\epsilon)}{n} \right\} \left\{ \frac{a}{n-1} + 2b \right\}
\]

and
\[
B = -\frac{2a}{b} + (4 - 3n)(1 + \epsilon)
\]
\[
+ \left\{ \frac{\epsilon(r + n[(\epsilon + 2)(\epsilon - n) + 2] + \epsilon(1 + \epsilon)(n - 2\epsilon))}{n} \right\} \left\{ \frac{a}{n-1} + 2b \right\}.
\]

Thus, we can state the following;

Theorem 3.2. A quasi conformally flat n-dimensional (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection is an η-Einstein manifold.

4. Quasi-conformally semisymmetric (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection

Theorem 4.1. A quasi-conformally semisymmetric (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection is an η-Einstein manifold.

Proof. Suppose (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection satisfies
\[
\bar{R}(\xi, Y) \cdot \bar{C}(U, V)W = 0.
\]
Which implies
\[\ddot{R}(\xi, Y)\bar{C}(U, V)W - \bar{C}(\ddot{R}(\xi, Y)U, V)W \]
\[- \bar{C}(U, \ddot{R}(\xi, Y)V)W - \bar{C}(U, V)\ddot{R}(\xi, Y)W = 0. \]

By virtue of (2.15), (4.1) takes the form
\[(1 + \epsilon)[\eta(\bar{C}(U, V)W)Y - g(Y, \bar{C}(U, V)W)\xi - \eta(U)\bar{C}(Y, V)W + g(Y, U)\bar{C}(U, Y)W - \eta(W)\bar{C}(U, Y)Y + g(Y, W)\bar{C}(U, V)\xi]. \]

Replacing \(Y \) by \(U \) in the above equation and then taking inner product with \(\xi \), one can obtain
\[(1 + \epsilon)[g(U, \bar{C}(U, V)W) - g(U, U)\eta(\bar{C}(\xi, V)W) - \epsilon g(U, V)g(\bar{C}(\xi, W)\xi, U) - \epsilon\eta(W)g(\bar{C}(U, V)\xi, U)]. \]

Now putting \(U = e_i \) in (4.3), where \(\{e_i\}, i = 1, 2, \cdots, n \) is an orthonormal basis of the tangent space at each point of the manifold and sum up with respect to \(i \) and using (1.1), (2.11), (2.12), (2.15), (2.16) and (2.17), we get
\[S(V, W) = \alpha g(V, W) + \beta \eta(V)\eta(W), \]
where \(\alpha = -[(\epsilon + 2)(\epsilon - n) + 2] + \frac{1}{(a+b)}[(a + b(n - 2))\frac{r}{n} - (n - 1)\{(a + (n - 1)b)(1 + \epsilon) - \frac{r}{n(n-1)}(a + 2b(n - 1))\}] \)
and \(\beta = -(\epsilon + 1)(n - 2\epsilon) + \frac{1}{(a+b)}[(a + 2b(n - 1))\frac{r}{n(n-1)} - \epsilon\{(a + (n - 2)b)\{(n - 1)(1 + \epsilon) + \frac{r}{n}\}\}]. \)

Hence the proof.

5. \(\phi \)-concircularly flat \((\epsilon)\)-Kenmotsu manifold admitting a

semi-symmetric metric connection

Definition 5.1. An \((\epsilon)\)-Kenmotsu manifold admitting a semi-symmetric metric connection is said to be \(\phi \)-concircularly flat if \(\bar{Z}(\phi X, \phi Y)\phi Z = 0. \)

Assume that \((\epsilon)\)-Kenmotsu manifold admitting a semi-symmetric metric connection is \(\phi \)-concircularly flat. Then from (1.2) we have
\[g(R(\phi X, \phi Y)\phi Z, \phi W) \]
\[= \frac{r}{n(n-1)}[g(\phi Y, \phi Z)g(\phi X, \phi W) - g(\phi X, \phi Z)g(\phi Y, \phi W)]. \]

Let \(\{e_1, \cdots, e_{n-1}, \xi\} \) be a local orthonormal basis of vector fields in \(M \). By using the fact that \(\{\phi e_1, \cdots, \phi e_{n-1}, \xi\} \) is also a local orthonormal basis, if we
put $X = W = e_i$ in (5.1) and sum up with respect to i, $1 \leq i \leq n - 1$, we get

$$\sum_{i=1}^{n-1} g(\tilde{R}(\phi e_i, \phi Y)\phi Z, \phi e_i) = \frac{r}{n(n-1)} \sum_{i=1}^{n-1} [g(\phi Y, \phi Z)g(\phi e_i, \phi e_i) - g(\phi e_i, \phi Z)g(\phi Y, \phi e_i)].$$

(5.2)

It is easy to see that

$$\sum_{i=1}^{n-1} g(R(\phi e_i, Y)Z, \phi e_i) = S(Y, Z) + g(Y, Z),$$

(5.3)

$$\sum_{i=1}^{n-1} g(\phi e_i, Y)S(\phi e_i, Z) = S(Y, Z),$$

(5.4)

$$\sum_{i=1}^{n-1} g(\phi e_i, \phi e_i) = n - 1,$$

(5.5)

$$\sum_{i=1}^{n-1} g(\phi e_i, Y)g(Z, \phi e_i) = g(Y, Z).$$

(5.6)

And by making use of (5.3)-(5.6), the equation (5.2) turns into

$$S(\phi Y, \phi Z) + g(\phi Y, \phi Z) = [2 + \epsilon + \frac{r}{n(n-1)}](n - 2)g(\phi Y, \phi Z).$$

(5.7)

Thus, by applying (2.5) and (2.13) into (5.7), we get

$$S(Y, Z)$$

$$= [-1 + (2 + \epsilon + \frac{r + n[(\epsilon + 2)(\epsilon - n) + 2] + \epsilon(1 + \epsilon)(n - 2\epsilon)}{n(n-1)})(n - 2)]g(Y, Z)$$

$$- [3 + \epsilon + \frac{r + n[(\epsilon + 2)(\epsilon - n) + 2] + \epsilon(1 + \epsilon)(n - 2\epsilon)}{n(n-1)}](n - 2)e\eta(Y)e\eta(Z).$$

(5.8)

Hence, we have the following:

Theorem 5.2. A ϕ-concircularly flat (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection is an η-Einstein manifold.

6. (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection satisfying $Z(X, Y) \cdot S(U, W) = 0$

Theorem 6.1. An (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection satisfying $Z(X, Y) \cdot S(U, W) = 0$ is an η-Einstein manifold.
Proof. Let us assume that (ϵ)-Kenmotsu manifold admitting a semi-symmetric metric connection satisfies

(6.1) \[\mathcal{Z}(X, Y) \cdot \mathcal{S}(U, W) = 0. \]

Which implies that

(6.2) \[\mathcal{S}(\mathcal{Z}(\xi, Y)U, W) + \mathcal{S}(U, \mathcal{Z}(\xi, Y)W) = 0. \]

Using (1.2), (2.11) and (2.15) in (6.2), one can get

(6.3) \[- [(1 + \epsilon) + \frac{\bar{\epsilon}}{n(n-1)}]g(Y, Z)\mathcal{S}(\xi, U) + [(1 + \epsilon) + \frac{\bar{\epsilon}}{n(n-1)}]\eta(Z)\mathcal{S}(Y, U) \]

\[- [(1+\epsilon)+\frac{\bar{\epsilon}}{n(n-1)}]g(Y, U)\mathcal{S}(Z, \xi)+[(1+\epsilon)+\frac{\bar{\epsilon}}{n(n-1)}]\eta(U)\mathcal{S}(Z, Y)=0. \]

Plugging $U = \xi$ in (6.3) and then taking into an account of (2.1), (2.3), (2.4), (2.12) and (2.16), we obtain

\[\mathcal{S}(Y, Z) = \left\{ - ((2 + \epsilon)(\epsilon - n) + 2) + (n - 1)(1 + \epsilon) \right\}g(Y, Z) \]

- $\left(1 + \epsilon\right)(n - 2\epsilon)\eta(Y)\eta(Z).$ \[\square \]

Acknowledgements. Vishnuvardhana S.V. was supported by the Department of Science and Technology, India through the SRF [IF140186] DST/INSPIRE FELLOWSHIP/2014/181. Authors are thankful to the referees for their valuable suggestions.

References

Accepted: 13.06.2017