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Abstract. The purpose of this paper is to study pointwise slant submersions from
Kenmotsu manifolds onto Riemannian manifolds admitting vertical and horizontal struc-
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1. Introduction

Immersions and submersions are special tools in Differential Geometry. Both
play important role in Riemannian Geometry. O’Neill [19] and Gray [14] intro-
duced Riemannian submersions between Riemannian manifolds. Submersions
between Riemannian manifolds equipped with an additional structure of almost
contact type on total space, firstly studied by Watson [23] and Chinea [11]
independently. We know that Riemannian submersions are related to Mathe-
matical Physics and have their applications in the Kaluza-Klein theory ([7], [16])
and the Yang-Mills theory [6] etc.

On the other hand, submersions have been studied by several authors. Some
related research papers are: Geometry of slant submanifolds [10], Slant submer-
sions from almost Hermitian manifolds [20], Slant submanifolds of Lorentzian
Sasakian and para Sasakian manifolds [1], Riemannian submersions from almost

∗. Corresponding author



SUSHIL KUMAR, AMIT KUMAR RAI, RAJENDRA PRASAD 562

contact metric manifolds [15], On quasi-slant submanifolds of an almost Her-
mitian manifold [12], Slant submanifolds in Sasakian manifolds [8], Pointwise
slant submanifolds in almost Hermitian manifolds [9], Almost contact metric
submersions [11], Riemannian Submersions and Related Topics [13], Pointwise
slant submersions [17], Slant submanifolds of a Riemannian product manifold
[2], Slant submanifolds in contact geometry [18], Point-wise slant submanifolds
in almost contact geometry [3], Pointwise slant submersions from Cosymplectic
manifolds [21] etc.

In this paper, we study pointwise slant submersions from Kenmotsu mani-
folds onto Riemannian manifolds. The paper is organized as follows. In section
2, we collect main notions and formulae which are needed for this paper. In
section 3, we obtain some results of pointwise slant submersions from Kenmotsu
manifolds onto Riemannian manifolds admitting vertical and horizontal struc-
ture vector fields.

2. Preliminaries

Let M be an almost contact metric manifold. So there exist on M, a (1, 1)
tensor field ϕ, a vector field ξ, a 1−form η and a Riemannian metric g such that

ϕ2 = −I + η ⊗ ξ, ϕ ◦ ξ = 0, η ◦ ϕ = 0,(2.1)

g(X, ξ) = η(X), η(ξ) = 1,(2.2)

and

(2.3) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY ),

for any vector fields X and Y on M and I is the identity tensor field [5]. An
almost contact metric manifold M equipped with an almost contact metric
structure (ϕ, ξ, η, g) is denoted by (M,ϕ, ξ, η, g).

An almost contact metric manifold M is called a Kenmotsu manifold if

(2.4) (∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

for any vector fields X and Y on M, where ∇ is the Riemannian connection of
the Riemannian metric g. If (M,ϕ, ξ, η, g) be a Kenmotsu manifold, then the
following equation holds:

(2.5) ∇Xξ = X − η(X)ξ.

LetM be anm−dimensional Riemannian manifold andN be an n−dimensional
Riemannian manifold (m > n) with Riemannian metrics gM and gN respectively.
Let f : (M, gM ) → (N, gN ) be a C∞ map. We denote the kernel space of f∗
by ker f∗ and consider the orthogonal complementary space H = (ker f∗)

⊥ to
ker f∗. Then the tangent bundle of M has the following decomposition

(2.6) TM = (ker f∗)⊕ (ker f∗)
⊥.
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We also denote the range of f∗ by rangef∗ and consider the orthogonal
complementary space (rangef∗)

⊥ to rangef∗ in the tangent bundle TN of N.
Thus the tangent bundle TN of N has the following decomposition

(2.7) TN = (rangef∗)⊕ (rangef∗)
⊥.

ARiemannian submersion f is a C∞ map from Riemannian manifold (M, gM )
onto (N, gN ) satisfying the following conditions:

(i) f has the maximal rank,
(ii) The differential f∗ preserves the lengths of horizontal vectors.
For each x ∈ N, f−1(x) is fiber which is a (m− n) dimensional submanifold

of M . If a vector field on M is always tangent (resp. orthogonal) to fibers, then
it is called vertical (resp. horizontal). A vector field X on M is said to basic if
it is horizontal and f−related to a vector field X∗ on N, i.e., f∗Xp = X∗f(p) for
all p ∈M. We denote the projection morphisms on the distributions ker f∗ and
(ker f∗)

⊥ by V and H respectively.
A smooth map f : (M, gM ) → (N, gN ) between Riemannian manifolds is a

Riemannian submersion if and only if

(2.8) gM (U, V ) = gN (f∗U, f∗V ),

for every U, V ∈ (ker f∗)
⊥.

The O’Neill’s tensors T and A define by

TEF = H∇VEVF + V∇VEHF,(2.9)

AEF = V∇HEHF +H∇HEVF,(2.10)

for arbitrary vector fields E and F onM, where ∇ is the Riemannian connection
on M [19].

Lemma 1. Let f be a Riemannian submersion between Riemannian manifolds
(M, gM ) and (N, gN ). If X and Y are basic vector fields on M , then:

(i) gM (X,Y ) = gN (f∗X, f∗Y ),

(ii) the horizontal part [X,Y ]H of [X,Y ] is a basic vector field and corresponds
to [X∗, Y∗] i.e., f∗([X,Y ]H) = [X∗, Y∗],

(iii) [V,X] is vertical for any vector field V of ker f∗,

(iv) (∇M
X Y )H is vertical for any vector field corresponding to ∇N

X∗
Y∗ where ∇M

and ∇N are the Riemannian connection on M and N respectively.

Now, from equations (2.9) and (2.10), we get

∇XY = TXY + ∇̂XY,(2.11)

∇XV = H∇XV + TXV,(2.12)

∇VX = AVX + V∇VX,(2.13)

∇VW = H∇VW +AVW,(2.14)
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for X,Y ∈ Γ(ker f∗) and V,W ∈ Γ(ker f∗)
⊥, where ∇̂XY = V∇XY. Moreover,

if V is basic, then H∇XV = AVX.
On the other hand, for any E ∈ Γ(TM), it is seen that T is vertical, TE =

TVE and A is horizontal, AE = AHE .
The tensor fields T and A satisfy the equations:

TXY = TYX,(2.15)

AVW = −AWV =
1

2
V[V,W ],(2.16)

for X,Y ∈ Γ(kerF∗) and V,W ∈ Γ(ker f∗)
⊥.

It can be easily seen that a Riemannian submersion f : (M, gM ) → (N, gN )
has totally geodesic fibers if and only if T identically vanishes.

Now, we consider the notion of harmonic maps between Riemannian mani-
folds. Let (M, gM ) and (N, gN ) be Riemannian manifolds and suppose that f is
a C∞ mapping between them. Then the differential f∗ of f can be considered as
a section of the bundle Hom(TM, f−1TN) →M, where f−1TN is the pullback
bundle that has fibers (f−1TN)q = Tf(q)N, q ∈ M. If Hom(TM, f−1TN) has

a connection ∇ induced from the Riemannian connection ∇M , then the second
fundamental form of f is given by

(2.17) (∇f∗)(X,Y ) = ∇f
Xf∗Y − f∗(∇M

X Y ),

for any X,Y ∈ Γ(TM), where ∇f is the pullback connection.
If f is a Riemannian submersion, then we can easily see that

(2.18) (∇f∗)(V,W ) = 0,

for any V,W ∈ Γ(ker f∗)
⊥ [4].

3. The pointwise slant submersions from almost contact metric
manifolds

Let f be a Riemannian submersion from a Kenmotsu manifold (M,ϕ, ξ, η, gM )
onto a Riemannian manifold (N, gN ). If for each x ∈M, the angle θ(X) between
ϕX and the space ker f∗ is independent of the choice of the non-zero vector field
X ∈ Γ(ker f∗)−{ξ}, then f is called a pointwise slant submersion and the angle
θ is said to be slant function of the pointwise slant submersion.

A pointwise slant submersion is called slant if its slant function θ is indepen-
dent of the choice of the point on (M,ϕ, ξ, η, gM ). Then the constant θ is called
the slant angle of the slant submersion [21].

3.1 Pointwise slant submersion for ξ ∈ Γ(ker f∗)

Let f be a Riemannian submersion from a Kenmotsu manifold (M,ϕ, ξ, η, gM )
onto a Riemannian manifold (N, gN ).
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For any X ∈ Γ(ker f∗), we get

(3.1) ϕX = ψX + ωX,

where ψX and ωX are vertical and horizontal components of ϕX respectively.

For any V ∈ Γ(ker f∗)
⊥, we have

(3.2) ϕV = BV + CV,

where BV and CV are vertical and horizontal components of ϕV respectively

By using equations (2.3), (3.1) and (3.2), we get

gM (ψX, Y ) = −gM (X,ψY ),(3.3)

gM (ωX, V ) = −gM (X,BV ),(3.4)

for any X,Y ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥.

Again using the equations (2.5), (2.11), (2.13), (3.1) and (3.2), we get

(3.5) ∇̂Xξ = X − η(X)ξ, TXξ = 0,

for any X ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥.

For any X,Y ∈ Γ(ker f∗), define

(3.6) (∇Xψ)Y = ∇̂XψY − ψ∇̂XY,

and

(3.7) (∇Xω)Y = H∇XωY − ω∇̂XY,

where ∇ is the Riemannian connection onM . Next, we say that the ω is parallel
if

(3.8) (∇Xω)Y = 0.

Then we easily have:

Lemma 2. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a Rie-
mannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise slant sub-
mersion, then

(3.9) (∇Xψ)Y = BTXY − TXωY − g(ψX, Y )ξ + η(Y )ψX,

and

(3.10) (∇Xω)Y = CTXY − TXψY + η(Y )ωX,

for any X,Y ∈ Γ(ker f∗).



SUSHIL KUMAR, AMIT KUMAR RAI, RAJENDRA PRASAD 566

In the same way with the proof of Theorem 1 in [21], we have the following
theorem:

Theorem 1. If (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a Rie-
mannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise slant sub-
mersion, then

ψ2 = cos2 θ(−I + η ⊗ ξ).

Simlarly, as in the proof of Lemma 2 in [21], we have

Corollary 1. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise slant
submersion, then we have

gM (ψX,ψY ) = cos2 θ(gM (X,Y )− η(X)η(Y )),

gM (ωX,ωY ) = sin2 θ(gM (X,Y )− η(X)η(Y )),

for any X,Y ∈ Γ(ker f∗).

In the same way with the proof of Lemma 3 in [21], we can state the following
theorem:

Theorem 2. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. Assume that f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise
slant submersion. If ω is parallel, then we have

TψXψX = cos2 θ(TXX − η(X)ωψX),

for any X ∈ Γ(ker f∗).

Let f be a C∞ map from Riemannian manifold (M, gM ) onto (N, gN ), then
the adjoint ∗f∗ map of f∗ is characterized by

(3.11) gM (X,∗ f∗qY ) = gN (f∗qX,Y ),

for any X ∈ TqM,Y ∈ Tf(q)N and q ∈ M. For each q ∈ M, fh∗ is a C∞ map
defined by

fh∗ : ((ker f∗)
⊥(q), gM (ker f∗)

⊥(q)) → (rangef∗(q), gN (rangef∗)(q)),

where denote the adjoint of fh∗ by ∗fh∗ . Let
∗f∗q be the adjoint of f∗q that is

defined by f∗q : (TqM, gM ) → (Tf(q)N, gN ).

The linear transformation (∗f∗)
h : rangef∗(q) → (ker f∗)

⊥(q), defined as
(∗f∗)

hY =∗ f∗Y, where Y ∈ Γ(rangef∗), is an isomorphism and (fh∗q)
−1 =

(∗f∗q)
h =∗ (fh∗q).

Theorem 3. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise slant
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submersion with non-zero slant function θ, then the fibers are totally geodesic
submanifolds of M if and only if

gN (∇N
V ′f∗(ωX), f∗(ωY ))

= −gM ([X,V ], Y ) sin2 θ + V (θ)gM (ϕX, ϕY ) sin 2θ + gM (AV ωψX, Y )

− gM (AV ωX,ψY )− η(Y )gM (BV,ψX)− η(∇VX)η(Y ) sin2 θ,

for any X,Y ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥, where V and V ′ are f−related

vector fields and ∇N is the Riemannian connection on N .

Proof. For anyX,Y ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥, using equations (2.3), (2.4),

(2.11) and (3.1), we get

gM (TXY, V ) = −gM ([X,V ], Y ) + gM (∇V ψ
2X,Y ) + gM (∇V ωψX, Y )

−gM (∇V ωX, ϕY )− η(∇VX)η(Y ).

From theorem 1 and using equations (2.11), (2.14) and (3.2), we get

gM (TXY, V ) sin2 θ

= −gM ([X,V ], Y ) sin2 θ + V (θ)gM (ϕX, ϕY ) sin 2θ + gM (AV ωψX, Y )

− gN (∇N
V ′f∗(ωX), f∗(ωY ))− gM (AV ωX,ψY )

− η(∇VX)η(Y )) sin2 θ − η(Y )gM (BV,ψX).

By considering the fibers as totally geodesic, we derive the formula in the above
theorem. Conversely, it can be directly verified.

Theorem 4. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) be a pointwise slant
submersion with non-zero slant function θ, then f is a totally geodesic map if
and only if

gN (∇N
V ′f∗(ωX), f∗(ωY ))

= −gM ([X,V ], Y ) sin2 θ + V (θ)gM (ϕX, ϕY ) sin 2θ + gM (AV ωψX, Y )

− gM (AV ωX,ψY )− η(Y )gM (BV,ψX)− η(∇VX)η(Y ) sin2 θ,

and

gM (AV ωX,BW ) = gN (∇f
V f∗(ωψX), f∗(W ))− gN (∇f

V ′f∗(ωX), f∗(CW ))

− η(X)gM (V,W ) sin2 θ,

for X,Y ∈ Γ(ker f∗) and V,W ∈ Γ(ker f∗)
⊥, where V and V ′ are f−related

vector fields and ∇f is the pullback connection along f .
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Proof. By definition, it follows that f is totally geodesic if and only if (∇f∗)(X,Y )
= 0, for any X,Y ∈ Γ(TM).

From theorem 3, we obtain the first equation. On the other hand, for X,Y ∈
Γ(ker f∗) and V,W ∈ Γ(ker f∗)

⊥, using equations (2.3), (2.4) and (3.1) we get

gM (∇VX,W ) = −gM (∇V ψ
2X,W )− gM (∇V ωψX,W )

+ gM (∇V ωX, ϕW ) + η(X)gM (V,W ).

From theorem 1 and using equations (2.8), (2.11), (2.14), (2.17) and (3.2), we get

gN ((∇f∗)(V,X), f∗(W )) sin2 θ

= −gN (∇f
V f∗(ωX), f∗(W )) + gN (∇f

V f∗(ωX), f∗(CW ))

+ gM (AV ωX,BW ) + η(X)gM (V,W ) sin2 θ.

Converse is obvious.

Theorem 5. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) be a pointwise slant
submersion with non-zero slant function θ, then f is harmonic if and only if

trace∗f∗((∇f∗)((.)ωψ(.)))− traceT(.)ω(.) + traceC∗f∗(∇f∗)((.)ω(.)) = 0.

Proof. For any X ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥, using equations (2.1), (2.3),

(2.11), (3.1) and (3.2), we get

gM (TXX,V ) = −gM (ϕ∇XψX, V ) + gM (∇XωX, ϕV ).

From theorem 1 and using equations (2.3), (2.4) and (3.1), we get

gM (TXX,V ) = gM (∇XX,V ) cos2 θ − gM (∇XωψX, V ) + gM (∇XωX, ϕV ).

Using equations (2.12), (2.17), (3.2) and (3.11), we have

gM (TXX,V ) sin2 θ = gN (
∗f∗(∇f∗)(X,ωψX), V )− gM (ωTXωX, V )

−gN (C∗f∗(∇f∗)(X,ωX), V ).

Conversely, a direct computation gives the proof.

3.2 Pointwise slant submersions for ξ ∈ Γ((ker f∗)
⊥)

In this section, we give the basic equations of pointwise slant submersions from
Kenmotsu manifolds onto Riemannian manifolds for ξ ∈ Γ(ker f∗)

⊥.
From equations (2.1) and (2.2), we get

(3.12) ϕ2X = −X,
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and

(3.13) g(ϕX, ϕY ) = g(X,Y ),

for any X,Y ∈ Γ(ker f∗). Moreover, from equations (2.12), (2.14), (2.5), (3.1)
and (3.2), we get

TXξ = X,(3.14)

AV ξ = 0,(3.15)

and

(3.16) η(∇XY ) = −gM (X,Y ),

for any X,Y ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥.

Theorem 6. If (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a Rie-
mannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise slant sub-
mersion, then

ψ2 = −(cos2 θ)I.

Corollary 2. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) be a pointwise slant
submersion, then

gM (ψX,ψY ) = cos2 θgM (X,Y ),

gM (ωX,ωY ) = sin2 θ(gM (X,Y ),

for any X,Y ∈ Γ(ker f∗).

Theorem 7. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. Assume that f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise
slant submersion with slant function θ. If ω is parallel, then

TψXψX = cos2 θTXX,

for any X ∈ Γ(ker f∗).

Theorem 8. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. If f : (M,ϕ, ξ, η, gM ) → (N, gN ) is a pointwise slant
submersion with non-zero slant function θ, then the fibers are totally geodesic
submanifolds of M if and only if

gN (∇N
V ′f∗(ωX), f∗(ωY ))

= −gM ([X,V ], Y ) sin2 θ + V (θ)gM (X,Y ) sin 2θ + gM (AV ωψX, Y )

− gM (AV ωX,ψY ),

for any X,Y ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥, where V and V ′ are f−related

vector fields and ∇N is the Riemannian connection on N .
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Proof. For any X,Y ∈ Γ(ker f∗) and V ∈ Γ(ker f∗)
⊥, using equations (2.2),

(2.3), (2.4), (2.11), (2.14), (3.1), (3.2), (2.14) and Theorem 6, we get

gM (TXY, V ) sin2 θ

= −gM ([X,V ], Y ) sin2 θ + V (θ)gM (X,Y ) sin 2θ + gM (AV ωψX, Y )

− gN (∇N
V /f∗(ωX), f∗(ωY ))− gM (AV ωX,ψY ).

By considering the fibers as totally geodesic, we derive the formula. Conversely,
it can be directly verified.

Theorem 9. Let (M,ϕ, ξ, η, gM ) be a Kenmotsu manifold and (N, gN ) be a
Riemannian manifold. Let f : (M,ϕ, ξ, η, gM ) → (N, gN ) be a pointwise slant
submersion with non-zero slant function θ, then f is totally geodesic map if and
only if

gN (∇N
V ′f∗(ωX), f∗(ωY ))

= −gM ([X,V ], Y ) sin2 θ + V (θ)gM (X,Y ) sin 2θ + gM (AV ωψX, Y )

− gM (AV ωX,ψY ),

and

gM (AV ωX,BW ) = gN (∇f
V f∗(ωψX), f∗(W ))− gN (∇f

V f∗(ωX), f∗(CW ))

−η(W )gM (BV,ψX),

for any X,Y ∈ Γ(ker f∗) and V,W ∈ Γ(ker f∗)
⊥, where V and V ′ are f−related

vector fields and ∇f is the pullback connection along f .

Proof. By definition, it follows that f is totally geodesic if and only if (∇f∗)(X,Y )
= 0, for any X,Y ∈ Γ(TM).

From Theorem 3, we obtain the first equation. On the other hand, for
X,Y ∈ Γ(ker f∗) and V,W ∈ Γ(ker f∗)

⊥, using equations (2.2), (2.3), (2.4),
(2.10), (2.11), (3.1), (3.2), (2.14), and Theorem 6, we obtain

gN ((∇f∗)(V,X), f∗(W )) sin2 θ

= −gN (∇f
V f∗(ωX), f∗(W )) + gN (∇f

V f∗(ωX), f∗(CW ))

+ gM (AV ωX,BW ) + η(W )gM (BV,ψX).

Conversely, it can be easily proved.
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