REPRESENTATION OF $U P$-ALGEBRAS IN INTERVAL-VALUED INTUITIONISTIC FUZZY ENVIRONMENT

Tapan Senapati*
Department of Applied Mathematics with Oceanology and Computer Programming Vidyasagar University
Midnapore 721102
India
math.tapan@gmail.com
\section*{G. Muhiuddin}
Department of Mathematics
University of Tabuk
Tabuk 71491
Saudi Arabia
chishtygm@gmail.com
\section*{K.P. Shum}
Institute of Mathematics
Yunnan University
Kunming 650091
People's Republic of China
emailkpshum@ynu.edu.cn

Abstract

In this paper, the concept of interval-valued intuitionistic fuzzy set to $U P$ subalgebras and $U P$-ideals of $U P$-algebras are introduced. Relations among IVIF $U P$ subalgebras with IVIF $U P$-ideals of $U P$-algebras are investigated. The homomorphic image and inverse image of IVIF $U P$-subalgebras and IVIF $U P$-ideals are studied and some related properties are investigated. Equivalence relations on IVIF $U P$-ideals are discussed. Also, the product of IVIF $U P$-algebras are investigated. Keywords: $U P$-algebra, interval-valued intuitionistic fuzzy set, interval-valued intuitionistic fuzzy $U P$-subalgebra, interval-valued intuitionistic fuzzy $U P$-ideal, equivalence relation, upper(lower)-level cuts, product of $U P$-algebra.

1. Introduction

The theory of the fuzzy set introduced by Zadeh has achieved a great success in various fields. Atanassov [1] introduced the intuitionistic fuzzy set (IFS), which is a generalization of the fuzzy set. The IFS has received more and more attention and has been applied to many fields since its appearance. The theory of the IFS has been found to be more useful to deal with vagueness and uncertainty

[^0]in decision situations than that of the fuzzy set. Atanassov and Gargov further generalized the IFS in the spirit of ordinary interval-valued fuzzy sets (IVFSs) and defined the notion of an interval-valued intuitionistic fuzzy set (IVIFS).
$B C K$-algebras and $B C I$-algebras [4] are two important classes of logical algebras introduced by Imai and Iseki. Neggers and Kim [9] introduced a new notion, called a B-algebras which is related to several classes of algebras of interest such as $B C K / B C I$-algebras. Kim and Kim [8] introduced the notion of $B G$-algebras, which is a generalization of B-algebras. Senapati together with colleagues $[2,5,6,10-23]$ have done lot of works on $B C K / B C I$-algebras and related algebras. Iampan [3] introduced a new branch of logical algebra called $U P$-algebras, which is related to $B C K / B C I / B / B G$-algebras. Somjanta et al. [24] applied the concept of fuzzy set theory to $U P$-algebra. Kesorn et al. [7] introduced intuitionistic fuzzy $U P$-algebras and discussed their properties in details.

The objective of this paper is to introduce the concept of Atanassov's intervalvalued intuitionistic fuzzy sets in $U P$-algebras. The images and preimages of IVIF $U P$-subalgebras and $U P$-ideals has been introduced and some important properties of it are also studied. The rest of the paper is organized as follows. Section 2 recalls some definitions, viz., $U P$-algebra, $U P$-subalgebra, $U P$-ideal and refinement of unit interval. In Section 3, $U P$-subalgebras of IVIFSs are defined with some its properties. In next Section, IVIF $U P$-ideals are defined and related properties are investigated. In Section 5, homomorphism of IVIF $U P$ subalgebras and $U P$-ideals, and some of its properties are studied. In Section 6, equivalence relations on IVIF $U P$-ideals are introduced. In Section 7, product of IVIF $U P$-subalgebras and $U P$-ideals are investigated. Finally, in Section 8, a conclusion of the proposed work is given.

2. Preliminaries

Here we give a brief review of some preliminaries.
Definition 2.1 ([3]). By a UP-algebra we mean an algebra ($X, *, 0$) of type $(2,0)$ with a single binary operation * that satisfies the following axioms: for any $x, y, z \in X$,

1. $(y * z) *((x * y) *(x * z))=0$,
2. $0 * x=x$,
3. $x * 0=0$,
4. $x * y=y * x=0$ implies $x=y$.

In what follows, let $(X, *, 0)$ denote a $U P$-algebra unless otherwise specified. For brevity we also call X a $U P$-algebra. We can define a partial ordering " \leq by $x \leq y$ if and only if $x * y=0$.

Proposition 2.2 ([7]). In a UP-algebra, the following axioms are true: for any $x, y, z \in X$,
(i) $x * x=0$,
(ii) $x * y=y * z=0$ implies $x * z=0$,
(iii) $x * y=0$ implies $(z * x) *(z * y)=0$,
(iv) $x * y=0$ implies $(y * z) *(x * z)=0$,
(v) $x *(y * x)=0$,
(vi) $(y * x) * x=0$ if and only if $x=y$,
$(v i) x *(y * y)=0$.
A non-empty subset S of a $U P$-algebra X is called a $U P$-subalgebra [7] of X if $x * y \in S$, for all $x, y \in S$. From this definition it is observed that, if a subset S of a $U P$-algebra satisfies only the closer property, then S becomes a $U P$-subalgebra.

A nonempty subset T of X is called an $U P$-ideal [3] of X if it satisfies the following properties: $\left(I_{1}\right)$ the constant $0 \in T,\left(I_{2}\right)$ for ant $x, y, z \in X$, $x *(y * z) \in T$ and $y \in T \Rightarrow x * z \in T$.

Let $(X, *, 0)$ and $\left(Y, *^{\prime}, 0^{\prime}\right)$ be $U P$-algebras. A homomorphism is a mapping $f: X \rightarrow Y$ satisfying $f(x * y)=f(x) *^{\prime} f(y)$, for all $x, y \in X$.

Let $D[0,1]$ be the set of all closed subintervals of the interval $[0,1]$. Consider two elements $D_{1}, D_{2} \in D[0,1]$. If $D_{1}=\left[a_{1}, b_{1}\right]$ and $D_{2}=\left[a_{2}, b_{2}\right]$, then $\operatorname{rmin}\left(D_{1}, D_{2}\right)=\left[\min \left(a_{1}, a_{2}\right), \min \left(b_{1}, b_{2}\right)\right]$ which is denoted by $D_{1} \wedge^{r} D_{2}$ and $\operatorname{rmax}\left(D_{1}, D_{2}\right)=\left[\max \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]$ which is denoted by $D_{1} \vee^{r} D_{2}$. Thus, if $D_{i}=\left[a_{i}, b_{i}\right] \in D[0,1]$ for $i=1,2,3,4, \ldots$, then we define $\operatorname{rsup}_{i}\left(D_{i}\right)=$ $\left[\sup _{i}\left(a_{i}\right), \sup _{i}\left(b_{i}\right)\right]$, i.e, $\vee_{i}^{r} D_{i}=\left[\vee_{i} a_{i}, \vee_{i} b_{i}\right]$. Similarly, we define $\operatorname{rinf}_{i}\left(D_{i}\right)=$ $\left[\inf _{i}\left(a_{i}\right), \inf _{i}\left(b_{i}\right)\right]$ i.e, $\wedge_{i}^{r} D_{i}=\left[\wedge_{i} a_{i}, \wedge_{i} b_{i}\right]$. Now we call $D_{1} \geq D_{2}$ if and only if $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$. Similarly, the relations $D_{1} \leq D_{2}$ and $D_{1}=D_{2}$ are defined.

Our main objective is to investigate the idea of $U P$-subalgebras and $U P$ ideals of IVIFS. The IVIFS is a particular type of fuzzy set.

Definition 2.3 ([25]). (Fuzzy Set) Let X be the collection of objects denoted generally by x then a fuzzy set A in X is defined as $A=\left\{<x, \mu_{A}(x)>: x \in X\right\}$ where $\mu_{A}(x)$ is called the membership value of x in A and $0 \leq \mu_{A}(x) \leq 1$.

Combined the definition of $U P$-subalgebra and $U P$-ideal over crisp set and the idea of fuzzy set Somjanta et al. [24] defined fuzzy $U P$-subalgebra and $U P$-ideal, which is defined below.

Definition 2.4 ([24]). Let $A=\left\{<x, \mu_{A}(x)>: x \in X\right\}$ be a fuzzy set in a UP-algebra. Then A is called a fuzzy UP-subalgebra of X if $\mu_{A}(x * y) \geq$ $\min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$ for all $x, y \in X$.
A is called a fuzzy $U P$-ideal of X if $\mu_{A}(0) \geq \mu_{A}(x)$ and $\mu_{A}(x * z) \geq$ $\min \left\{\mu_{A}(x *(y * z)), \mu_{A}(y)\right\}$ for all $x, y, z \in X$.

Definition 2.5 ([1]). (IVIFS) An IVIFS A over X is an object having the form $A=\left\{\left\langle x, R_{A}(x), Q_{A}(x)\right\rangle: x \in X\right\}$, where $R_{A}(x): X \rightarrow D[0,1]$ and $Q_{A}(x):$ $X \rightarrow D[0,1]$. The intervals $R_{A}(x)$ and $Q_{A}(x)$ denote the intervals of the degree of belongingness and non-belongingness of the element x to the set A, where $R_{A}(x)=\left[R_{A L}(x), R_{A U}(x)\right]$ and $Q_{A}(x)=\left[Q_{A L}(x), Q_{A U}(x)\right]$, for all $x \in X$, with the condition $0 \leq R_{A U}(x)+Q_{A U}(x) \leq 1$. For the sake of simplicity, we shall use the symbol $A=\left(R_{A}, Q_{A}\right)$ for the $\operatorname{IVIFS} A=\left\{\left\langle x, R_{A}(x), Q_{A}(x)\right\rangle: x \in X\right\}$.

Also note that $\bar{R}_{A}(x)=\left[1-R_{A U}(x), 1-R_{A L}(x)\right]$ and $\bar{Q}_{A}(x)=\left[1-Q_{A U}(x), 1-\right.$ $\left.Q_{A L}(x)\right]$, where $\left[\bar{R}_{A}(x), \bar{Q}_{A}(x)\right]$ represents the complement of x in A.

3. IVIF $U P$-subalgebras of $U P$-algebras

In this section, we will introduce a new notion called interval-valued intuitionistic fuzzy $U P$-subalgebra (IVIF $U P$-subalgebra) of $U P$-algebras and study several properties of it.

Definition 3.1. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIFS in X, where X is a UPsubalgebra, then the set A is IVIF UP-subalgebra over the binary operator * if it satisfies the following conditions:
$(U P 1) \quad R_{A}(x * y) \geq \operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}$,
$(U P 2) \quad Q_{A}(x * y) \leq \operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}$,
for all $x, y \in X$.
We consider an example of IVIF $U P$-subalgebra below.
Example 3.2. Let $X=\{0, a, b, c\}$ be a $U P$-algebra with the following Cayley table:

$*$	0	a	b	c
0	0	a	b	c
a	0	0	0	0
b	0	a	0	c
c	0	a	b	0

Define an IVIFS $A=\left(R_{A}, Q_{A}\right)$ in X by
$R_{A}(x)=\left\{\begin{array}{ll}{[0.5,0.6],} & \text { if } x \in\{0, a, b\} \\ {[0.1,0.2],} & \text { if } x=c\end{array} \quad\right.$ and $\mathrm{Q}_{\mathrm{A}}(\mathrm{x})= \begin{cases}{[0.3,0.4],} & \text { if } x \in\{0, a, b\} \\ {[0.4,0.5],} & \text { if } x=c .\end{cases}$
By routine calculations we get A is an IVIF $U P$-subalgebra of X.
Proposition 3.3. If $A=\left(R_{A}, Q_{A}\right)$ is an IVIF UP-subalgebra in X, then for all $x \in X, R_{A}(0) \geq R_{A}(x)$ and $Q_{A}(0) \leq Q_{A}(x)$.

Proof. It is easy and omitted.

Theorem 3.4. Let A be an IVIF UP-subalgebra of X. If there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} R_{A}\left(x_{n}\right)=[1,1]$ and $\lim _{n \rightarrow \infty} Q_{A}\left(x_{n}\right)=[0,0]$. Then $R_{A}(0)=[1,1]$ and $Q_{A}(0)=[0,0]$.

Proof. By Proposition 3.3, $R_{A}(0) \geq R_{A}(x)$ for all $x \in X$, therefore, $R_{A}(0) \geq$ $R_{A}\left(x_{n}\right)$ for every positive integer n. Consider, $[1,1] \geq R_{A}(0) \geq \lim _{n \rightarrow \infty} R_{A}\left(x_{n}\right)$ $=[1,1]$. Hence, $R_{A}(0)=[1,1]$.

Again, by Proposition 3.3, $Q_{A}(0) \leq Q_{A}(x)$ for all $x \in X$, thus $Q_{A}(0) \leq$ $Q_{A}\left(x_{n}\right)$ for every positive integer n. Now, $[0,0] \leq Q_{A}(0) \leq \lim _{n \rightarrow \infty} Q_{A}\left(x_{n}\right)=$ $[0,0]$. Hence, $Q_{A}(0)=[0,0]$.

Proposition 3.5. If an IVIFS $A=\left(R_{A}, Q_{A}\right)$ in X is an IVIF UP-subalgebra, then for all $x \in X, R_{A}(0 * x) \geq R_{A}(x)$ and $Q_{A}(0 * x) \leq Q_{A}(x)$.

Proof. For all $x \in X, R_{A}(0 * x) \geq \operatorname{rmin}\left\{R_{A}(0), R_{A}(x)\right\}=\operatorname{rmin}\left\{R_{A}(x *\right.$ $\left.x), R_{A}(x)\right\} \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{R_{A}(x), R_{A}(x)\right\}, R_{A}(x)\right\}=R_{A}(x)$ and $Q_{A}(0 * x) \leq$ $\operatorname{rmax}\left\{Q_{A}(0), Q_{A}(x)\right\}=\operatorname{rmax}\left\{Q_{A}(x * x), Q_{A}(x)\right\} \leq \operatorname{rmax}\left\{\operatorname{rmax}\left\{Q_{A}(x), Q_{A}(x)\right\}\right.$, $\left.Q_{A}(x)\right\}=Q_{A}(x)$. This completes the proof.

Theorem 3.6. An IVIFSs $A=\left\{\left[R_{A L}, R_{A U}\right],\left[Q_{A L}, Q_{A U}\right]\right\}$ in X is an IVIF $U P$-subalgebra of X if and only if $R_{A L}, R_{A U}, Q_{A L}$ and $Q_{A U}$ are fuzzy UPsubalgebras of X.

Proof. Let $R_{A L}$ and $R_{A U}$ be fuzzy $U P$-subalgebra of X and $x, y \in X$. Then $R_{A L}(x * y) \geq \min \left\{R_{A L}(x), R_{A L}(y)\right\}$ and $R_{A U}(x * y) \geq \min \left\{R_{A U}(x), R_{A U}(y)\right\}$. Now,

$$
\begin{aligned}
R_{A}(x * y) & =\left[R_{A L}(x * y), R_{A U}(x * y)\right] \\
& \geq\left[\min \left\{R_{A L}(x), R_{A L}(y)\right\}, \min \left\{R_{A U}(x), R_{A U}(y)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[R_{A L},(x), R_{A U}(x)\right],\left[R_{A L}(y), R_{A U}(y)\right]\right\} \\
& =\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\} .
\end{aligned}
$$

Again, let $Q_{A L}$ and $Q_{A U}$ be fuzzy $U P$-subalgebras of X and $x, y \in X$. Then $Q_{A L}(x * y) \leq \max \left\{Q_{A L}(x), Q_{A L}(y)\right\}$ and $Q_{A U}(x * y) \leq \max \left\{Q_{A U}(x), Q_{A U}(y)\right\}$. Now,

$$
\begin{aligned}
Q_{A}(x * y) & =\left[Q_{A L}(x * y), Q_{A U}(x * y)\right] \\
& \leq\left[\max \left\{Q_{A L}(x), Q_{A L}(y)\right\}, \max \left\{Q_{A U}(x), Q_{A U}(y)\right\}\right] \\
& =\operatorname{rmax}\left\{\left[Q_{A L}(x), Q_{A U}(x)\right],\left[Q_{A L}(y), Q_{A U}(y)\right]\right\} \\
& =\operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\} .
\end{aligned}
$$

Hence, $A=\left\{\left[R_{A L}, R_{A U}\right],\left[Q_{A L}, Q_{A U}\right]\right\}$ is an IVIF $U P$-subalgebra of X.

Conversely, assume that, A is an IVIF $U P$-subalgebra of X. For any $x, y \in X$

$$
\begin{aligned}
{\left[R_{A L}(x * y), R_{A U}(x * y)\right] } & =R_{A}(x * y) \geq \operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\} \\
& =\operatorname{rmin}\left\{\left[R_{A L}(x), R_{A U}(x)\right],\left[R_{A L}(y), R_{A U}(y)\right]\right. \\
& =\left[\min \left\{R_{A L}(x), R_{A L}(y)\right\}, \min \left\{R_{A U}(x), R_{A U}(y)\right\}\right] \\
{\left[Q_{A L}(x * y), Q_{A U}(x * y)\right] } & =Q_{A}(x * y) \leq \operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\} \\
& =\operatorname{rmax}\left\{\left[Q_{A L}(x), Q_{A U}(x)\right],\left[Q_{A L}(y), Q_{A U}(y)\right]\right\} \\
& =\left[\max \left\{Q_{A L}(x), Q_{A L}(y)\right\}, \max \left\{Q_{A U}(x), Q_{A U}(y)\right\}\right]
\end{aligned}
$$

Thus $R_{A L}(x * y) \geq \min \left\{R_{A L}(x), R_{A L}(y)\right\}, R_{A U}(x * y) \geq \min \left\{R_{A U}(x), R_{A U}(y)\right\}$, $Q_{A L}(x * y) \leq \max \left\{Q_{A L}(x), Q_{A L}(y)\right\}$ and $Q_{A U}(x * y) \leq \max \left\{Q_{A U}(x), Q_{A U}(y)\right\}$. Therefore, $R_{A L}, R_{A U}, Q_{A L}$ and $Q_{A U}$ are fuzzy $U P$-subalgebras of X.
Definition 3.7. Let A and B be two IVIFSs on X, where $A=\left\{\left\langle\left[R_{A L}(x)\right.\right.\right.$, $\left.\left.\left.R_{A U}(x)\right],\left[Q_{A L}(x), Q_{A U}\right]\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle\left[R_{B L}(x), R_{B U}(x)\right],\left[Q_{B L}(x)\right.\right.\right.$, $\left.\left.\left.Q_{B U}\right]\right\rangle: x \in X\right\}$. Then the intersection of A and B is denoted by $A \cap B$, and is given by $A \cap B=\left\{\left\langle x, R_{A \cap B}(x), Q_{A \cup B}(x)\right\rangle: x \in X\right\}=\left\{\left\langle\left[\min \left(R_{A L}(x), R_{B L}(x)\right)\right.\right.\right.$, $\left.\left.\min \left(R_{A U}(x), R_{B U}(x)\right)\right],\left[\max \left(Q_{A L}(x), Q_{B L}(x)\right), \max \left(Q_{A U}(x), Q_{B U}(x)\right)\right]\right\rangle: x \in$ $X\}$.

Theorem 3.8. Let A_{1} and A_{2} be two IVIF UP-subalgebras of X. Then $A_{1} \cap A_{2}$ is an IVIF UP-subalgebra of X.

Proof. Let $x, y \in A_{1} \cap A_{2}$. Then $x, y \in A_{1}$ and A_{2}. Since A_{1} and A_{2} are IVIF $U P$-subalgebras of X, by Theorem 3.6,

$$
\begin{aligned}
R_{A_{1} \cap A_{2}}(x * y)= & {\left[R_{\left(A_{1} \cap A_{2}\right) L}(x * y), R_{\left(A_{1} \cap A_{2}\right) U}(x * y)\right] } \\
= & {\left[\min \left(R_{A_{1} L}(x * y), R_{A_{2} L}(x * y)\right),\right.} \\
& \left.\min \left(R_{A_{1} U}(x * y), R_{A_{2} U}(x * y)\right)\right] \\
\geq & {\left[\min \left(R_{\left(A_{1} \cap A_{2}\right) L}(x), R_{\left(A_{1} \cap A_{2}\right) L}(y)\right),\right.} \\
& \left.\min \left(R_{\left(A_{1} \cap A_{2}\right) U}(x), R_{\left(A_{1} \cap A_{2}\right) U}(y)\right)\right] \\
= & r \min \left\{R_{A_{1} \cap A_{2}}(x), R_{A_{1} \cap A_{2}}(y)\right\} \\
\text { and } Q_{A_{1} \cup A_{2}}(x * y)= & {\left[Q_{\left(A_{1} \cup A_{2}\right) L}(x * y), Q_{\left(A_{1} \cup A_{2}\right) U}(x * y)\right] } \\
= & {\left[\max \left(Q_{A_{1} L}(x * y), Q_{A_{2} L}(x * y)\right),\right.} \\
\leq & \left.\max \left(Q_{A_{1} U}(x * y), Q_{A_{2} U}(x * y)\right)\right] \\
\leq & {\left[\max \left(Q_{\left(A_{1} \cup A_{2}\right) L}(x), Q_{\left(A_{1} \cup A_{2}\right) L}(y)\right),\right.} \\
& \left.\max \left(Q_{\left(A_{1} \cup A_{2}\right) U}(x), Q_{\left(A_{1} \cup A_{2}\right) U}(y)\right)\right] \\
= & \operatorname{rmax}\left\{Q_{A_{1} \cup A_{2}}(x), Q_{A_{1} \cup A_{2}}(y)\right\} .
\end{aligned}
$$

This proves the theorem.
Corollary 3.9. Let $\left\{A_{i} \mid i=1,2,3,4, \ldots\right\}$ be a family of IVIF UP-subalgebra of X. Then $\bigcap A_{i}$ is also an IVIF UP-subalgebra of X where, $\cap A_{i}=\{\langle x$, $\left.\left.\operatorname{rmin} R_{A_{i}}(x), \operatorname{rmax} Q_{A_{i}}(x)\right\rangle: x \in X\right\}$.

Theorem 3.10. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIF $U P$-subalgebra of X and let $n \in \mathbb{N}$ (the set of natural numbers). Then
(i) $R_{A}\left(\prod^{n} x * x\right) \geq R_{A}(x)$, for any odd number n,
(ii) $Q_{A}\left(\prod^{n} x * x\right) \leq Q_{A}(x)$, for any odd number n,
(iii) $R_{A}\left(\prod^{n} x * x\right)=R_{A}(x)$, for any even number n,
(iv) $Q_{A}\left(\prod^{n} x * x\right)=Q_{A}(x)$, for any even number n.

Proof. Let $x \in X$ and assume that n is odd. Then $n=2 p-1$ for some positive integer p. We prove the Theorem by induction.

Now $R_{A}(x * x)=R_{A}(0) \geq R_{A}(x)$ and $Q_{A}(x * x)=Q_{A}(0) \leq Q_{A}(x)$. Suppose that $R_{A}\left(\prod^{2 p-1} x * x\right) \geq R_{A}(x)$ and $Q_{A}\left(\prod^{2 p-1} x * x\right) \leq Q_{A}(x)$. Then by assumption, $R_{A}\left(\prod^{2(p+1)-1} x * x\right)=R_{A}\left(\prod^{2 p+1} x * x\right)=R_{A}\left(\prod^{2 p-1} x *(x *(x * x))\right)=$ $R_{A}\left(\prod^{2 p-1} x * x\right) \geq R_{A}(x)$ and $Q_{A}\left(\prod^{2(p+1)-1} x * x\right)=Q_{A}\left(\prod^{2 p+1} x * x\right)=$ $Q_{A}\left(\prod^{2 p-1} x *(x *(x * x))\right)=Q_{A}\left(\prod^{2 p-1} x * x\right) \leq Q_{A}(x)$, which proves (i) and (ii). Proofs are similar for the cases (iii) and (iv).

We define two operators $\bigoplus A$ and $\otimes A$ on IVIFS as follows:
Definition 3.11. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIFS defined on X. The operators $\bigoplus A$ and $\bigotimes A$ are defined as $\bigoplus A=\left\{\left\langle x, R_{A}(x), \bar{R}_{A}(x)\right\rangle: x \in X\right\}$ and $\bigotimes A=$ $\left\{\left\langle x, \bar{Q}_{A}(x), Q_{A}(x)\right\rangle: x \in X\right\}$.

Theorem 3.12. If $A=\left(R_{A}, Q_{A}\right)$ is an IVIF UP-subalgebra of X, then
(i) $\bigoplus A$, and
(ii) $\otimes A$, both are IVIF UP-subalgebras.

Proof. For (i), it is sufficient to show that \bar{R}_{A} satisfies the condition (UP2). Let $x, y \in X$. Then $\bar{R}_{A}(x * y)=[1,1]-R_{A}(x * y) \leq[1,1]-\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}=$ $\operatorname{rmax}\left\{1-R_{A}(x), 1-R_{A}(y)\right\}=\operatorname{rmax}\left\{\bar{R}_{A}(x), \bar{R}_{A}(y)\right\}$. Hence, $\bigoplus A$ is an IVIF $U P$-subalgebra of X.

For (ii), it is sufficient to show that \bar{Q}_{A} satisfies the condition (UP1). Let $x, y \in X$. Then $\bar{Q}_{A}(x * y)=[1,1]-Q_{A}(x * y) \geq[1,1]-\operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}=$ $\operatorname{rmin}\left\{1-Q_{A}(x), 1-Q_{A}(y)\right\}=\operatorname{rmin}\left\{\bar{Q}_{A}(x), \bar{Q}_{A}(y)\right\}$. Hence, $\otimes A$ is also an IVIF $U P$-subalgebra of X.

The sets $\left\{x \in X: R_{A}(x)=R_{A}(0)\right\}$ and $\left\{x \in X: Q_{A}(x)=Q_{A}(0)\right\}$ are denoted by $I_{R_{A}}$ and $I_{Q_{A}}$ respectively. These two sets are also $U P$-subalgebra of X.

Theorem 3.13. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIF UP-subalgebra of X, then the sets $I_{R_{A}}$ and $I_{Q_{A}}$ are $U P$-subalgebras of X.

Proof. Let $x, y \in I_{R_{A}}$. Then $R_{A}(x)=R_{A}(0)=R_{A}(y)$ and so, $R_{A}(x * y) \geq$ $\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}=R_{A}(0)$. By using Proposition 3.3, we know that $R_{A}(x *$ $y)=R_{A}(0)$ or equivalently $x * y \in I_{R_{A}}$.

Again, let $x, y \in I_{Q_{A}}$. Then $Q_{A}(x)=Q_{A}(0)=Q_{A}(y)$ and so, $Q_{A}(x * y) \leq$ $\operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}=Q_{A}(0)$. Again, by Proposition 3.3, we know that $Q_{A}(x * y)=Q_{A}(0)$ or equivalently $x * y \in I_{Q_{A}}$.

Hence, the sets $I_{R_{A}}$ and $I_{Q_{A}}$ are $U P$-subalgebras of X.
Theorem 3.14. Let B be a nonempty subset of X and $A=\left(R_{A}, Q_{A}\right)$ be an IVIFS in X defined by

$$
R_{A}(x)=\left\{\begin{array}{ll}
{\left[\alpha_{1}, \alpha_{2}\right],} & \text { if } x \in B \\
{\left[\beta_{1}, \beta_{2}\right],} & \text { otherwise }
\end{array} \text { and } Q_{A}(x)= \begin{cases}{\left[\gamma_{1}, \gamma_{2}\right],} & \text { if } x \in B \\
{\left[\delta_{1}, \delta_{2}\right],} & \text { otherwise }\end{cases}\right.
$$

for all $\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]$ and $\left[\delta_{1}, \delta_{2}\right] \in D[0,1]$ with $\left[\alpha_{1}, \alpha_{2}\right] \geq\left[\beta_{1}, \beta_{2}\right]$ and $\left[\gamma_{1}, \gamma_{2}\right] \leq\left[\delta_{1}, \delta_{2}\right]$ and $\alpha_{2}+\gamma_{2} \leq 1 ; \beta_{2}+\delta_{2} \leq 1$. Then A is an IVIF UP-subalgebra of X if and only if B is a $U P$-subalgebra of X. Moreover, $I_{R_{A}}=B=I_{Q_{A}}$.
Proof. Let A be an IVIF $U P$-subalgebra of X and $x, y \in X$ be such that $x, y \in$ B. Then $R_{A}(x * y) \geq \operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}=\operatorname{rmin}\left\{\left[\alpha_{1}, \alpha_{2}\right],\left[\alpha_{1}, \alpha_{2}\right]\right\}=\left[\alpha_{1}, \alpha_{2}\right]$ and $Q_{A}(x * y) \leq \operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}=r \max \left\{\left[\gamma_{1}, \gamma_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\}=\left[\gamma_{1}, \gamma_{2}\right]$. So $x * y \in B$. Hence, B is a $U P$-subalgebra of X.

Conversely, suppose that B is a $U P$-subalgebra of X. Let $x, y \in X$. Consider two cases:

Case (i). If $x, y \in B$ then $x * y \in B$, thus $R_{A}(x * y)=\left[\alpha_{1}, \alpha_{2}\right]=$ $r \min \left\{R_{A}(x), R_{A}(y)\right\}$ and $Q_{A}(x * y)=\left[\gamma_{1}, \gamma_{2}\right]=\operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}$.

Case (ii). If $x \notin B$ or, $y \notin B$, then $R_{A}(x * y) \geq\left[\beta_{1}, \beta_{2}\right]=\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}$ and $Q_{A}(x * y) \leq\left[\delta_{1}, \delta_{2}\right]=\operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}$.

Hence, A is an IVIF $U P$-subalgebra of X.
Now, $I_{R_{A}}=\left\{x \in X, R_{A}(x)=R_{A}(0)\right\}=\left\{x \in X, R_{A}(x)=\left[\alpha_{1}, \alpha_{2}\right]\right\}=B$ and $I_{Q_{A}}=\left\{x \in X, Q_{A}(x)=Q_{A}(0)\right\}=\left\{x \in X, Q_{A}(x)=\left[\gamma_{1}, \gamma_{2}\right]\right\}=B$.

Definition 3.15. Let $A=\left(R_{A}, Q_{A}\right)$ is an IVIF UP-subalgebra of X. For $\left[s_{1}, s_{2}\right],\left[t_{1}, t_{2}\right] \in D[0,1]$, the set $U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)=\left\{x \in X: R_{A}(x) \geq\left[s_{1}, s_{2}\right]\right\}$ is called upper $\left[s_{1}, s_{2}\right]$-level of A and $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)=\left\{x \in X: Q_{A}(x) \leq\left[t_{1}, t_{2}\right]\right\}$ is called lower $\left[t_{1}, t_{2}\right]$-level of A.

Theorem 3.16. If $A=\left(R_{A}, Q_{A}\right)$ is an IVIF UP-subalgebra of X, then the upper $\left[s_{1}, s_{2}\right]$-level and lower $\left[t_{1}, t_{2}\right]$-level of A are subalgebras of X.

Proof. Let $x, y \in U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$. Then $R_{A}(x) \geq\left[s_{1}, s_{2}\right]$ and $R_{A}(y) \geq\left[s_{1}, s_{2}\right]$. It follows that $R_{A}(x * y) \geq \operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\} \geq\left[s_{1}, s_{2}\right]$ so that $x * y \in U\left(R_{A}\right.$: $\left[s_{1}, s_{2}\right]$). Hence, $U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$ is a subalgebra of X.

Let $x, y \in L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$. Then $Q_{A}(x) \leq\left[t_{1}, t_{2}\right]$ and $Q_{A}(y) \leq\left[t_{1}, t_{2}\right]$. It follows that $Q_{A}(x * y) \leq \operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\} \leq\left[t_{1}, t_{2}\right]$ so that $x * y \in L\left(Q_{A}\right.$: $\left.\left[t_{1}, t_{2}\right]\right)$. Hence, $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ is a subalgebra of X.

Theorem 3.17. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIFS in X, such that the sets $U\left(R_{A}\right.$: $\left.\left[s_{1}, s_{2}\right]\right)$ and $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ are subalgebras of X for every $\left[s_{1}, s_{2}\right],\left[t_{1}, t_{2}\right] \in$ $D[0,1]$. Then A is an IVIF UP-subalgebra of X.
Proof. Let for every $\left[s_{1}, s_{2}\right],\left[t_{1}, t_{2}\right] \in D[0,1], U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$ and $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ are subalgebras of X . In contrary, let $x_{0}, y_{0} \in X$ be such that $R_{A}\left(x_{0} * y_{0}\right)<$ $\operatorname{rmin}\left\{R_{A}\left(x_{0}\right), R_{A}\left(y_{0}\right)\right\}$. Let $R_{A}\left(x_{0}\right)=\left[\vartheta_{1}, \vartheta_{2}\right], R_{A}\left(y_{0}\right)=\left[\vartheta_{3}, \vartheta_{4}\right]$ and $R_{A}\left(x_{0} *\right.$ $\left.y_{0}\right)=\left[s_{1}, s_{2}\right]$. Then $\left[s_{1}, s_{2}\right]<\operatorname{rmin}\left\{\left[\vartheta_{1}, \vartheta_{2}\right],\left[\vartheta_{3}, \vartheta_{4}\right]\right\}=\left[\min \left\{\vartheta_{1}, \vartheta_{3}\right\}, \min \left\{\vartheta_{2}, \vartheta_{4}\right\}\right]$. So, $s_{1}<\min \left\{\vartheta_{1}, \vartheta_{3}\right\}$ and $s_{2}<\min \left\{\vartheta_{2}, \vartheta_{4}\right\}$. Consider,

$$
\begin{aligned}
{\left[\rho_{1}, \rho_{2}\right] } & =\frac{1}{2}\left[R_{A}\left(x_{0} * y_{0}\right)+\operatorname{rmin}\left\{R_{A}\left(x_{0}\right), R_{A}\left(y_{0}\right)\right\}\right] \\
& =\frac{1}{2}\left[\left[s_{1}, s_{2}\right]+\left[\min \left\{\vartheta_{1}, \vartheta_{3}\right\}, \min \left\{\vartheta_{2}, \vartheta_{4}\right\}\right]\right] \\
& =\left[\frac{1}{2}\left(s_{1}+\min \left\{\vartheta_{1}, \vartheta_{3}\right\}\right), \frac{1}{2}\left(s_{2}+\min \left\{\vartheta_{2}, \vartheta_{4}\right\}\right)\right]
\end{aligned}
$$

Therefore, $\min \left\{\vartheta_{1}, \vartheta_{3}\right\}>\rho_{1}=\frac{1}{2}\left(s_{1}+\min \left\{\vartheta_{1}, \vartheta_{3}\right\}\right)>s_{1}$ and $\min \left\{\vartheta_{2}, \vartheta_{4}\right\}>\rho_{2}=$ $\frac{1}{2}\left(s_{2}+\min \left\{\vartheta_{2}, \vartheta_{4}\right\}\right)>s_{2}$. Hence, $\left[\min \left\{\vartheta_{1}, \vartheta_{3}\right\}, \min \left\{\vartheta_{2}, \vartheta_{4}\right\}\right]>\left[\rho_{1}, \rho_{2}\right]>\left[s_{1}, s_{2}\right]$, so that $x_{0} * y_{0} \notin U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$ which is a contradiction, since $R_{A}\left(x_{0}\right)=$ $\left[\vartheta_{1}, \vartheta_{2}\right] \geq\left[\min \left\{\vartheta_{1}, \vartheta_{3}\right\}, \min \left\{\vartheta_{2}, \vartheta_{4}\right\}\right]>\left[\rho_{1}, \rho_{2}\right]$ and $R_{A}\left(y_{0}\right)=\left[\vartheta_{3}, \vartheta_{4}\right] \geq\left[\min \left\{\vartheta_{1}, \vartheta_{3}\right\}\right.$, $\left.\min \left\{\vartheta_{2}, \vartheta_{4}\right\}\right]>\left[\rho_{1}, \rho_{2}\right]$. This implies $x_{0} * y_{0} \in U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$. Thus $R_{A}(x * y) \geq$ $\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}$ for all $x, y \in X$.

Again, in contrary, let $x_{0}, y_{0} \in X$ be such that $Q_{A}\left(x_{0} * y_{0}\right)>\operatorname{rmax}\left\{Q_{A}\left(x_{0}\right)\right.$, $\left.Q_{A}\left(y_{0}\right)\right\}$. Let $Q_{A}\left(x_{0}\right)=\left[\psi_{1}, \psi_{2}\right], Q_{A}\left(y_{0}\right)=\left[\psi_{3}, \psi_{4}\right]$ and $Q_{A}\left(x_{0} * y_{0}\right)=\left[t_{1}, t_{2}\right]$. Then $\left[t_{1}, t_{2}\right]>\operatorname{rmax}\left\{\left[\psi_{1}, \psi_{2}\right],\left[\psi_{3}, \psi_{4}\right]\right\}=\left[\max \left\{\psi_{1}, \psi_{3}\right\}, \max \left\{\psi_{2}, \psi_{4}\right\}\right]$. So $t_{1}>$ $\max \left\{\psi_{1}, \psi_{3}\right\}$ and $t_{2}>\max \left\{\psi_{2}, \psi_{4}\right\}$. Let us consider,

$$
\begin{aligned}
{\left[\beta_{1}, \beta_{2}\right] } & =\frac{1}{2}\left[Q_{A}\left(x_{0} * y_{0}\right)+\operatorname{rmax}\left\{Q_{A}\left(x_{0}\right), Q_{A}\left(y_{0}\right)\right\}\right] \\
& =\frac{1}{2}\left[\left[t_{1}, t_{2}\right]+\left[\max \left\{\psi_{1}, \psi_{3}\right\}, \max \left\{\psi_{2}, \psi_{4}\right\}\right]\right] \\
& =\left[\frac{1}{2}\left(t_{1}+\max \left\{\psi_{1}, \psi_{3}\right\}\right), \frac{1}{2}\left(t_{2}+\max \left\{\psi_{2}, \psi_{4}\right\}\right)\right]
\end{aligned}
$$

Therefore, $\max \left\{\psi_{1}, \psi_{3}\right\}<\beta_{1}=\frac{1}{2}\left(t_{1}+\max \left\{\psi_{1}, \psi_{3}\right\}\right)<t_{1}$ and $\max \left\{\psi_{2}, \psi_{4}\right\}<$ $\beta_{2}=\frac{1}{2}\left(t_{2}+\max \left\{\psi_{2}, \psi_{4}\right\}\right)<t_{2}$. Hence, $\left.\max \left\{\psi_{1}, \psi_{3}\right\}, \max \left\{\psi_{2}, \psi_{4}\right\}\right]<\left[\beta_{1}, \beta_{2}\right]<$ $\left[t_{1}, t_{2}\right]$ so that $x_{0} * y_{0} \notin L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ which is a contradiction, since $Q_{A}\left(x_{0}\right)=$ $\left[\psi_{1}, \psi_{2}\right] \leq\left[\max \left\{\psi_{1}, \psi_{3}\right\}, \max \left\{\psi_{2}, \psi_{4}\right\}\right]<\left[\beta_{1}, \beta_{2}\right]$ and $Q_{A}\left(y_{0}\right)=\left[\psi_{3}, \psi_{4}\right] \leq$ $\left[\max \left\{\psi_{1}, \psi_{3}\right\}, \max \left\{\psi_{2}, \psi_{4}\right\}\right]<\left[\beta_{1}, \beta_{2}\right]$. Hence, $x_{0} * y_{0} \in L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$. Thus $Q_{A}(x * y) \leq \operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}$ for all $x, y \in X$.

Theorem 3.18. Any subalgebra of X can be realized as both the upper $\left[s_{1}, s_{2}\right]$ level and lower $\left[t_{1}, t_{2}\right]$-level of some IVIF UP-subalgebra of X.
Proof. Let P be an IVIF $U P$-subalgebra of X, and A be an IVIFS on X defined by

$$
R_{A}(x)=\left\{\begin{array}{ll}
{\left[\xi_{1}, \xi_{2}\right],} & \text { if } x \in P \\
{[0,0],} & \text { otherwise }
\end{array} \text { and } \quad \mathrm{Q}_{\mathrm{A}}(\mathrm{x})= \begin{cases}{\left[\omega_{1}, \omega_{2}\right],} & \text { if } x \in P \\
{[1,1],} & \text { otherwise }\end{cases}\right.
$$

for all $\left[\xi_{1}, \xi_{2}\right]$, $\left[\omega_{1}, \omega_{2}\right] \in D[0,1]$ and $\xi_{2}+\omega_{2} \leq 1$. We consider the following cases:
Case (i) If $x, y \in P$, then $R_{A}(x)=\left[\xi_{1}, \xi_{2}\right], Q_{A}(x)=\left[\omega_{1}, \omega_{2}\right]$ and $R_{A}(y)=$ $\left[\xi_{1}, \xi_{2}\right], Q_{A}(y)=\left[\omega_{1}, \omega_{2}\right]$. Thus, $R_{A}(x * y)=\left[\xi_{1}, \xi_{2}\right]=\operatorname{rmin}\left\{\left[\xi_{1}, \xi_{2}\right],\left[\xi_{1}, \xi_{2}\right]\right\}=$ $\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}$ and $Q_{A}(x * y)=\left[\omega_{1}, \omega_{2}\right]=\operatorname{rmax}\left\{\left[\omega_{1}, \omega_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right\}=$ $\operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}$.

Case (ii) If $x \in P$ and $y \notin P$ then $R_{A}(x)=\left[\xi_{1}, \xi_{2}\right], Q_{A}(x)=\left[\omega_{1}, \omega_{2}\right]$ and $R_{A}(y)=[0,0], Q_{A}(y)=[1,1]$. Thus, $R_{A}(x * y) \geq[0,0]=\operatorname{rmin}\left\{\left[\xi_{1}, \xi_{2}\right],[0,0]\right\}=$ $\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}$ and $Q_{A}(x * y) \leq[1,1]=\operatorname{rmax}\left\{\left[\omega_{1}, \omega_{2}\right],[1,1]\right\}=\operatorname{rmax}\left\{Q_{A}(x)\right.$, $\left.Q_{A}(y)\right\}$ 。

Case (iii) If $x \notin P$ and $y \in P$ then $R_{A}(x)=[0,0], Q_{A}(x)=[1,1], R_{A}(y)=$ $\left[\xi_{1}, \xi_{2}\right], Q_{A}(y)=\left[\omega_{1}, \omega_{2}\right]$. Thus, $R_{A}(x * y) \geq[0,0]=\operatorname{rmin}\left\{[0,0],\left[\xi_{1}, \xi_{2}\right]\right\}=$ $\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}$ and $Q_{A}(x * y) \leq[1,1]=\operatorname{rmax}\left\{[1,1],\left[\omega_{1}, \omega_{2}\right]\right\}=\operatorname{rmax}\left\{Q_{A}(x)\right.$, $\left.Q_{A}(y)\right\}$ 。

Case (iv) If $x \notin P$ and $y \notin P$ then $R_{A}(x)=[0,0], Q_{A}(x)=[1,1]$ and $R_{A}(y)=[0,0], Q_{A}(y)=[1,1]$. Now $R_{A}(x * y) \geq[0,0]=\operatorname{rmin}\{[0,0],[0,0]\}=$ $\operatorname{rmin}\left\{R_{A}(x), R_{A}(y)\right\}$ and $Q_{A}(x * y) \leq[1,1]=\operatorname{rmax}\{[1,1],[1,1]\}=\operatorname{rmax}\left\{Q_{A}(x)\right.$, $\left.Q_{A}(y)\right\}$.

Therefore, A is an IVIF $U P$-subalgebra of X.

Theorem 3.19. Let P be a subset of X and A be an IVIFS on X which is given in the proof of Theorem 3.18. If A be realized as lower level subalgebra and upper level subalgebra of some IVIF UP-subalgebra of X, then P is a IVIF $U P$-subalgebra of X.

Proof. Let A be an IVIF $U P$-subalgebra of X, and $x, y \in P$. Then $R_{A}(x)=$ $\left[\xi_{1}, \xi_{2}\right]=R_{A}(y)$ and $Q_{A}(x)=\left[\omega_{1}, \omega_{2}\right]=Q_{A}(y)$. Thus $R_{A}(x * y) \geq \operatorname{rmin}\left\{R_{A}(x)\right.$, $\left.R_{A}(y)\right\}=\operatorname{rmin}\left\{\left[\xi_{1}, \xi_{2}\right],\left[\xi_{1}, \xi_{2}\right]\right\}=\left[\xi_{1}, \xi_{2}\right]$ and $Q_{A}(x * y) \leq \operatorname{rmax}\left\{Q_{A}(x), Q_{A}(y)\right\}$ $=\operatorname{rmax}\left\{\left[\omega_{1}, \omega_{2}\right],\left[\omega_{1}, \omega_{2}\right]\right\}=\left[\omega_{1}, \omega_{2}\right]$, which imply that $x * y \in P$. Hence, the theorem.

4. IVIF $U P$-ideals of $U P$-algebras

In this section we will define IVIF $U P$-ideal of $U P$-algebras and prove some propositions and theorems. In what follows, let X denote a $U P$-algebra unless otherwise specified.

Definition 4.1. An IVIFS $A=\left(R_{A}, Q_{A}\right)$ in X is called an IVIF UP-ideal of X if it satisfies:
(UP3) $\quad R_{A}(0) \geq R_{A}(x)$ and $Q_{A}(0) \leq Q_{A}(x)$
(UP4) $\quad R_{A}(x * z) \geq \operatorname{rmin}\left\{R_{A}(x *(y * z)), R_{A}(y)\right\}$
(UP5) $\quad Q_{A}(x * z) \leq \operatorname{rmax}\left\{Q_{A}(x *(y * z)), Q_{A}(y)\right\}$,
for all $x, y \in X$.

Example 4.2. Consider a $U P$-algebra $X=\{0, a, b, c, d\}$ with the following Cayley table

$*$	0	a	b	c	d
0	0	a	b	c	d
a	0	0	b	c	d
b	0	0	0	c	d
c	0	0	b	0	d
d	0	0	0	0	0

Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIFS in X defined as
$R_{A}(x)=\left\{\begin{array}{ll}{[1,1],} & \text { if } x \in\{0, a, b\} \\ {\left[m_{1}, m_{2}\right],} & \text { if } x \in\{c, d\}\end{array} \quad\right.$ and $\mathrm{Q}_{\mathrm{A}}(\mathrm{x})= \begin{cases}{[0,0],} & \text { if } x \in\{0, a, b\} \\ {\left[n_{1}, n_{2}\right],} & \text { if } x \in\{c, d\},\end{cases}$
where $\left[m_{1}, m_{2}\right],\left[n_{1}, n_{2}\right] \in D[0,1]$ and $m_{2}+n_{2} \leq 1$. By routine calculations we get A is an IVIF $U P$-ideal of X.
Lemma 4.3. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIF $U P$-ideal of X. If $x, y \in X$ is such that $y \leq x$, then $R_{A}(x) \geq R_{A}(y)$ and $Q_{A}(x) \leq Q_{A}(y)$.
Proof. It is immediate and is omitted.
Lemma 4.4. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIF UP-ideal of X and $x, y, z, q \in X$. If $x \leq q *(y * z)$ then $R_{A}(x * z) \geq \operatorname{rmin}\left\{R_{A}(q), R_{A}(y)\right\}$ and $Q_{A}(x * z) \leq$ $\operatorname{rmax}\left\{Q_{A}(q), Q_{A}(y)\right\}$.
Proof. Let $x, y, z, q \in X$ such that $x \leq q *(y * z)$. Then $x *(q *(y * z))=0$ and thus $R_{A}(x * z) \geq \operatorname{rmin}\left\{R_{A}(x *(y * z)), R_{A}(y)\right\} \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{R_{A}\{(x *(q *\right.\right.$ $\left.\left.(y * z))), R_{A}(q)\right\}, R_{A}(y)\right\}=\operatorname{rmin}\left\{\operatorname{rmin}\left\{R_{A}(0), R_{A}(q)\right\}, R_{A}(y)\right\}=\operatorname{rmin}\left\{R_{A}(q)\right.$, $\left.R_{A}(y)\right\}$ and $Q_{A}(x * z) \leq \operatorname{rmax}\left\{Q_{A}(x *(y * z)), Q_{A}(y)\right\} \leq \operatorname{rmax}\left\{\operatorname{rmax}\left\{Q_{A}\{(x *(q *\right.\right.$ $\left.\left.(y * z))), Q_{A}(q)\right\}, Q_{A}(y)\right\}=\operatorname{rmax}\left\{\operatorname{rmax}\left\{Q_{A}(0), Q_{A}(q)\right\}, Q_{A}(y)\right\}=\operatorname{rmax}\left\{Q_{A}(q)\right.$, $\left.Q_{A}(y)\right\}$.

Corollary 4.5. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIF $U P$-ideal of X and $x, y, z \in X$. If $x \leq y * z$ then $R_{A}(x * z) \geq R_{A}(y)$ and $Q_{A}(x * z) \leq Q_{A}(y)$.

Proof. Let $x, y, z \in X$ be such that $x \leq y * z$. Then by putting $q=0$ in Lemma 4.4 we have $x *(0 *(y * z))=0$ and thus $R_{A}(x * z) \geq \operatorname{rmin}\left\{R_{A}(0), R_{A}(y)\right\}=R_{A}(y)$ and $Q_{A}(x * z) \leq \operatorname{rmax}\left\{Q_{A}(0), Q_{A}(y)\right\}=Q_{A}(y)$.

Theorem 4.6. Every IVIF UP-ideal of a UP-algebra X is an IVIF UPsubalgebra of X.

Proof. Let $A=\left(R_{A}, Q_{A}\right)$ is an IVIF $U P$-ideal of X and $x, y \in X$. By Proposition 2.2, we have $x \leq y * x$. It follows from Lemma 4.3 that $R_{A}(y * x) \geq$ $R_{A}(x) \geq \operatorname{rmin}\left\{R_{A}(y), R_{A}(x)\right\}$ and $Q_{A}(y * x) \leq Q_{A}(x) \leq \operatorname{rmax}\left\{Q_{A}(y), Q_{A}(x)\right\}$. Hence $A=\left(R_{A}, Q_{A}\right)$ is an IVIF $U P$-ideal of X.

The converse of Theorem 4.6 may not be true. For example, the IVIF $U P-$ subalgebra $A=\left(R_{A}, Q_{A}\right)$ in Example 3.2 is not an IVIF $U P$-ideal of X since $R_{A}(b * c)=[0.1,0.2]<[0.5,0.6]=\operatorname{rmin}\left\{R_{A}(b *(a * c)), R_{A}(a)\right\}$.

Theorem 4.7. An IVIFSs $A=\left\{\left[R_{A L}, R_{A U}\right],\left[Q_{A L}, Q_{A U}\right]\right\}$ in X is an IVIF $U P$-ideal of X if and only if $R_{A L}, R_{A U}, Q_{A L}$ and $Q_{A U}$ are fuzzy UP-ideals of X.

Proof. Since $R_{A L}(0) \geq R_{A L}(x), R_{A U}(0) \geq R_{A U}(x), Q_{A L}(0) \leq Q_{A L}(x)$ and $Q_{A U}(0) \leq Q_{A U}(x)$, therefore $R_{A}(0) \geq R_{A}(x)$ and $Q_{A}(0) \leq Q_{A}(x)$.

Let $R_{A L}$ and $R_{A U}$ are fuzzy $U P$-ideals of X. Let $x, y, z \in X$. Then

$$
\begin{aligned}
R_{A}(x * z) & =\left[R_{A L}(x * z), R_{A U}(x * z)\right] \\
& \geq\left[\min \left\{R_{A L}(x *(y * z)), R_{A L}(y)\right\}, \min \left\{R_{A U}(x *(y * z)), R_{A U}(y)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[R_{A L}(x *(y * z)), R_{A U}(x *(y * z))\right],\left[R_{A L}(y), R_{A U}(y)\right]\right\} \\
& =\operatorname{rmin}\left\{R_{A}(x *(y * z)), R_{A}(y)\right\} .
\end{aligned}
$$

Let $Q_{A L}$ and $Q_{A U}$ are fuzzy $U P$-ideals of X and $x, y \in X$. Then

$$
\begin{aligned}
Q_{A}(x * z) & =\left[Q_{A L}(x * z), Q_{A U}(x * z)\right] \\
& \leq\left[\max \left\{Q_{A L}(x *(y * z)), Q_{A L}(y)\right\}, \max \left\{Q_{A U}(x *(y * z)), Q_{A U}(y)\right\}\right] \\
& =\operatorname{rmax}\left\{\left[Q_{A L}(x *(y * z)), Q_{A U}(x *(y * z))\right],\left[Q_{A L}(y), Q_{A U}(y)\right]\right\} \\
& =\operatorname{rmax}\left\{Q_{A}(x *(y * z)), Q_{A}(y)\right\} .
\end{aligned}
$$

Hence, $A=\left\{\left[R_{A L}, R_{A U}\right],\left[Q_{A L}, Q_{A U}\right]\right\}$ is an IVIF $U P$-ideal of X.
Conversely, assume that, A is an IVIF $U P$-ideal of X. For any $x, y \in X$, we have $\left[R_{A L}(x * z), R_{A U}(x * z)\right]=R_{A}(x * z) \geq \operatorname{rmin}\left\{R_{A}(x *(y * z)), R_{A}(y)\right\}=$ $\operatorname{rmin}\left\{\left[R_{A L}(x *(y * z)), R_{A U}(x *(y * z))\right],\left[R_{A L}(y), R_{A U}(y)\right]\right\}=\left[\min \left\{R_{A L}(x *\right.\right.$ $\left.\left.(y * z)), R_{A L}(y)\right\}, \min \left\{R_{A U}(x *(y * z)), R_{A U}(y)\right\}\right]$ and $\left[Q_{A L}(x * z), Q_{A U}(x * z)\right]=$ $Q_{A}(x * z) \leq \operatorname{rmax}\left\{Q_{A}(x *(y * z)), Q_{A}(y)\right\}=\operatorname{rmax}\left\{\left[Q_{A L}(x *(y * z)), Q_{A U}(x *\right.\right.$ $\left.(y * z))],\left[Q_{A L}(y), Q_{A U}(y)\right]\right\}=\left[\max \left\{Q_{A L}(x *(y * z)), Q_{A L}(y)\right\}, \max \left\{Q_{A U}(x *(y *\right.\right.$ $\left.\left.z)), Q_{A U}(y)\right\}\right]$. Thus, $R_{A L}(x * z) \geq \min \left\{R_{A L}(x *(y * z)), R_{A L}(y)\right\}, R_{A U}(x * z) \geq$ $\min \left\{R_{A U}(x *(y * z)), R_{A U}(y)\right\}, Q_{A L}(x * z) \leq \max \left\{Q_{A L}(x *(y * z)), Q_{A L}(y)\right\}, Q_{A U}(x *$ $z) \leq \max \left\{Q_{A U}(x *(y * z)), Q_{A U}(y)\right\}$. Hence, $R_{A L}, R_{A U}, Q_{A L}$ and $Q_{A U}$ are fuzzy $U P$-ideals of X.

Theorem 4.8. Let A_{1} and A_{2} be two IVIF UP-ideals of a UP-algebras X. Then $A_{1} \cap A_{2}$ is also an IVIF UP-ideal of UP-algebra X.

Proof. Let $x, y \in A_{1} \cap A_{2}$. Then $x, y \in A_{1}$ and A_{2}. Now, $R_{A_{1} \cap A_{2}}(0)=$ $R_{A_{1} \cap A_{2}}(x * x) \geq \operatorname{rmin}\left\{R_{A_{1} \cap A_{2}}(x), R_{A_{1} \cap A_{2}}(x)\right\}=R_{A_{1} \cap A_{2}}(x)$ and $Q_{A_{1} \cap A_{2}}(0)=$ $Q_{A_{1} \cap A_{2}}(x * x) \leq \operatorname{rmin}\left\{Q_{A_{1} \cap A_{2}}(x), Q_{A_{1} \cap A_{2}}(x)\right\}=Q_{A_{1} \cap A_{2}}(x)$. Also,

$$
\begin{aligned}
R_{A_{1} \cap A_{2}}(x * z) & =\left[R_{\left(A_{1} \cap A_{2}\right) L}(x * z), R_{\left(A_{1} \cap A_{2}\right) U}(x * z)\right] \\
& \geq\left[\min \left(R_{\left(A_{1} \cap A_{2}\right) L}(x *(y * z)), R_{\left(A_{1} \cap A_{2}\right) L}(y)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\min \left(R_{\left(A_{1} \cap A_{2}\right) U}(x *(y * z)), R_{\left(A_{1} \cap A_{2}\right) U}(y)\right)\right] \\
= & \operatorname{rmin}\left\{R_{A_{1} \cap A_{2}}(x *(y * z)), R_{A_{1} \cap A_{2}}(y)\right\} \\
\text { and } Q_{A_{1} \cup A_{2}}(x * z)= & {\left[Q_{\left(A_{1} \cup A_{2}\right) L}(x * z), Q_{\left(A_{1} \cup A_{2}\right) U}(x * z)\right] } \\
\leq & {\left[\max \left(Q_{\left(A_{1} \cup A_{2}\right) L}(x *(y * z)), Q_{\left(A_{1} \cup A_{2}\right) L}(y)\right),\right.} \\
& \left.\max \left(Q_{\left(A_{1} \cup A_{2}\right) U}(x *(y * z)), Q_{\left(A_{1} \cup A_{2}\right) U}(y)\right)\right] \\
= & \operatorname{rmax}\left\{Q_{A_{1} \cup A_{2}}(x *(y * z)), Q_{A_{1} \cup A_{2}}(y)\right\} .
\end{aligned}
$$

Hence, $A_{1} \cap A_{2}$ is also an IVIF $U P$-ideal of $U P$-algebra X.
Corollary 4.9. Intersection of any family of IVIF UP-ideals of X is again an IVIF UP-ideal of X.

Corollary 4.10. If A is an IVIF UP-ideal of X then \bar{A} is also an IVIF UPideal of X.

Theorem 4.11. If $A=\left(R_{A}, Q_{A}\right)$ is an IVIF $U P$-ideal of a $U P$-algebra X, then
(i) $\oplus A$, and
(ii) $\otimes A$, both are IVIF $U P$-ideals of $U P$-algebra X.

Proof. For (i), it is sufficient to show that \bar{R}_{A} satisfies the second part of the conditions (UP3) and (UP5). We have $\bar{R}_{A}(0)=1-R_{A}(0) \leq 1-R_{A}(x) \leq \bar{R}_{A}(x)$. Let $x, y \in X$. Then $\bar{R}_{A}(x * z)=1-R_{A}(x * z) \leq 1-\operatorname{rmin}\left\{R_{A}(x *(y * z)), R_{A}(y)\right\}=$ $\operatorname{rmax}\left\{1-R_{A}(x *(y * z)), 1-R_{A}(y)\right\}=\operatorname{rmax}\left\{\bar{R}_{A}(x *(y * z)), \bar{R}_{A}(y)\right\}$. Hence, $\oplus A$ is an IVIF $U P$-ideal of $U P$-subalgebra X.

For (ii), it is sufficient to show that \bar{Q}_{A} satisfies the first part of the conditions (UP3) and (UP4). We have $\bar{Q}_{A}(0)=1-Q_{A}(0) \geq 1-\bar{Q}_{A}(x) \geq \bar{Q}_{A}(x)$. Let $x, y \in X$. Then $\bar{Q}_{A}(x * z)=1-Q_{A}(x * z) \geq 1-\operatorname{rmax}\left\{Q_{A}(x *(y * z)), Q_{A}(y)\right\}=$ $\operatorname{rmin}\left\{1-Q_{A}(x *(y * z)), 1-Q_{A}(y)\right\}=\operatorname{rmin}\left\{\bar{Q}_{A}(x *(y * z)), \bar{Q}_{A}(y)\right\}$. Hence, $\otimes A$ is an IVIF $U P$-ideal of $U P$-algebra X.

Theorem 4.12. An IVIFS A is an IVIF UP-ideal of X if and only if the sets $U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$ and $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ are either empty or $U P$-ideal of X for every $\left[s_{1}, s_{2}\right],\left[t_{1}, t_{2}\right] \in D[0,1]$.

Proof. Suppose that $A=\left(R_{A}, Q_{A}\right)$ is an IVIF $U P$-ideal of X. Let $U\left(R_{A}\right.$: $\left.\left[s_{1}, s_{2}\right]\right)$ and $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ be non-empty subset of X. Let $\left[s_{1}, s_{2}\right] \in D[0,1]$ and $x, y, z \in X$ be such that $x *(y * z) \in U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$ and $y \in U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$. Then $R_{A}(x * z) \geq \operatorname{rmin}\left\{R_{A}(x *(y * z)), R_{A}(y)\right\} \geq\left[s_{1}, s_{2}\right]$. Thus $x * z \in U\left(R_{A}\right.$: [$\left.\left.s_{1}, s_{2}\right]\right)$. Hence, $U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$ is a $U P$-ideal of X.

Let $\left[t_{1}, t_{2}\right] \in D[0,1]$ and $x, y, z \in X$ be such that $x *(y * z) \in L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ and $y \in L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$. Then $Q_{A}(x * z) \leq \operatorname{rmax}\left\{Q_{A}(x *(y * z)), Q_{A}(y)\right\} \leq$ $\left[t_{1}, t_{2}\right]$. Thus $x * z \in L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$. Hence, $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ is a $U P$-ideal of X.

Conversely, assume that each non-empty level subset $U\left(R_{A}:\left[s_{1}, s_{2}\right]\right)$ and $L\left(Q_{A}:\left[t_{1}, t_{2}\right]\right)$ are $U P$-ideals of X. If there exist $\alpha, \beta, \gamma \in X$ such that $R_{A}(\alpha *$
$\gamma)<\operatorname{rmin}\left\{R_{A}(\alpha *(\beta * \gamma)), R_{A}(\beta)\right\}$, then by taking $\left[s_{1}^{\prime}, s_{2}^{\prime}\right]=\frac{1}{2}\left[R_{A}(\alpha * \gamma)+\right.$ $\operatorname{rmin}\left\{R_{A}\left(\alpha *(\beta * \gamma), R_{A}(\beta)\right\}\right]$, it follows that $\alpha *(\beta * \gamma) \in U\left(R_{A}:\left[s_{1}^{\prime}, s_{2}^{\prime}\right]\right)$ and $\beta \in U\left(R_{A}:\left[s_{1}^{\prime}, s_{2}^{\prime}\right]\right)$, but $\alpha * \gamma \notin U\left(R_{A}:\left[s_{1}^{\prime}, s_{2}^{\prime}\right]\right)$, which is a contradiction. Hence, $U\left(R_{A}:\left[s_{1}^{\prime}, s_{2}^{\prime}\right]\right)$ is not $U P$-ideal of X.

Again if there exist $\lambda, \delta, \tau \in X$ such that $Q_{A}(\lambda * \tau)>\operatorname{rmax}\left\{Q_{A}(\lambda *(\delta *\right.$ $\left.\tau)), Q_{A}(\delta)\right\}$, then by taking $\left[t_{1}^{\prime}, t_{2}^{\prime}\right]=\frac{1}{2}\left[Q_{A}(\lambda * \tau)+\operatorname{rmax}\left\{Q_{A}(\lambda *(\delta * \tau)), Q_{A}(\delta)\right\}\right]$, it follows that $\lambda *(\delta * \tau) \in U\left(Q_{A}:\left[t_{1}^{\prime}, t_{2}^{\prime}\right]\right)$ and $\delta \in L\left(Q_{A}:\left[t_{1}^{\prime}, t_{2}^{\prime}\right]\right)$, but $\lambda * \tau \notin$ $L\left(Q_{A}:\left[t_{1}^{\prime}, t_{2}^{\prime}\right]\right)$, which is a contradiction. Hence, $L\left(Q_{A}:\left[t_{1}^{\prime}, t_{2}^{\prime}\right]\right)$ is not $U P$-ideal of X.

Hence, $A=\left(R_{A}, Q_{A}\right)$ is an IVIF $U P$-ideal of X since it satisfies (UP3) and (UP4).

5. Images and preimages of IVIF $U P$-subalgebras and $U P$-ideals

In this section we will present some results on images and preimages of IVIF $U P$-subalgebras and $U P$-ideals in $U P$-algebras.

Let f be a mapping from a set X into a set Y. Let $B=\left(R_{B}, Q_{B}\right)$ be an IVIFS in Y. Then the inverse image of B, is defined as $f^{-1}(B)=\left(f^{-1}\left(R_{B}\right), f^{-1}\left(Q_{B}\right)\right)$ with the membership function and non-membership function respectively are given by $f^{-1}\left(R_{B}\right)(x)=R_{B}(f(x))$ and $f^{-1}\left(Q_{B}\right)(x)=Q_{B}(f(x))$. It can be shown that $f^{-1}(B)$ is an IVIFS.

Theorem 5.1. Let $f: X \rightarrow Y$ be a homomorphism of $U P$-algebras. If $B=$ $\left(R_{B}, Q_{B}\right)$ is an IVIF UP-subalgebra of Y, then the preimage $f^{-1}(B)=\left(f^{-1}\left(R_{B}\right)\right.$, $f^{-1}\left(Q_{B}\right)$) of B under f is an IVIF UP-subalgebra of X.

Proof. Assume that B is an IVIF $U P$-subalgebra of Y and $x, y \in X$. Then $f^{-1}\left(R_{B}\right)(x * y)=R_{B}(f(x * y))=R_{B}(f(x) * f(y)) \geq \operatorname{rmin}\left\{R_{B}\left(f(x), R_{B}(f(y))\right\}=\right.$ $\operatorname{rmin}\left\{f^{-1}\left(R_{B}\right)(x), f^{-1}\left(R_{B}\right)(y)\right\}$ and $f^{-1}\left(Q_{B}\right)(x * y)=Q_{B}(f(x * y))=Q_{B}(f(x) *$ $f(y)) \leq \operatorname{rmax}\left\{Q_{B}\left(f(x), Q_{B}(f(y))\right\}=\operatorname{rmax}\left\{f^{-1}\left(Q_{B}\right)(x), f^{-1}\left(Q_{B}\right)(y)\right\}\right.$. Therefore, $f^{-1}(B)$ is an IVIF $U P$-subalgebra of X.

Definition 5.2. An IVIFS A in the UP-algebra X is said to have the rsupproperty and rinf-property if for any subset T of X there exist $t_{0} \in T$ such that $R_{A}\left(t_{0}\right)=\operatorname{rsup}_{t_{0} \in T} R_{A}(t)$ and $Q_{A}\left(t_{0}\right)=\operatorname{rinf}_{t_{0} \in T} Q_{A}(t)$ respectively.

Definition 5.3. Let f be a mapping from the set X to the set Y. If $A=$ $\left(R_{A}, Q_{A}\right)$ is an IVIFS in X, then the image of A under f, denoted by $f(A)$, and is defined as

$$
f(A)=\left\{\left\langle x, f_{\text {rsup }}\left(R_{A}\right), f_{\text {rinf }}\left(Q_{A}\right)\right\rangle: x \in Y\right\}
$$

where

$$
f_{r s u p}\left(R_{A}\right)(y)= \begin{cases}\operatorname{rsup}_{x \in f^{-1}(y)} R_{A}(x), & \text { if } f^{-1}(y) \neq \phi \\ {[0,0],} & \text { otherwise }\end{cases}
$$

and

$$
f_{\text {rinf }}\left(Q_{A}\right)(y)= \begin{cases}r i n f_{x \in f^{-1}(y)} Q_{A}(x), & \text { if } f^{-1}(y) \neq \phi \\ {[1,1],} & \text { otherwise }\end{cases}
$$

Theorem 5.4. Let $f: X \rightarrow Y$ be a homomorphism from a UP-algebra X onto a UP-algebra Y. If $A=\left(R_{A}, Q_{A}\right)$ is an IVIF UP-subalgebra of X, then the image $f(A)=\left\{\left\langle x, f_{\text {rsup }}\left(R_{A}\right), f_{\text {rinf }}\left(Q_{A}\right)\right\rangle: x \in Y\right\}$ of A under f is an IVIF $U P$-subalgebra of Y.

Proof. Let $A=\left(R_{A}, Q_{A}\right)$ be an IVIF $U P$-subalgebra of X and let $y_{1}, y_{2} \in Y$. We know that, $\left\{x_{1} * x_{2}: x_{1} \in f^{-1}\left(y_{1}\right)\right.$ and $\left.x_{2} \in f^{-1}\left(y_{2}\right)\right\} \subseteq\{x \in X: x \in$ $\left.f^{-1}\left(y_{1} * y_{2}\right)\right\}$. Now,

$$
\begin{aligned}
& f_{r s u p}\left(R_{A}\right)\left(y_{1} * y_{2}\right)=\operatorname{rsup}\left\{R_{A}(x): x \in f^{-1}\left(y_{1} * y_{2}\right)\right\} \\
& \geq r \sup \left\{R_{A}\left(x_{1} * x_{2}\right): x_{1} \in f^{-1}\left(y_{1}\right) \text { and } x_{2} \in f^{-1}\left(y_{2}\right)\right\} \\
& \quad \geq \operatorname{rsup}\left\{\operatorname{rmin}\left\{R_{A}\left(x_{1}\right), R_{A}\left(x_{2}\right)\right\}: x_{1} \in f^{-1}\left(y_{1}\right) \text { and } x_{2} \in f^{-1}\left(y_{2}\right)\right\} \\
&=\operatorname{rmin}\left\{\operatorname{rsup}\left\{R_{A}\left(x_{1}\right): x_{1} \in f^{-1}\left(y_{1}\right)\right\}, \operatorname{rsup}\left\{R_{A}\left(x_{2}\right): x_{2} \in f^{-1}\left(y_{2}\right)\right\}\right\} \\
&=\operatorname{rmin}\left\{f_{r \sup }\left(R_{A}\right)\left(y_{1}\right), f_{r \sup }\left(R_{A}\right)\left(y_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{\operatorname{rinf}} & \left(Q_{A}\right)\left(y_{1} * y_{2}\right)=\operatorname{rinf}\left\{Q_{A}(x): x \in f^{-1}\left(y_{1} * y_{2}\right)\right\} \\
& \leq \operatorname{rinf}\left\{Q_{A}\left(x_{1} * x_{2}\right): x_{1} \in f^{-1}\left(y_{1}\right) \text { and } x_{2} \in f^{-1}\left(y_{2}\right)\right\} \\
& \leq \operatorname{rinf}\left\{\operatorname{rmax}\left\{Q_{A}\left(x_{1}\right), Q_{A}\left(x_{2}\right)\right\}: x_{1} \in f^{-1}\left(y_{1}\right) \text { and } x_{2} \in f^{-1}\left(y_{2}\right)\right\} \\
& =\operatorname{rmax}\left\{\operatorname{rinf}\left\{Q_{A}\left(x_{1}\right): x_{1} \in f^{-1}\left(y_{1}\right)\right\}, \operatorname{rinf}\left\{Q_{A}\left(x_{2}\right): x_{2} \in f^{-1}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmax}\left\{f_{\operatorname{rinf}}\left(Q_{A}\right)\left(y_{1}\right), f_{\operatorname{rinf}}\left(Q_{A}\right)\left(y_{2}\right)\right\} .
\end{aligned}
$$

Hence, $f(A)=\left\{\left\langle x, f_{\text {rsup }}\left(R_{A}\right), f_{\text {rinf }}\left(Q_{A}\right)\right\rangle: x \in Y\right\}$ is an IVIF $U P$-subalgebra of Y.

Theorem 5.5. Let $f: X \rightarrow Y$ be a homomorphism of $U P$-algebras. If $B=$ $\left(R_{B}, Q_{B}\right)$ is an IVIF UP-ideal of Y, then the pre-image $f^{-1}(B)=\left(f^{-1}\left(R_{B}\right)\right.$, $f^{-1}\left(Q_{B}\right)$) of B under f in X is an IVIF $U P$-ideal of X.
Proof. For all $x \in X f^{-1}\left(R_{B}\right)(x)=R_{B}(f(x)) \leq R_{B}(0)=R_{B}(f(0))=$ $f^{-1}\left(R_{B}\right)(0)$ and $f^{-1}\left(Q_{B}\right)(x)=Q_{B}(f(x)) \geq Q_{B}(0)=Q_{B}(f(0))=f^{-1}\left(Q_{B}\right)(0)$. Let $x, y \in X$. Then $f^{-1}\left(R_{B}\right)(x * z)=R_{B}(f(x * z))=R_{B}(f(x) * f(z)) \geq$ $\operatorname{rmin}\left\{R_{B}(f(x) *(f(y) * f(z))), R_{B}(f(y))\right\}=\operatorname{rmin}\left\{R_{B}(f(x *(y * z))), R_{B}(f(y))\right\}=$ $\operatorname{rmin}\left\{f^{-1}\left(R_{B}\right)(x *(y * z)), f^{-1}\left(R_{B}\right)(y)\right\}$ and $f^{-1}\left(Q_{B}\right)(x * z)=Q_{B}(f(x * z))=$ $Q_{B}(f(x) * f(z)) \leq \operatorname{rmax}\left\{Q_{B}(f(x) *(f(y) * f(z))), Q_{B}(f(y))\right\}=\operatorname{rmax}\left\{Q_{B}(f(x *\right.$ $\left.(y * z))), Q_{B}(f(y))\right\}=\operatorname{rmax}\left\{f^{-1}\left(Q_{B}\right)(x *(y * z)), f^{-1}\left(Q_{B}\right)(y)\right\}$. Hence, $f^{-1}(B)$ is an IVIF $U P$-ideal of X.

Theorem 5.6. Let $f: X \rightarrow Y$ be an epimorphism of $U P$-algebras. Then B is an IVIF UP-ideal of Y, if $f^{-1}(B)=\left(f^{-1}\left(R_{B}\right), f^{-1}\left(Q_{B}\right)\right)$ of B under f in X is an IVIF UP-ideal of X.

Proof. For any $x \in Y, \exists a \in X$ such that $f(a)=x$. Then $R_{B}(x)=R_{B}(f(a))=$ $f^{-1}\left(R_{B}\right)(a) \leq f^{-1}\left(R_{B}\right)(0)=R_{B}(f(0))=R_{B}(0)$ and $Q_{B}(x)=Q_{B}(f(a))=$ $f^{-1}\left(Q_{B}\right)(a) \geq f^{-1}\left(Q_{B}\right)(0)=Q_{B}(f(0))=Q_{B}(0)$. Let $x, y, z \in Y$. Then $f(a)=x, f(b)=y$ and $f(c)=z$ for some $a, b, c \in X$. Thus $R_{B}(x * z)=$ $R_{B}(f(a) * f(c))=M_{B}(f(a * c))=f^{-1}\left(R_{B}\right)(a * c) \geq \operatorname{rmin}\left\{f^{-1}\left(R_{B}\right)(a *(b *\right.$ $\left.c)), f^{-1}\left(R_{B}\right)(b)\right\}=\operatorname{rmin}\left\{R_{B}(f(a *(b * c))), R_{B}(f(b))\right\}=r m i n\left\{R_{B}(f(a) *\right.$ $\left.(f(b) * f(c))), R_{B}(f(b))\right\}=\operatorname{rmin}\left\{R_{B}(x *(y * z)), R_{B}(y)\right\}$ and $Q_{B}(x * z)=$ $Q_{B}(f(a) * f(c))=N_{B}(f(a * c))=f^{-1}\left(Q_{B}\right)(a * c) \leq \operatorname{rmax}\left\{f^{-1}\left(Q_{B}\right)(a *(b *\right.$ c) $\left.), f^{-1}\left(Q_{B}\right)(b)\right\}=\operatorname{rmax}\left\{Q_{B}(f(a *(b * c))), Q_{B}(f(b))\right\}=\operatorname{rmax}\left\{Q_{B}(f(a) *\right.$ $\left.(f(b) * f(c))), Q_{B}(f(b))\right\}=\operatorname{rmax}\left\{Q_{B}(x *(y * z)), Q_{B}(y)\right\}$. Then B is an IVIF $U P$-ideal of Y.

6. Equivalence relations on IVIF $U P$-ideals

Let $\operatorname{IVIFI}(\mathrm{X})$ denote the family of all interval-valued intuitionistic fuzzy ideals of X and let $\rho=\left[\rho_{1}, \rho_{2}\right] \in D[0,1]$. Define binary relations U^{ρ} and L^{ρ} on $\operatorname{IVIFI}(\mathrm{X})$ as follows:

$$
\begin{aligned}
& (A, B) \in U^{\rho} \Leftrightarrow U\left(R_{A}: \rho\right)=U\left(R_{B}: \rho\right) \text { and } \\
& (A, B) \in L^{\rho} \Leftrightarrow L\left(Q_{A}: \rho\right)=L\left(Q_{B}: \rho\right)
\end{aligned}
$$

respectively, for $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ in $\operatorname{IVIFI}(\mathrm{X})$. Then clearly U^{ρ} and L^{ρ} are equivalence relations on $\operatorname{IVIFI}(\mathrm{X})$. For any $A=\left(R_{A}, Q_{A}\right) \in \operatorname{IVIFI}(X)$, let $[A]_{U^{\rho}}$ (respectively, $[A]_{L^{\rho}}$) denote the equivalence class of A modulo U^{ρ} (respectively, L^{ρ}), and denote by $\operatorname{IVIFI}(\mathrm{X}) / U^{\rho}$ (respectively, $\operatorname{IVIFI}(\mathrm{X}) / L^{\rho}$) the collection of all equivalence classes modulo U^{ρ} (respectively, L^{ρ}), i.e.,

$$
\operatorname{IVIFI}(X) / U^{\rho}:=\left\{[A]_{U^{\rho}} \mid A=\left(R_{A}, Q_{A}\right) \in \operatorname{IVIFI}(X)\right\}
$$

respectively,

$$
\operatorname{IVIFI}(X) / L^{\rho}:=\left\{[A]_{L^{\rho}} \mid A=\left(R_{A}, Q_{A}\right) \in \operatorname{IVIFI}(X)\right\}
$$

These two sets are also called the quotient sets.
Now let $T(X)$ denote the family of all ideals of X and let $\rho=\left[\rho_{1}, \rho_{2}\right] \in$ $D[0,1]$. Define mappings f_{ρ} and g_{ρ} from $\operatorname{IVIFI}(\mathrm{X})$ to $T(X) \cup\{\phi\}$ by $f_{\rho}(A)=$ $U\left(R_{A}: \rho\right)$ and $g_{\rho}(A)=L\left(Q_{A}: \rho\right)$, respectively, for all $A=\left(R_{A}, Q_{A}\right) \in$ $\operatorname{IVIFI}(X)$. Then f_{ρ} and g_{ρ} are clearly well-defined.

Theorem 6.1. For any $\rho=\left[\rho_{1}, \rho_{2}\right] \in D[0,1]$, the maps f_{ρ} and g_{ρ} are surjective from $\operatorname{IVIFI}(X)$ to $T(X) \cup\{\phi\}$.

Proof. Let $\rho=\left[\rho_{1}, \rho_{2}\right] \in D[0,1]$. Note that $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1})$ is in $\operatorname{IVIFI}(\mathrm{X})$, where $\mathbf{0}$ and $\mathbf{1}$ are interval-valued fuzzy sets in X defined by $\mathbf{0}(x)=[0,0]$ and $\mathbf{1}(x)=[1,1]$ for all $x \in X$. Obviously $f_{\rho}\left(\mathbf{0}_{\sim}\right)=U(\mathbf{0}: \rho)=U([0,0]$: $\left.\left[\rho_{1}, \rho_{2}\right]\right)=\phi=L\left([1,1]:\left[\rho_{1}, \rho_{2}\right]\right)=L(\mathbf{1}: \rho)=g_{\rho}\left(\mathbf{0}_{\sim}\right)$. Let $P(\neq \phi) \in \operatorname{IVIFI}(X)$. For $P_{\sim}=\left(\chi_{P}, \bar{\chi}_{P}\right) \in \operatorname{IVIFI}(X)$, we have $f_{\rho}\left(P_{\sim}\right)=U\left(\chi_{P}: \rho\right)=P$ and $g_{\rho}\left(P_{\sim}\right)=$ $L\left(\bar{\chi}_{P}: \rho\right)=P$. Hence f_{ρ} and g_{ρ} are surjective.

Theorem 6.2. The quotient sets $\operatorname{IVIFI}(X) / U^{\rho}$ and $\operatorname{IVIFI}(X) / L^{\rho}$ are equipotent to $T(X) \cup\{\phi\}$ for every $\rho \in D[0,1]$.

Proof. For $\rho \in D[0,1]$ let $f_{\rho}^{*}\left(\right.$ respectively, $\left.g_{\rho}^{*}\right)$ be a map from $\operatorname{IVIFI}(\mathrm{X}) / U^{\rho}$ (respectively, $\left.\operatorname{IVIFI}(\mathrm{X}) / L^{\rho}\right)$ to $T(X) \cup\{\phi\}$ defined by $f_{\rho}^{*}\left([A]_{U^{\rho}}\right)=f_{\rho}(A)$ (respectively, $\left.g_{\rho}^{*}\left([A]_{U^{\rho}}\right)=g_{\rho}(A)\right)$ for all $\left.A=\left(R_{A}, Q_{A}\right) \in \operatorname{IVIFI}(X)\right\}$. If $U\left(R_{A}: \rho\right)=$ $U\left(R_{B}: \rho\right)$ and $L\left(Q_{A}: \rho\right)=L\left(Q_{B}: \rho\right)$ for $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ in $\operatorname{IVIFI}(\mathrm{X})$, then $(A, B) \in U^{\rho}$ and $(A, B) \in L^{\rho}$; hence $[A]_{U^{\rho}}=[B]_{U^{\rho}}$ and $[A]_{L^{\rho}}=[B]_{L^{\rho}}$. Therefore the maps f_{ρ}^{*} and g_{ρ}^{*} are injective. Now let $P(\neq \phi) \in$ $\operatorname{IVIFI}(X)$. For $P_{\sim}=\left(\chi_{P}, \bar{\chi}_{P}\right) \in \operatorname{IVIFI}(X)$, we have

$$
f_{\rho}^{*}\left(\left[P_{\sim}\right]_{U^{\rho}}\right)=f_{\rho}\left(P_{\sim}\right)=U\left(\chi_{P}: \rho\right)=P
$$

and

$$
g_{\rho}^{*}\left(\left[P_{\sim}\right]_{L^{\rho}}\right)=g_{\rho}\left(P_{\sim}\right)=L\left(\bar{\chi}_{P}: \rho\right)=P
$$

Finally, for $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1}) \in \operatorname{IVIFI}(X)$ we get

$$
f_{\rho}^{*}\left(\left[\mathbf{0}_{\sim}\right]_{U^{\rho}}\right)=f_{\rho}\left(\mathbf{0}_{\sim}\right)=U(\mathbf{0}: \rho)=\phi
$$

and

$$
g_{\rho}^{*}\left(\left[\mathbf{0}_{\sim}\right]_{L^{\rho}}\right)=g_{\rho}\left(\mathbf{0}_{\sim}\right)=L(\mathbf{1}: \rho)=\phi
$$

This shows that f_{ρ}^{*} and g_{ρ}^{*} are surjective. This completes the proof.
For any $\rho \in D[0,1]$, we define another relation R^{ρ} on $\operatorname{IVIFI}(\mathrm{X})$ as follows:

$$
(A, B) \in R^{\rho} \Leftrightarrow U\left(R_{A}: \rho\right) \cap L\left(Q_{A}: \rho\right)=U\left(R_{B}: \rho\right) \cap L\left(Q_{B}: \rho\right)
$$

for any $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right) \in \operatorname{IVIFI}(X)$. Then the relation R^{ρ} is an equivalence relation on $\operatorname{IVIFI}(\mathrm{X})$.

Theorem 6.3. For any $\rho \in D[0,1]$, the maps $\psi_{\rho}: \operatorname{IVIFI}(X) \rightarrow T(X) \cap\{\phi\}$ defined by $\psi_{\rho}(A)=f_{\rho}(A) \cap g_{\rho}(A)$ for each $A=\left(R_{A}, Q_{A}\right) \in X$ is surjective.

Proof. Let $\rho \in D[0,1]$. For $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1}) \in \operatorname{IVIFI}(X)$,

$$
\psi_{\rho}\left(\mathbf{0}_{\sim}\right)=f_{\rho}\left(\mathbf{0}_{\sim}\right) \cap g_{\rho}\left(\mathbf{0}_{\sim}\right)=U(\mathbf{0}: \rho) \cap L(\mathbf{1}: \rho)=\phi
$$

For any $H \in \operatorname{IVIFI}(X)$, there exists $H_{\sim}=\left(\chi_{H}, \bar{\chi}_{H}\right) \in \operatorname{IVIFI}(X)$ such that

$$
\psi_{\rho}\left(H_{\sim}\right)=f_{\rho}\left(H_{\sim}\right) \cap g_{\rho}\left(H_{\sim}\right)=U\left(\chi_{H}: \rho\right) \cap L\left(\bar{\chi}_{H}: \rho\right)=H
$$

This completes the proof.
Theorem 6.4. The quotient sets $\operatorname{IVIFI}(X) / R^{\rho}$ are equipotent to $T(X) \cup\{\phi\}$ for every $\rho \in D[0,1]$.

Proof. For $\rho \in D[0,1]$, define a map $\psi_{\rho}^{*}: \operatorname{IVIFI}(X) / R^{\rho} \rightarrow T(X) \cup\{\phi\}$ by $\psi_{\rho}^{*}\left([A]_{R^{\rho}}\right)=\psi_{\rho}(A)$ for all $[A]_{R^{\rho}} \in \operatorname{IVIFI}(X) / R^{\rho}$. Assume that $\psi_{\rho}^{*}\left([A]_{R^{\rho}}\right)=$ $\psi_{\rho}^{*}\left([B]_{R^{\rho}}\right)$ for any $[A]_{R^{\rho}}$ and $[B]_{R^{\rho}} \in \operatorname{IVIFI}(X) / R^{\rho}$. Then $f_{\rho}(A) \cap g_{\rho}(A)=$ $f_{\rho}(B) \cap g_{\rho}(B)$, i.e., $U\left(R_{A}: \rho\right) \cap L\left(Q_{A}: \rho\right)=U\left(R_{B}: \rho\right) \cap L\left(Q_{B}: \rho\right)$. Hence
$(A, B) \in R^{\rho}$, and so $[A]_{R^{\rho}}=[B]_{R^{\rho}}$. Therefore the maps ψ_{ρ}^{*} are injective. Now for $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1}) \in \operatorname{IVIFI}(X)$ we have

$$
\psi_{\rho}^{*}\left(\left[\mathbf{0}_{\sim}\right]_{R^{\rho}}\right)=\psi_{\rho}\left(\mathbf{0}_{\sim}\right)=f_{\rho}\left(\mathbf{0}_{\sim}\right) \cap g_{\rho}\left(\mathbf{0}_{\sim}\right)=U(\mathbf{0}: \rho) \cap L(\mathbf{1}: \rho)=\phi
$$

If $H \in \operatorname{IVIFI}(X)$, then for $H_{\sim}=\left(\chi_{H}, \bar{\chi}_{H}\right) \in \operatorname{IVIFI}(X)$, we obtain

$$
\psi_{\rho}^{*}\left(\left[H_{\sim}\right]_{R^{\rho}}\right)=\psi_{\rho}\left(H_{\sim}\right)=f_{\rho}\left(H_{\sim}\right) \cap g_{\rho}\left(H_{\sim}\right)=U\left(\chi_{H}: \rho\right) \cap L\left(\bar{\chi}_{H}: \rho\right)=H
$$

Thus ψ_{ρ}^{*} is surjective. This completes the proof.

7. Product of IVIF $U P$-subalgebras and $U P$-ideals

In this section we will provide some new definitions on cartesian product of IVIF $U P$-subalgebras and $U P$-ideals in $U P$-algebras.

Definition 7.1. Let $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ be two IVIFSs of X and Y respectively. The cartesian product $A \times B=\left(R_{A} \times R_{B}, Q_{A} \times Q_{B}\right)$ of $X \times Y$ is defined by $\left(R_{A} \times R_{B}\right)(x, y)=\operatorname{rmin}\left\{R_{A}(x), R_{B}(y)\right\}$ and $\left(Q_{A} \times Q_{B}\right)(x, y)=$ $\operatorname{rmax}\left\{Q_{A}(x), Q_{B}(y)\right\}$, where $R_{A} \times R_{B}: X \times Y \rightarrow D[0,1]$ and $Q_{A} \times Q_{B}:$ $X \times Y \rightarrow D[0,1]$ for all $(x, y) \in X \times Y$.

Remark 7.2. Let X and Y be $U P$-algebras. We define $*$ on $X \times Y$ by (x, y) * $(u, v)=(x * u, y * v)$ for every $(x, y),(u, v)$ belong to $X \times Y$, then clearly $(X \times Y, *,(0,0))$ is a $U P$-algebra.

Definition 7.3. An IVIFS $A \times B=\left(R_{A} \times R_{B}, Q_{A} \times Q_{B}\right)$ of $X \times Y$ is called an IVIF UP-subalgebra if it satisfies for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in X \times Y$
(i) $\left(R_{A} \times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \operatorname{rmin}\left\{\left(R_{A} \times R_{B}\right)\left(x_{1}, y_{1}\right),\left(R_{A} \times R_{B}\right)\left(x_{2}, y_{2}\right)\right\}$,
(ii) $\left(Q_{A} \times Q_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq \operatorname{rmax}\left\{\left(Q_{A} \times Q_{B}\right)\left(x_{1}, y_{1}\right),\left(Q_{A} \times Q_{B}\right)\left(x_{2}, y_{2}\right)\right\}$.

Definition 7.4. An IVIFS $A \times B=\left(R_{A} \times R_{B}, Q_{A} \times Q_{B}\right)$ of $X \times Y$ is called an IVIF UP-ideal if it satisfies for all $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right) \in X \times Y$
(i) $\left(R_{A} \times R_{B}\right)(0,0) \geq\left(R_{A} \times R_{B}\right)(x, y)$ and $\left(Q_{A} \times Q_{B}\right)(0,0) \leq\left(Q_{A} \times Q_{B}\right)(x, y)$,
(ii) $\left(R_{A} \times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \geq \operatorname{rmin}\left\{\left(R_{A} \times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\right.\right.\right.$ $\left.\left.\left.\left(x_{3}, y_{3}\right)\right)\right),\left(R_{A} \times R_{B}\right)\left(x_{2}, y_{2}\right)\right\}$ and
(iii) $\left(Q_{A} \times Q_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \leq \operatorname{rmax}\left\{\left(Q_{A} \times Q_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\right.\right.\right.$ $\left.\left.\left.\left(x_{3}, y_{3}\right)\right)\right),\left(Q_{A} \times Q_{B}\right)\left(x_{2}, y_{2}\right)\right\}$.

Theorem 7.5. Let $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ be IVIF UP-subalgebras of X and Y respectively, then $A \times B$ is an IVIF $U P$-subalgebra of $X \times Y$.

Proof. For any $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in X \times Y$, we have

$$
\begin{aligned}
\left(R_{A}\right. & \left.\times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)=\left(R_{A} \times R_{B}\right)\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =\operatorname{rmin}\left\{R_{A}\left(x_{1} * x_{2}\right), R_{B}\left(y_{1} * y_{2}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{R_{A}\left(x_{1}\right), R_{A}\left(x_{2}\right)\right\}, \operatorname{rmin}\left\{R_{B}\left(y_{1}\right), R_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{R_{A}\left(x_{1}\right), R_{B}\left(y_{1}\right)\right\}, \operatorname{rmin}\left\{R_{A}\left(x_{2}\right), R_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{\left(R_{A} \times R_{B}\right)\left(x_{1}, y_{1}\right),\left(R_{A} \times R_{B}\right)\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(Q_{A}\right. & \left.\times Q_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)=\left(Q_{A} \times Q_{B}\right)\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =\operatorname{rmax}\left\{Q_{A}\left(x_{1} * x_{2}\right), Q_{B}\left(y_{1} * y_{2}\right)\right\} \\
& \leq \operatorname{rmax}\left\{\operatorname{rmax}\left\{Q_{A}\left(x_{1}\right), Q_{A}\left(x_{2}\right)\right\}, \operatorname{rmax}\left\{Q_{B}\left(y_{1}\right), Q_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmax}\left\{\operatorname{rmax}\left\{Q_{A}\left(x_{1}\right), Q_{B}\left(y_{1}\right)\right\}, \operatorname{rmax}\left\{Q_{A}\left(x_{2}\right), Q_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmax}\left\{\left(Q_{A} \times Q_{B}\right)\left(x_{1}, y_{1}\right),\left(Q_{A} \times Q_{B}\right)\left(x_{2}, y_{2}\right)\right\} .
\end{aligned}
$$

Hence, $A \times B$ is an IVIF $U P$-subalgebra of $X \times Y$.
Definition 7.6. Let $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ be IVIF UP-subalgebras of X and Y respectively. For $\left[s_{1}, s_{2}\right],\left[t_{1}, t_{2}\right] \in D[0,1]$, the set $U\left(R_{A} \times R_{B}\right.$: $\left.\left[s_{1}, s_{2}\right]\right)=\left\{(x, y) \in X \times Y \mid\left(R_{A} \times R_{B}\right)(x, y) \geq\left[s_{1}, s_{2}\right]\right\}$ is called upper $\left[s_{1}, s_{2}\right]$-level of $A \times B$ and $L\left(Q_{A} \times Q_{B}:\left[t_{1}, t_{2}\right]\right)=\left\{(x, y) \in X \times Y \mid\left(Q_{A} \times Q_{B}\right)(x, y) \leq\left[t_{1}, t_{2}\right]\right\}$ is called lower $\left[t_{1}, t_{2}\right]$-level of $A \times B$.

Theorem 7.7. For any IVIFS A and B, if $A \times B$ is an IVIF UP-subalgebra of $X \times Y$ then non-empty upper $\left[s_{1}, s_{2}\right]$-level cut $U\left(R_{A} \times R_{B}:\left[s_{1}, s_{2}\right]\right)$ and nonempty lower $\left[t_{1}, t_{2}\right]$-level cut $L\left(Q_{A} \times Q_{B}:\left[t_{1}, t_{2}\right]\right)$ are $U P$-subalgebras of $X \times Y$, for all $\left[s_{1}, s_{2}\right]$ and $\left[t_{1}, t_{2}\right] \in D[0,1]$.

Proof. Let A and B be such that $A \times B$ is an IVIF $U P$-subalgebra of $X \times$ Y, therefore, $\left(R_{A} \times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \operatorname{rmin}\left\{\left(R_{A} \times R_{B}\right)\left(x_{1}, y_{1}\right),\left(R_{A} \times\right.\right.$ $\left.\left.R_{B}\right)\left(x_{2}, y_{2}\right)\right\}$ and $\left(Q_{A} \times Q_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq \operatorname{rmax}\left\{\left(Q_{A} \times Q_{B}\right)\left(x_{1}, y_{1}\right),\left(Q_{A} \times\right.\right.$ $\left.\left.Q_{B}\right)\left(x_{2}, y_{2}\right)\right\}$, for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in X \times Y$.

Again, let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ be such that $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in$ $U\left(R_{A} \times R_{B}:\left[s_{1}, s_{2}\right]\right)$. Then, $\left(R_{A} \times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \operatorname{rmin}\left\{\left(R_{A} \times\right.\right.$ $\left.\left.R_{B}\right)\left(x_{1}, y_{1}\right),\left(R_{A} \times R_{B}\right)\left(x_{2}, y_{2}\right)\right\} \geq \operatorname{rmin}\left(\left[s_{1}, s_{2}\right],\left[s_{1}, s_{2}\right]\right)=\left[s_{1}, s_{2}\right]$. This implies, $\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \in U\left(R_{A} \times R_{B}:\left[s_{1}, s_{2}\right]\right)$. Thus $U\left(R_{A} \times R_{B}:\left[s_{1}, s_{2}\right]\right)$ is a $U P$-subalgebra of $X \times Y$. Similarly, $L\left(Q_{A} \times Q_{B}:\left[t_{1}, t_{2}\right]\right)$ is a $U P$-subalgebra of $X \times Y$.

Proposition 7.8. Let A and B be IVIF UP-ideals of X, then $A \times B$ is an IVIF UP-ideal of $X \times X$.

Proof. For any $(x, y) \in X \times X$, we have $\left(R_{A} \times R_{B}\right)(0,0)=\operatorname{rmin}\left\{R_{A}(0), R_{B}(0)\right\}$ $\geq \operatorname{rmin}\left\{R_{A}(x), R_{B}(y)\right\}=\left(R_{A} \times R_{B}\right)(x, y)$ and $\left(Q_{A} \times Q_{B}\right)(0,0)=\operatorname{rmax}\left\{Q_{A}(0)\right.$, $\left.Q_{B}(0)\right\} \leq \operatorname{rmin}\left\{Q_{A}(x), Q_{B}(y)\right\}=\left(Q_{A} \times Q_{B}\right)(x, y)$.

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in X \times X$. Then,

$$
\begin{aligned}
& \left(R_{A} \times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \\
& =\left(R_{A} \times R_{B}\right)\left(x_{1} * x_{3}, y_{1} * y_{3}\right)=\operatorname{rmin}\left\{R_{A}\left(x_{1} * x_{3}\right), R_{B}\left(y_{1} * y_{3}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{R_{A}\left(x_{1} *\left(x_{2} * x_{3}\right)\right), R_{A}\left(x_{2}\right)\right\}, \operatorname{rmin}\left\{R_{B}\left(y_{1} *\left(y_{2} * y_{3}\right)\right), R_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{R_{A}\left(x_{1} *\left(x_{2} * x_{3}\right)\right), R_{B}\left(y_{1} *\left(y_{2} * y_{3}\right)\right)\right\}, r \operatorname{rinin}\left\{R_{A}\left(x_{2}\right), R_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{\left(R_{A} \times R_{B}\right)\left(x_{1} *\left(x_{2} * x_{3}\right), y_{1} *\left(y_{2} * y_{3}\right)\right),\left(R_{A} \times R_{B}\right)\left(x_{2}, y_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\left(R_{A} \times R_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right),\left(R_{A} \times R_{B}\right)\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(Q_{A} \times Q_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \\
& =\left(Q_{A} \times Q_{B}\right)\left(x_{1} * x_{3}, y_{1} * y_{3}\right)=\operatorname{rmax}\left\{Q_{A}\left(x_{1} * x_{3}\right), Q_{B}\left(y_{1} * y_{3}\right)\right\} \\
& \leq \operatorname{rmax}\left\{\operatorname{rmax}\left\{Q_{A}\left(x_{1} *\left(x_{2} * x_{3}\right)\right), Q_{A}\left(x_{2}\right)\right\}, \operatorname{rmax}\left\{Q_{B}\left(y_{1} *\left(y_{2} * y_{3}\right)\right), Q_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmax}\left\{r \operatorname{rmax}\left\{Q_{A}\left(x_{1} *\left(x_{2} * x_{3}\right)\right), Q_{B}\left(y_{1} *\left(y_{2} * y_{3}\right)\right)\right\}, r \max \left\{Q_{A}\left(x_{2}\right), Q_{B}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmax}\left\{\left(Q_{A} \times Q_{B}\right)\left(x_{1} *\left(x_{2} * x_{3}\right), y_{1} *\left(y_{2} * y_{3}\right)\right),\left(Q_{A} \times Q_{B}\right)\left(x_{2}, y_{2}\right)\right\} \\
& =\operatorname{rmax}\left\{\left(Q_{A} \times Q_{B}\right)\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right),\left(Q_{A} \times Q_{B}\right)\left(x_{2}, y_{2}\right)\right\} .
\end{aligned}
$$

Hence, $A \times B$ is an IVIF $U P$-ideal of $X \times X$.
Lemma 7.9. If $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ are IVIF $U P$-ideals of X, then $\bigoplus(A \times B)=\left(R_{A} \times R_{B}, \bar{R}_{A} \times \bar{R}_{B}\right)$ is an IVIF UP-ideals of $X \times X$.

Proof. Let $\left(R_{A} \times R_{B}\right)(x, y)=\operatorname{rmin}\left\{R_{A}(x), R_{B}(y)\right\}$. Then $1-\left(\bar{R}_{A} \times \bar{R}_{B}\right)(x, y)=$ $r \min \left\{1-\bar{R}_{A}(x), 1-\bar{R}_{B}(y)\right\}$. This implies, $1-\operatorname{rmin}\left\{1-\bar{R}_{A}(x), 1-\bar{R}_{B}(y)\right\}=$ $\left(\bar{R}_{A} \times \bar{R}_{B}\right)(x, y)$. Therefore, $\left(\bar{R}_{A} \times \bar{R}_{B}\right)(x, y)=\operatorname{rmax}\left\{\bar{R}_{A}(x), \bar{R}_{B}(y)\right\}$. Hence, $\bigoplus(A \times B)=\left(R_{A} \times R_{B}, \bar{R}_{A} \times \bar{R}_{B}\right)$ is an IVIF $U P$-ideal of $X \times X$.

Lemma 7.10. If $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ are IVIF $U P$-ideals of X, then $\otimes(A \times B)=\left(\bar{Q}_{A} \times \bar{Q}_{B}, Q_{A} \times Q_{B}\right)$ is an IVIF UP-ideal of $X \times X$.

Proof. Let $\left(Q_{A} \times Q_{B}\right)(x, y)=r \max \left\{Q_{A}(x), Q_{B}(y)\right\}$. This implies, $1-\left(\bar{Q}_{A} \times\right.$ $\left.\bar{Q}_{B}\right)(x, y)=r \max \left\{1-\bar{Q}_{A}(x), 1-\bar{Q}_{B}(y)\right\}$. This is, $1-r \max \left\{1-\bar{Q}_{A}(x), 1-\right.$ $\left.\bar{Q}_{B}(y)\right\}=\left(\bar{Q}_{A} \times \bar{Q}_{B}\right)(x, y)$. Therefore, $\left(\bar{Q}_{A} \times \bar{Q}_{B}\right)(x, y)=\operatorname{rmin}\left\{\bar{Q}_{A}(x), \bar{Q}_{B}(y)\right\}$. Hence, $\otimes(A \times B)=\left(\bar{Q}_{A} \times \bar{Q}_{B}, Q_{A} \times Q_{B}\right)$ is an IVIF $U P$-ideal of $X \times X$.

By the above two lemmas, it is not difficult to verify that the following theorem is valid.

Theorem 7.11. The IVIFSs $A=\left(R_{A}, Q_{A}\right)$ and $B=\left(R_{B}, Q_{B}\right)$ are IVIF UPideals of X if and only if $\bigoplus(A \times B)=\left(R_{A} \times R_{B}, \bar{R}_{A} \times \bar{R}_{B}\right)$ and $\otimes(A \times B)=$ $\left(\bar{Q}_{A} \times \bar{Q}_{B}, Q_{A} \times Q_{B}\right)$ are IVIF UP-ideal of $X \times X$.

Theorem 7.12. For any IVIFS A and B, if $A \times B$ is an IVIF $U P$-ideals of $X \times X$ then the non-empty upper $\left[s_{1}, s_{2}\right]$-level cut $U\left(R_{A} \times R_{B}:\left[s_{1}, s_{2}\right]\right)$ and the non-empty lower $\left[t_{1}, t_{2}\right]$-level cut $L\left(Q_{A} \times Q_{B}:\left[t_{1}, t_{2}\right]\right)$ are $U P$-ideals of $X \times X$ for any $\left[s_{1}, s_{2}\right]$ and $\left[t_{1}, t_{2}\right] \in D[0,1]$.

Proof. Assume that A and B are IVIF $U P$-ideals of X. Let $(a, b),(c, d)$, $(e, f) \in X \times X$ be such that $(a, b) *((e, f) *(c, d)),(e, f) \in U\left(R_{A} \times R_{B}\right.$: $\left.\left[s_{1}, s_{2}\right]\right)$. Then $\left(R_{A} \times R_{B}\right)((a, b) *(c, d)) \geq \operatorname{rmin}\left\{\left(R_{A} \times R_{B}\right)(a, b) *((e, f) *\right.$ $\left.(c, d)),\left(R_{A} \times R_{B}\right)(e, f)\right\} \geq \operatorname{rmin}\left(\left[s_{1}, s_{2}\right],\left[s_{1}, s_{2}\right]\right)=\left[s_{1}, s_{2}\right]$. This implies, $(a, b) *$ $(c, d) \in U\left(R_{A} \times R_{B}:\left[s_{1}, s_{2}\right]\right)$. Thus $U\left(R_{A} \times R_{B}:\left[s_{1}, s_{2}\right]\right)$ is a $U P$-ideal of $X \times X$. Similarly, $L\left(Q_{A} \times Q_{B}:\left[t_{1}, t_{2}\right]\right)$ is a $U P$-ideal of $X \times X$.

References

[1] K.T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Studies in fuzziness and soft computing, Vol. 35, Physica-Verlag, Heidelberg/New York, 1999.
[2] M. Bhowmik, T. Senapati and M. Pal, Intuitionistic L-fuzzy ideals in BGalgebras, Afrika Matematika, 25(3) (2014), 577-590.
[3] A. Iampan, A new branch of the logical algebra: UP-algebras, Manuscript submitted for publication, April 2014.
[4] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23 (1978), 1-26.
[5] C. Jana, T. Senapati, M. Bhowmik and M. Pal, On intuitionistic fuzzy G-subalgebras of G-algebras, Fuzzy Inf. Eng., 7(2) (2015), 195-209.
[6] C. Jana, M. Pal, T. Senapati and M. Bhowmik, Atanassov's intutionistic L-fuzzy G-subalgebras of G-algebras, J. Fuzzy Math., 23(2) (2015), 195-209.
[7] B. Kesorn, K. Maimun, W. Ratbandan and A. Iampan, Intuitionistic fuzzy sets in UP-algebras, Itaian Journal of Pure and Applied Mathematics, 34 (2015), 339-364.
[8] C.B. Kim and H.S. Kim, On BG-algebras, Demonstratio Mathematica, 41 (2008), 497-505.
[9] J. Neggers and H.S. Kim, On B-algebras, Math. Vensik, 54 (2002), 21-29.
[10] T. Senapati, Bipolar fuzzy structure of BG-subalgebras, J. Fuzzy Math., 23(1) (2015), 209-220.
[11] T. Senapati, M. Bhowmik and M. Pal, Triangular norm based fuzzy BGalgebras, Afrika Matematika, 27(1-2) (2016), 187199.
[12] T. Senapati, M. Bhowmik, M. Pal and B. Davvaz, Fuzzy translations of fuzzy H-ideals in BCK/BCI-algebras, J. Indones. Math. Soc., 21(1) (2015), 45-58.
[13] T. Senapati, M. Bhowmik, M. Pal and B. Davvaz, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy subalgebras and ideals in BCK/BCI-algebras, Eurasian Mathematical Journal, 6(1) (2015), 96-114.
[14] T. Senapati, M. Bhowmik and M. Pal, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy H-ideals in BCK/BCI-algebras, Notes Intuition. Fuzzy Sets, 19(1) (2013), 32-47.
[15] T. Senapati, C. Jana, M. Bhowmik and M. Pal, L-fuzzy G-subalgebras of G-algebras, Journal of the Egyptian Mathematical Society, 23 (2015), 219223.
[16] T. Senapati, M. Bhowmik and M. Pal, Fuzzy dot structure of BG-algebras, Fuzzy Inf. Eng., 6(3) (2014), 315-329.
[17] T. Senapati, C.S. Kim, M. Bhowmik and M. Pal, Cubic subalgebras and cubic closed ideals of B-algebras, Fuzzy Inf. Eng., 7(2) (2015), 129-149.
[18] T. Senapati, Translations of intuitionistic fuzzy B-algebras, Fuzzy Inf. Eng., 7(4) (2015), 389-404.
[19] T. Senapati, M. Bhowmik and M. Pal, Interval-valued intuitionistic fuzzy $B G$-subalgebras, J. Fuzzy Math., 20(3) (2012), 707-720.
[20] T. Senapati, M. Bhowmik and M. Pal, Fuzzy dot subalgebras and fuzzy dot ideals of B-algebras, J. Uncert. Syst., 8(1) (2014), 22-30.
[21] T. Senapati, M. Bhowmik and M. Pal, Intuitionistic fuzzifications of ideals in $B G$-algebras, Mathematica Aeterna, 2(9) (2012), 761-778.
[22] T. Senapati and K.P. Shum, Atanassov's intuitionistic fuzzy bi-normed $K U$-ideal of a $K U$-algebra, J. Intell. Fuzzy Systems, 30 (2016), 1169-1180.
[23] T. Senapati and K.P. Shum, Atanassovs intuitionistic fuzzy bi-normed $K U$ subalgebrs of a KU-algebra, Missouri J. Math. Sci., 29(1) (2017), 92-112.
[24] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., accepted.
[25] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8(3) (1965), 338-353.
Accepted: 3.06.2017

[^0]: *. Corresponding author

