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1. Introduction

The BFGS method is a known quasi-Newton method and has been used exten-
sively for solving unconstrained minimization problems in the past two decades
[4], [8] and [9]. The global convergence quasi-Newton methods have also estab-
lished especially for convex unconstrained minimization problems [2], [3], [8],
[14], [15], [16] and [17]. However, in [11], the authors studied the nonconvex
case. They also proposed a modified BFGS method with global and superliner
convergence. Moreover, the global convergence result for nonlinear equations
is due to Griewank [14] for Broyden’s rank one method. However, a potential
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trouble with the mentioned method is that the line search may not be executed
finitely in a certain special situation ([14], pp. 81-82).

On the other hand, little is known concerning global convergence of the
BFGS method for nonconvex optimization problems. in fact, the global con-
vergence of the BFGS method for nonconvex minimization problems has not
been proved until now by any one or has given a counter example that shows
nonconvergence of the BFGS method. Whether the BFGS method converges
globally for a nonconvex function remains unanswered.

In recent work [12], the authors proposed a globally convergent Gauss–
Newton-based BFGS method for symmetric nonlinear equations which contain
unconstrained optimization problems as a special case. The results obtained in
[12] and [11] positively support the unsolved problem. However, their question
still remains unanswered. Then in [11], the authors studied the last motioned
problem of whether the BFGS method with inexact line search converges glob-
ally when applied to nonconvex unconstrained minimization problems. In addi-
tion, they proposed a cautious BFGS update and proved that the method with
either a Wolfe type [18] or an Armijo-type [13] line search converges globally if
the function to be minimized has Lipschitz continuous gradients.

The purpose of this paper is to study this problem further which an extension
on the work of Li and Fukushima in [13], as we have mentioned above, the
authors proved the convergence of an appropriate method for the BFGS, but
they did not completely proved that their method converged to the BFGS. On
the other hand, in the current paper we are interested to prove that the condition
of the appropriate method is satisfied implicitly with inaccurate linear search
of Wolfe type. Furthermore, we have checked directly the convergence of the
method BFGS with the inaccurate linear search of Wolfe.

The outline of the paper is as follows: In section 2, we introduce some nec-
essary notations and introduce BFGS method with appropriate update. Then
in section 3, we propose an algorithm in order to analyze the convergence of the
BFGS method. In addition, in sections 3 and 4, we give a new proposed algo-
rithm and its global convergence with the linear search of Wolfe type isproved.
Furthermore, the convergence of the BFGS method for noncovex unconstrained
minimization problem is given as well. We prove that this method is interpreted
according to the BFGS method.

2. Global convergence of the BFGS method in the nonconvex case

We introduce some notation: Consider M ≥ 0 (resp. M > 0) is a symmetric
positive semi-definite matrix (resp. positive definite) and define the following
sets

(2.1) Sn
+ := {M ∈ Sn :M ≥ 0, n ∈ N}

and

(2.2) Sn
++ := {M ∈ Sn :M > 0, n ∈ N, }
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where Sn symmetric matrices of order n such that:

We know that in [1]: to impose on Mk+1 (k ∈ N) to be close to Mk (k ∈ N)
and minimize the gap between Mk+1 and Mk, still requesting that to Mk+1

is symmetric and satisfies the equation of quasi-Newton. We are thus led to
consider the problem in the following variable matrix:

(2.3)


min(gap)(M,Mk),

yk =Msk, M ∈ Rn×n,

M =M⊤.

So, we say that the matrix is obtained by the variational approach. It is
often useful to impose also the positive definition of matrices Mk. Because, for
dk = −M−1

k gk is a descent direction, Mk is positive definite must be needed,
symmetric matrix, for more detail, in fact, we know that any real symmetric
and positive definite matrix is invertible, and its inverse is also positive definite.
Therefore, it can be written:

(2.4) g⊤k dk = −g⊤k M−1
k gk < 0,

so,dk is a descent direction. This condition defining an open set that cannot
directly be used as a constrained in defining the problem Mk+1 and for this
purpose, we first introduce the following function:

(2.5) ψ : Sn → R,

whose domain is Sn
++ and forms a ”barrier” to the edge of the cone Sn

++ (it
devolves to infinity when its argument approaches the edge of Sn

++) and infinity:

(2.6) ψ (Υ) = trΥ+ ldΥ,

where the function log-determinant ld : Sn → R ∪ {+∞} is defined Υ ∈ Sn by

ld(Υ) =

{
− log detΥ, if Υ ∈ Sn

++,

+∞, otherwise.

It can be given the following properties of ψ defined in (2.6):
If we denote {αi}i=1,...,n eigenvalues of Υ, it should be got

(2.7) trΥ =

n∑
i=1

αi and detΥ =

n∏
i=1

αi

and so

(2.8) ψ (Υ) =

n∑
i=1

(αi − logαi) , if Υ ∈ Sn
++.
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Being given the shape

(2.9) t ∈ R++ 7→ t− log t, ψ(Υ)

tends to infinity if one of the eigenvalues of Υ tends to zero or to infinity, i.e.,

(2.10) ∃j ∈ {1, ..., n} ; lim
αj→0 or ∞

ψ(Υ) = ∞.

Formula (2.8) also shows that the only minimizer of ψ is Υ = I the identity
matrix.

If Mk is areal symmetric matrix then the matrix Mk is positive definite if
and only if there exists a positive definite matrix Ak as: A2

k = Mk such that,

the positive definite matrix Ak and it can be put that Ak =M
1
2
k is a unique.

In fact, if Mk is a real symmetric matrix, then we can write:

(2.11) U⊤MkU = Λ

where U satisfies

(2.12) U⊤U = UU⊤ = I

and Λ is a diagonal matrix where the diagonal elements are the eingenvalues of
Mk which are strictly positive. Because Mk is a positive definite matrix. Thus
we can write

(2.13) Mk = UΛU⊤ = UΛ
1
2Λ

1
2U⊤ =

(
UΛ

1
2U⊤

)(
UΛ

1
2U⊤

)
=M

1
2
k M

1
2
k .

It means that we must find a matrix M that is symmetric and positive
definite and be close to Mk. Therefore,

(2.14) M uM
1
2
k M

1
2
k

implies

(2.15) M
− 1

2
k MM

− 1
2

k u I.

In order to minimize the gap betweenM andMk, we seek thatM
− 1

2
k MM

− 1
2

k

is close to I; and this can be get by minimizing the term ψ(M
− 1

2
k MM

− 1
2

k ), so
that we shall get Mk+1 close to Mk by solving :

(2.16)


minψ(M

− 1
2

k MM
− 1

2
k ),

yk =Msk,

M ∈ Sn
++ (implicit constraint).
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If sk = 0 and yk ̸= 0, then (2.16) has no solution or if sk = 0 and yk = 0 so
the solution of (2.16) is M =Mk , otherwise; the non-trivial case where sk ̸= 0
is discussed in the following proposition.

Proposition 1 ([1]). We assume that Mk is symmetric positive definite and
that sk ̸= 0. Then, the problem (2.16) has a solution if and only if y⊤k sk > 0.
Under this condition the solution Mk+1 of (2.16) is unique and is only given by
one of the following formulas :

(2.17) Mk+1 =Mk +
yky

T
k

yTk sk
−
Mksks

T
kMk

sTkMksk

and

(2.18) Bk+1 =

(
I −

sky
T
k

yTk sk

)
Bk

(
I −

yks
T
k

yTk sk

)
+

(
I −

sks
T
k

yTk sk

)
,

where Bk :=M−1
k and Bk+1 :=M−1

k+1.

2.1 Algorithm 1 for BFGS Method

We give the following algorithm
Initial step:
Let ε > 0 be a determined criterion of stopping. Choose κ1 be an initial

point and M1 be any positive definite (e.g. : M1 = I).
Put k = 1 and go to the main stages
Main stages.
Step 1:
If ∥∇f (κk)∥ < ε STOP; otherwise, put dk = −Mkgk and determine the

optimal step λk optimal solution of problem

(2.19) min f (κk + λdk) , λ ≥ 0

and putting

(2.20) κk+1 = κk + λkdk.

Step 2:
Do Mk+1 as follows:

(2.21) Mk+1 =Mk +
yky

⊤
k

y⊤k sk
−
Mksks

⊤
kMk

s⊤kMksk

with

(2.22)

{
sk = κk+1 − κk,

yk = ∇f (κk+1)−∇f (κk) .

Replace k by k + 1 and go to step 1.



HAKIMA DEGAICHIA, SALAH BOULAARAS 474

2.2 BFGS method with appropriate update

It has been seen that the properties of the BFGS formula is that the matrixMk+1

inherits the positive definiteness of Mk if the condition y⊤k sk > 0 is checked. It
can be noted if one uses an exact linear search or inexact search of Wolf, then the
condition y⊤k sk > 0 is checked. where as, linear search of Armijo [13] does not
guarantee this condition, and therefore Mk+1 is not necessarily positive definite
even if Mk is positive definite. To ensure the positive definiteness of Mk+1, the
condition y⊤k sk > 0 is sometimes used to decide whether Mk+1 is an update or
not, i.e. we set

(2.23) Mk+1 =

Mk +
yky

⊤
k

y⊤k sk
−
Mksks

⊤
kMk

s⊤kMksk
, if y⊤k sk > 0,

Mk, otherwise.

The condition y⊤k sk > 0 is often replaced by y⊤k sk > η where η > 0 is a
small constant. Li and Fukushima [11] and [12] often appropriate update to
the BFGS method similar to what is mentioned before and stating from this
they establish a global convergence theorem for nonconvex problems. Before
describes the appropriate update, first, we shall need the following important
lemma due to Powell [16] which will be useful later.

Lemma 1. (Powell [16]) If the BFGS method with Wolfe linear research (wolfe1)-
(wolfe2) [18] is applied to a function f which is continuously differentiable; and
if there exists a constant c > 0 such as:

(2.24)
∥yk∥2

y⊤k sk
≤ c, for all k ∈ N.

Then we have

(2.25) lim
k→∞

inf ∥gk∥ = 0.

Remark 1. If f is two times continuously differentiable and strictly convex, so
we shall always get the inequality (2.24), but in the case where f is not convex,
it is difficult to guarantee (2.24). May be it is one of the reasons why the global
convergence of the BFGS method has not been proven.

Now, we shall present the BFGS method with appropriate update and show
later that is globally convergent without the economic function be convex. To
be more precise, we determine Mk+1 depending on Mk function :

(2.26) Mk+1 =

Mk +
yky

⊤
k

y⊤k sk
−
Mksks

⊤
kMk

s⊤kMksk
, if

y⊤k sk

∥sk∥2
≥ ε ∥gk∥α ,

Mk, otherwise,

where ε and α are positive constants.
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2.3 Algorithm 2 of BFGS method with appropriate update

We give the following algorithm:

Step 0. Choose an initial point κ0 ∈ IRn with an initial matrix M0 ∈ Rn×n

which is symmetric and positive definite choose the constants

0 < σ1 < σ2 < 1, α > 0 and ε > 0.

Let k = 0

Step 1: Solve the linear equation Mkdk + gk = 0 to have dk.

Step 2: Determine the domain λk > 0 by the inexact linear search of Wolfe
or Armijo[18].

Step 3: Calculate κk+1 := κk + λkdk.

Step 4: Determine Mk+1 by

(2.27) Mk+1 =

Mk +
yky

⊤
k

y⊤k sk
−
Mksks

⊤
kMk

s⊤kMksk
, if

y⊤k sk

∥sk∥2
≥ ε ∥gk∥α

Mk, otherwise

with

(2.28)

{
sk = κk+1 − κk,

yk = ∇f (κk+1)−∇f (κk) .

Step 5: Replace k by k + 1 and go to step1.

Remark 2. It is not difficult to see that the matrixMk generated by algorithm
2 are symmetric and positive definite for all k ∈ N. This implies that only with
the use of inexact linear search of Wolfe or Armijo, we can obtain that the
sequence {f (κk)}k∈N is decreasing. Also, we have the considerations of the
following: (wolfe1) or (wolfe1)-(wolfe2) and if f is an inferiorly bounded:

(2.29) −
∞∑
k=0

g⊤k sk <∞.

This implies that

(2.30) − lim
k→∞

(−g⊤k sk) = 0

and since

(2.31) sk = κk+1 − κk = λkdk.

Thus, we have

(2.32) − lim
k→∞

(λkg
⊤
k dk) = 0.
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3. Global convergence of BFGS method with an appropriate update

In this section, we shall prove the global convergence of algorithm 1 under the
following hypothesis:

Hypothesis 1. Consider the following set

(3.1) Ω = {κ ∈ IRn/f (κ) ≤ f (κ0)} .

We assume that Ω is contained in a bounded convex setD and that the economic
function f is continuously differentiable on D and there exists a constant l > 0
such as:

(3.2) ∥g (κ)− g (y)∥ ≤ l ∥κ − y∥ , for all κ, y ∈ D i.e., f ∈ C1,1(D).

Since the sequence{f (κk)}k∈N is decreasing, it is clear that the sequence {κk}k∈N
generated by the algorithm 2 is contained in Ω. Because

f (κk+1) < f (κk) < .... < f (κ1) < f (κ0) .

Define the following sets of indices:

(3.3) K =

{
i \ y⊤i si

∥si∥2
≥ ε ∥gi∥α

}
and

Kk =
{
i ∈ K\ i ≤ k

}
.

We note through ik, the set of indices i ∈ Kk.

We can rewrite (2.26) of the form:

(3.4) Mk+1 =

Mk +
yky

⊤
k

y⊤k sk
−
Mksks

⊤
kMk

s⊤kMksk
, if k ∈ K,

Mk, otherwise

and considering the trace of both sides of (3.4), we can write for any k ∈ N

(3.5) Tr (Mk+1) = Tr (M1) +
∑
i∈Kk

∥yi∥2

y⊤i si
−
∑
i∈Kk

∥Misi∥2

s⊤i Misi
.

Theorem 1. We assume that the hypothesis 1 is true and be {κk}k∈N the se-

quence generated by algorithm 2. If K is a finite set, so

(3.6) lim
k→∞

∥gk∥ = 0.
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Proof. If K is a finite set, so, there exists an index k0 such as

Mk =Mk0 ,M for all k ≥ k0.

By the positive definiteness of M , there exists positive constants c1 ≤ C1

such as

(3.7)

{
c1 ∥d∥2 ≤ d⊤Md ≤ C1 ∥d∥2 ,
c1 ∥d∥2 ≤ d⊤M−1d ≤ C1 ∥d∥2 , for all d ∈ Rn.

1-If the inexact linear search is of Wolfe, by using (3.2) we have

l ∥sk∥2 ≥
∥∥∥(g⊤ (κk+1)− g⊤ (κk)

)
sk

∥∥∥ ≥ y⊤k sk

and by using (3.7), we have

∥sk∥2 ≥ σ2g
⊤
k sk − g⊤k sk

≥ (1− σ2)λ
⊤
k s

⊤
kM

−1sk

≥ (1− σ2)λ
⊤
k c1 ∥sk∥

2 , for all k ≥ k0,

where
sk = λkdk

and
d⊤k = λ−1

k s⊤k and g⊤k = −d⊤kM−1.

Therefore, it can be deduced

λk ≥ (1− σ2)c1l
−1, for all k ≥ k0.

Thus, we get from (3.2)

lim
k→∞

λkg
⊤dk = lim

k→∞

(
−g⊤k sk

)
= 0

with
λk ≥ (1− σ2)c1l

−1 > 0, for all k ≥ k0.

We can write
g⊤k M

−1gk = −g⊤k dk → 0

and from (3.7) we have :

c1 ∥gk∥2 ≤ g⊤k M
−1gk → 0,

then
c1 ∥gk∥2 → 0

with c1 ̸= 0, so
lim
k→∞

∥gk∥ = 0.
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Now we shall prove the global convergence of algorithm 2 in the case where
K is an infinite set. If by way of contradiction, there exists a constant δ > 0
such as

(3.8) ∥gk∥ ≥ δ, for all k ∈ N

and we shall see that this produces is a contradiction. Before establishing the
global convergence theorem of the algorithm 2, we first show some useful lemmas.

Lemma 2. We assume that the hypothesis 1 be true and that {κk}k∈N be a
sequence generated by algorithm 2, assume also that the relation (3.8) be true
for all k ∈ N so, there exists a constant c2 > 0 such as:

(3.9) Tr (Mk+1) ≤ c2ik

and

(3.10)
∑
i∈Kk

∥Misi∥2

s⊤i Misi
≤ c2ik,

for all k sufficiently dig.

Proof. By using (3.3) and (3.8), we have for all i ∈ K

y⊤i si ≥ ε ∥gi∥α ∥si∥2 ≥ εδα ∥si∥2

implies

(3.11) y⊤i si ≥ εδα ∥si∥2 .

Under (3.2) and (3.11), we have for all i ∈ K

∥gi+1 − gi∥ ≤ l ∥κi+1 − κi∥ .

Therefore,

∥yi∥2 ≤ l2 ∥si∥2 .

Since
1

y⊤i si
≤ 1

εδα ∥si∥2
,

we have

(3.12)
∥yi∥2

y⊤i si
≤ l2

εδα
, c′2.
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Since

Tr (Mk+1) = Tr (M1) +
∑
i∈K

∥yi∥2

yTi si
−
∑
i∈K

∥Misi∥2

sTi Misi︸ ︷︷ ︸
positive term

≤ Tr (M1) +
∑
i∈K

∥yi∥2

yTi si
≤ ik

(
c0 + c′2

)
= ikc2.

Putting

c2 = max
(
c0, c

′
2

)
.

Thus, we have:

Tr (Mk+1) ≤ ikc2.

Since Tr (Mk+1) > 0 for any k ∈ N, we get from (3.5) and (3.12),

0 < Tr (M1) +
∑
i∈Kk

∥yi∥2

y⊤i si
−
∑
i∈Kk

∥Misi∥2

s⊤i Misi

implies ∑
i∈Kk

∥Misi∥2

s⊤i Misi
< Tr (M1) + ikc

′
2 < ikc2.

Therefore, ∑
i∈Kk

∥Misi∥2

s⊤i Misi
≤ c2ik.

4. Global convergence of algorithm 2 with the linear search of Wolfe
type

For this purpose, we prove first the following lemma as lemma 2.

Lemma 3. We assume that the hypothesis 1 be a true. Let {κk}k∈N be a
sequence generated by algorithm 2 with λk determined by the search linear of
Wolfe (wolfe1)-(wolfe2) [18]. If we have (3.5) for all k ∈ N, so there exists a
constant c3 > 0 such that for all k big enough we have:

(4.1)
∏
i∈

∼
Kk

λi ≥ cik3 .

Proof. The formula (3.4) gives the following recurrence relation

(4.2) det (Mi+1) = det (Mi)

(
y⊤i si

s⊤i Misi

)
, for all i ∈ K
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and

(4.3) det (Mi+1) = det (Mi) , for all i /∈ K.

If we note through nk the largest index in the set K, so we can write:

(4.4) det (Mnk+1) = det (M1)
∏
i∈Kk

y⊤i si

s⊤i Misi
.

On the other hand, from (wolfe2) we get:

g⊤ (κi + λidi) di ≥ σ2g
⊤ (κi) di

implies

y⊤i si = (gi+1 − gi)
⊤ si ≥ σ2g

⊤
i si − g⊤i si(4.5)

≥ − (1− σ2) g
⊤
i si = (1− σ2)λ

−1
i s⊤i Misi,

where
g⊤ = −d⊤i Mi = −λ−1

i s⊤i Mi.

Similarly to the proof of Lemma 2, we obtain (4.1) by using the last inequality
(4.5), (3.9) up to (4.4)

Indeed: from the last inequality (4.5), we can write∏
i∈Kk

y⊤i si

s⊤i Misi
≥
∏
i∈Kk

1− σ2
λi

with (4.4), we can deduce

(4.6) det (Mnk+1) ≥ det (M1)
∏
i∈Kk

1− σ2
λi

or

(4.7) det (Mnk+1) ≤
[
Tr (Mnk+1)

n

]n
.

Using (4.6), (4.7) and from (3.9)∏
i∈Kk

1− σ2
λi

≤ det (Mnk+1)

det (M1)
≤ 1

det (M1)

[
Tr (Mnk+1)

n

]n
≤ 1

det (M1)

[
c2ik
n

]n
≤ 1

det (M1)

[
c2ik
n

]n
≤ 1

det (M1)nn

[
cik2

]n
≤ 1

det (M1)nn
[cn2 ]

ik ,
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so, there exists constant c3 such as∏
i∈

∼
Kk

λi ≥ cik3 .

Now we are able to prove the global convergence of algorithm 2 with the
linear search of Wolfe which given by the following theorem:

Theorem 2. Assume that the hypothesis 1 is true. Be {κk}k∈N a sequence
generated by algorithm 2 with λk, k ∈ N determined by the linear search of
Wolfe (wolfe1)-(wolfe2). So, we have

(4.8) lim inf
k→∞

∥gk∥ = 0.

Proof. Taking into consideration the theorem 1, It is sufficient to check (4.8)
in the case where K is infinite. We note K by

K = {k1 < k2 < ... < kn.}

We observe that (2.29) gives that:

∞

−
∑

j=0

g⊤kjskj <∞

and as, Mkjskj = −λkjgkj , then

(4.9)
∞∑
j=1

∥∥gkj∥∥2 λkj s⊤kjMkjskj∥∥Mkjskj
∥∥2 = −

∞∑
j=0

g⊤kjskj <∞.

Since

−g⊤kjskj = −
∥∥gkj∥∥2 λ2kj g⊤kjskj∥∥gkj∥∥2 λ2kj =

∥∥gkj∥∥2 λkj −λkjg⊤kjskj∥∥λkjgkj∥∥2
=

∥∥gkj∥∥2 λkj s⊤kjMkjskj∥∥Mkjskj
∥∥2 .

If (2.25) is not satisfied, then, there exists a constant δ > 0 such as ∥gk∥ ≥ δ,
for all k. Also (4.9) implies

∞∑
j=1

λkj
s⊤kjMkjskj∥∥Mkjskj

∥∥2 <∞.
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Therefore, for any ξ > 0, there exists an integer j0 > 0, such as for all
positive integer q, we get j0+q∏

j=j0+1

λkj
s⊤kjMkjskj∥∥Mkjskj

∥∥2
 1

q

≤ 1

q

j0+q∑
j=j0+1

λkj
s⊤kjMkjskj∥∥Mkjskj

∥∥2
≤ ξ

q

implies  j0+q∏
j=j0+1

λkj

 1
q

≤ ξ

q

 j0+q∏
j=j0+1

∥∥Mkjskj
∥∥2

s⊤kjMkjskj

 1
q

≤ ξ

q2

j0+q∑
j=j0+1

∥∥Mkjskj
∥∥2

s⊤kjMkjskj

≤ ξ

q2

j0+q∑
j=0

∥∥Mkjskj
∥∥2

s⊤kjMkjskj

Using (3.10), it cab be easily deduced j0+q∏
j=j0+1

λkj

 1
q

≤ ξ (j0 + q + 1)

q2
c2,

where

ik = j0 + q + 1.

If q → ∞, then we obtain a contradiction. Because, Lemma 3 certifies that
the left term of the above inequality is larger than a positive constant.

Remark 3. To show the global convergence of the BFGS method and the
inexact linear search of Wolfe, it is sufficient to show implicitly the existence

of the condition
y⊤k sk

∥sk∥2
≥ ε ∥gk∥α.That is to say, the BFGSA is devoted to the

BFGS method with inexact linear search of Wolfe.

First step: for all k ≥ 1

(4.10)
y⊤k sk

∥sk∥2
≥ (1− σ2)c1λ

− 1
k

k

indeed, using (Wolfe 2), we have

y⊤k sk ≥ σ2g
⊤
k sk − g⊤k sk ≥ (1− σ2)λ

−1
k s⊤kM

−1
k sk,
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where
sk = λkdk

and

(4.11) d⊤k = λ−1
k s⊤k andg

⊤
k = −d⊤kM−1

k

and if the inexact linear search used is Wolfe’s, then we have the condition
y⊤k sk ≥ 0 i.e. the positive definiteness of Mk is preserved, so, there exists
positive constants c1 ≤ C1 such as

c1 ∥z∥2 ≤ z⊤Mkz ≤ C1 ∥z∥2 ,
c1 ∥z∥2 ≤ z⊤M−1

k z ≤ C1 ∥z∥2 , for all z ∈ Rn,

by (4.11), we have
y⊤k sk ≥ (1− σ2)λ

−1
k c1 ∥sk∥2

implies
y⊤k sk

∥sk∥2
≥ (1− σ2)c1λ

−1
k ≥ (1− σ2)c1λ

− 1
k

k .

Second step: For all k ≥ 1

(4.12)

(
k∏

i=1

λi ∥gi∥22

) 1
k

≤ c

k
, c > 0.

Indeed, we have:
k∑

i=1

∥Misi∥22
s⊤i Misi

=
k∑

i=1

λi ∥gi∥22
−g⊤i si

≤ c1.

Then, we use the inequality of the averages twice, and the first condition of
Wolfe so

λi ∥gi∥22 ≤ c1

(
−g⊤i si

)
implies

k∏
i=1

λi ∥gi∥2 ≤ ck1

k∏
i=1

(
−g⊤i si

)

≤

(
c1
k

k∑
i=1

(
−g⊤i si

))k

≤

(
c1
σ1k

k∑
i=1

(f (κi)− f (κi+1))

)k

≤
(
c1
σ1k

(f (κ1)− f (κk+1))

)k

≤ c

k
.
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We deduce (4.12), with c = c1 (f (κ1)− fmin) /σ1 where fmin ∈ R is a lower
bound of {f (κk)}k∈N .

Third step: To conclude that

y⊤k sk

∥sk∥2
≥ ε ∥gk∥α .

Indeed, from (4.12) we get for all k ≥ 1(
λk ∥gk∥2

) 1
k ≤ c

k

implies for all k ≥ 1

(4.13)
k

c
∥gk∥

2
k ≤ λ

− 1
k

k .

From (4.13), (4.10), it implies

y⊤k sk

∥sk∥2
≥ (1− σ2)c1λ

− 1
k

k

≥ (1− σ2)c1
c

k
∥gk∥

2
k

and if we put α = 2
k and ε = (1− σ2)c1

c
k , so we obtain

y⊤k sk

∥sk∥2
≥ ε ∥gk∥α .

5. Conclusion

This paper proposes a new proof for the global convergence of the BFGS method
for nonconvex unconstrained minimization problem which an extension of the
work of Li and Fukushima in [13]. The authors proved the convergence of
an appropriate procedures for the BFGS method, but they did not completely
proved that their method converged to the BFGS method. However, in the
current paper we are interested in proving that the condition of the appropriate
method is to satisfy implicitly with inaccurate linear search of Wolfe type [18].
Furthermore, we have checked directly the convergence of the method BFGS
with the inaccurate linear search of Wolfe.
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