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Abstract. Let X be a Banach lattice with strong unit. In this paper, we give some
characterizations of certain kind of downward sets in the sequence space ℓ∞(X). Further
some results on best approximation of those sets are presented.
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1. Introduction

A vector lattice is an ordered vector space such that x ∨ y = sup{x, y} and
x ∧ y = inf{x, y} exist for all x, y ∈ X. Vector lattices are also called Riesz
spaces or linear lattices, [9]. The most obvious example of a vector lattice is the
set of real numbers, R with all the usual operations. A normed linear lattice X
is a real normed vector lattice such that

|x| ≤ |y| ⇒ ∥x∥ ≤ ∥y∥ for any x, y ∈ X,

where, |x| := sup {x,−x} for each x ∈ X. If (X,5) is a normed ordered vector
space, recall that an element in X, denoted by 1, is called a strong unit if ∥1∥
= 1 and for each x ∈ X, there exists 0 < λ ∈ R such that x ≤ λ1. Using the
strong unit 1 a norm on X is defined by

∥x∥ = inf{λ > 0 : |x| ≤ λ1}

for all x ∈ X. It is clear that for all x ∈ X,

(1.1) |x| ≤ ∥x∥ 1.

Using (1.1) , the closed unit ball of X, B(x, r) = {y ∈ X : ∥y − x∥ ≤ r}, with
center x and radius r can be written as

(1.2) B(x, r) = {y ∈ X : x− r1 ≤ y ≤ x+ r1}.
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Certain kind of sets in Banach lattices that is called downward sets plays an
important role in some part of mathematical economics and game theory. Recall
that a subsetW of a Banach lattice X is said to be downward, if (w ∈W,x ≤ w)
implies that x ∈ W. The set of the form {w ∈ Rn : w ≤ x}, where x ∈ Rn is a
simple example of a downward set. For more on Banach Lattices we refer the
reader to [7, 8, 9].

Convex sets in normed linear spaces and their best approximation proper-
ties has many important applications in science. However, since convexity in
somehow is a restrictive assumption, so there is a need to study the best ap-
proximation by elements of some kind of non convex sets. In [6], Rubinov and
Singer developed a theory of best approximation by elements of so-called normal
sets in the finite-dimensional coordinate space Rn endowed with the max-norm.
Martinez-Legaz, Rubionv and Singer in [3] have developed a theory of best ap-
proximation of downward subsets of the space Rn. While the problem of best
approximation by elements of downward sets in a Banach lattice was studied
in [4, 5], the problem of best approximation in vector valued functions such as
ℓp(X), 1 ≤ p ≤ ∞, where X is a Banach lattice has never been considered.

It is the aim of this paper to give some characterization of some kind of
downward sets in the space of bounded sequences ℓ∞(X) endowed with the max
norm in terms of a coupling function. Further we study the problem of best
approximation of those kind of sets. Indeed we precisely study proximity of
ℓ∞(W ) in ℓ∞(X), where X is a Banach lattice and W is a downward subset of
X.

Throughout of this paper, X is a Banach Lattice with a strong unit and
N is the set of all positive integers. Moreover the interior, the closure and
the boundary of the subset W of X will be denoted by intW, clW and bd(W )
respectively.

2. Characterization of downward sets in ℓ∞(X)

For a Banach space X, let ℓ∞(X) denotes the space of all sequences x = (xi) ,
xi ∈ X, with ∥x∥∞ = supi∈N ∥xi∥ < ∞. If W is a downward subset of X, by
ℓ∞(W ) we denote the subset of all sequences w = (wi) , wi ∈ W, with ∥w∥∞ =
supi∈N ∥wi∥ <∞. In this section we characterize some kind of downward sets in
the sequence space ℓ∞(X) in terms of a coupling function. We start by defining
a partial order relation ” ≤ ” on ℓ∞(X), where X is a Banach lattice with strong
unit ”1” as follows:

Definition 1. For x = (xn), y = (yn) ∈ ℓ∞(X), we say that x ≤ y if and only
if xn ≤ yn for all n.

Proposition 2. A relation ≤ is a partial order in ℓ∞(X).

Proof. Follows from the definition. �
Proposition 3. If X is a Banach lattice with strong unit 1, then ℓ∞(X) is a
Banach lattice with strong unit (1, 1, ..., 1, ...).
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Proof. Let (xn) ∈ ℓ∞(X). Then, supn∈N ∥xn∥ < ∞. Since for all n, xn ∈
X, and 1 is the strong unit of X, there exists λn > 0, such that xn ≤ λn1.
With no less of generality, we can choose λn to be ∥xn∥ . If λ = supn∈N |λn| =
∥(xn)∥∞ < ∞, then, for all n, xn ≤ ∥xn∥ 1 ≤ (supn∈N ∥xn∥)1 = λ1. Hence,
(xn) ≤ (λ1, λ1, ..., λ1, ...) = λ(1, 1, ..., 1, ...) = λ1. �

Proposition 4. W is a downward set in X if and only if ℓ∞(W ) is a downward
set in ℓ∞(X).

Proof. Let x = (xn) ∈ ℓ∞(W ) and w = (wn) ∈ ℓ∞(X), such that w ≤ x. Then
for all n, wn ≤ xn. But W is downward set in X and xn ∈W for all n, it follow
that wn ∈W for all n, and w ∈ ℓ∞(W ).

Conversely, let w ∈ W,x ∈ X, such that x ≤ w, consider the sequence u =
(x, x, x, ...) ∈ ℓ∞(W ), v = (w,w,w, ...) ∈ ℓ∞(X). Since ℓ∞(W ) is a downward
set and u ≤ v it follows that x ∈W. �

Proposition 5. If G is a closed subset of X, then ℓ∞(G) is a closed subset of
ℓ∞(X).

Proof. Let
(
xkn

)
, k ≥ 1 be a sequence of ℓ∞(G), such that

(
xkn

)
→ (xn) .

Since for all n, xkn ∈ G and G closed, it follows that, xn ∈ G for all n. Hence
(xn) ∈ ℓ∞(G). �

Theorem 6. Let W be a closed downward subset of X and (xn) ∈ ℓ∞(X).
Then the following are true:

(a) If (xn) ∈ ℓ∞(W ), then (xn − λn1) ∈ int(ℓ∞(W )), for all ϵ > 0, and all
(λn) ∈ ℓ∞(R) with infn∈N λn ≥ ϵ.

(b) int(ℓ∞(W )) = {(xn) ∈ ℓ∞(X) : (xn + ϵ1) ∈ ℓ∞(W ) for some ϵ > 0}.

Proof. (a) For ϵ > 0 and (xn) ∈ ℓ∞(W ), let, λn ∈ ℓ∞(R) with inf (λn) ≥ ϵ and

V = {(yn) ∈ ℓ∞(X) : ∥(yn)− (xn − λn1)∥∞ < ϵ} ,

be an open neighborhood for (xn − λn1) in ℓ
∞(X). Then, for all, n

∥yn − (xn − λn1)∥ ≤ sup
n

∥yn − (xn − λn1)∥ = ∥(yn)− (xn − λn1)∥∞ < ϵ.

Hence, |yn − (xn − λn1)| ≤ ∥yn − (xn − λn1)∥ < ϵ. Using (1.2)

−ϵ1 < yn − (xn − λn1) < ϵ1

−ϵ1 + xn − λn1 < yn < ϵ1 + (xn − λn1) = xn + (ϵ− λn) 1 < xn.

Since W is a downward set it follows that yn ∈ W for all n. Consequently
(yn) ∈ ℓ∞(W ) and V ⊂ ℓ∞(W ). Hence (xn − λn1) ∈ int(ℓ∞(W ). Notice that,
(λn) can be chosen so that λn = ϵ ∀n.
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(b) Let (xn) ∈ int(ℓ∞(W )). Then there exists ϵ◦ > 0, such that the closed
ball B((xn), ϵ◦) ⊆ ℓ∞(W ). That is

B((xn), ϵ◦) =

{
(yn) ∈ ℓ∞(X) : sup

n
∥yn − xn∥ ≤ ϵ◦

}
⊆ ℓ∞(W ).

Hence

B((xn), ϵ◦) = {(yn) ∈ ℓ∞(X) : ∥yn − xn∥ ≤ sup
n

∥yn − xn∥

= ∥(yn)− (xn)∥∞ ≤ ϵ◦}.

Consequently using (1.2) we get

B((xn), ϵ◦) = {(yn) ∈ ℓ∞(X) : xn − ϵ◦1 ≤ yn ≤ xn + ϵ◦1} ⊆ ℓ∞(W ),

and (ϵ◦1 + xn) ∈ ℓ∞(W ).
Conversely, suppose that there exists ϵ > 0, such that (xn + ϵ1) ∈ ℓ∞(W ).

Then, by part (a), we get (xn) = (xn + ϵ1− ϵ1) ∈ int(ℓ∞(W )), which completes
the proof. �

Corollary 7. Let W be a closed downward subset of X and (wn) ∈ ℓ∞(W ).
Then, (wn) ∈ bd(ℓ∞(W )) if and only if (λ1 + wn) /∈ ℓ∞(W ) for all λ > 0.

Proof. Suppose that (λ1 + wn) ∈ ℓ∞(W ) for some λ > 0. Then

(wn) = (wn + λ1− λ1) ∈ int(ℓ∞(W )),

which is a contradiction, since (wn) ∈ bd(ℓ∞(W )). Hence, (λ1 +wn) /∈ ℓ∞(W ),
for all λ > 0.

Conversely, suppose that (wn) ∈ int(ℓ∞(W )). Then by Theorem 6, (λ1 +
wn) ∈ ℓ∞(W ), for some λ > 0. This is a contradiction, since (λ1 + wn) /∈
ℓ∞(W ). Hence (wn) /∈ int(ℓ∞(W )). But (wn) ∈ ℓ∞(W ), it follows that (wn) ∈
bd(ℓ∞(W )). �

Now, we will define what we call it a coupling ψ function that will be used
later to characterize some kind of downward sets as follows:

(2.1) ψ : ℓ∞(X)× ℓ∞(X) → ℓ∞(R)

ψ((xn), (yn)) = (Φ (xn, yn)) ,

where, Φ (xn, yn) = sup{λ ∈ R : λ1 ≤ xn + yn}, for all (xn), (yn) ∈ ℓ∞(X).
Since 1 is a strong unit of X, it follows that the set {λ ∈ R : λ1 ≤ xn + yn} is
non-empty and bounded above (by the number ∥xn + yn∥). Clearly this set is
closed.

For each (yn) ∈ ℓ∞(X), define the function ψ(yn) : ℓ
∞(X) → ℓ∞(R) by

(2.2) ψ(yn)((xn)) = ψ((xn), (yn)) = (Φ (xn, yn)).
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Proposition 8. The function ψ satisfies the following properties.
(1) For all (xn), (yn) ∈ ℓ∞(X), −∞ ≤ ∥ψ((xn), (yn))∥∞ ≤ ∥(xn) + (yn)∥∞ .
(2) (Φ (xn, yn) 1) ≤ (xn + yn) for all (xn), (yn) ∈ ℓ∞(X).
(3) ψ((xn), (yn)) = ψ((yn), (xn)) for all (xn), (yn) ∈ ℓ∞(X).
(4) ψ((xn), (−xn)) = (0, 0, ..., 0, ...) for all (xn) ∈ ℓ∞(X).

Proof.

−∞ ≤ ∥ψ((xn), (yn))∥∞ = sup
n

∥Φ(xn, yn)∥

≤ sup
n

∥xn + yn∥ = ∥(xn + yn)∥∞ .(1)

(2) (Φ (xn, yn) 1) = ((sup{λ ∈ R : λ1 ≤ xn + yn})1) ≤ (xn + yn).

ψ ((xn), (yn)) = (Φ (xn, yn)) = (sup{λ ∈ R : λ1 ≤ xn + yn})
= (sup{λ ∈ R : λ1 ≤ yn + xn}) = ψ((yn), (xn)).(3)

(4) ψ((xn), (−xn)) = (sup {λ ∈ R : λ1 ≤ xn − xn}) = (0, 0, ..., 0, ...) .

�
A function f : ℓ∞(X) → ℓ∞(R) is said to be increasing, whenever (xn), (yn) ∈

ℓ∞(X), [(xn) ≥ (yn) ⇒ f((xn)) ≥ f((yn))] , and plus-homogeneous if

(f((xn) + (αn1)) = f((xn)) + (αn) for all (xn) ∈ ℓ∞(X) and (αn) ∈ ℓ∞(R)).

A function f : ℓ∞(X) → ℓ∞(R) is called topical if this function is increasing
and plus-homogeneous.

Lemma 9. The function ψ(yn) defined by (2.2) is topical.

Proof. (1) Let (xn), (zn) ∈ ℓ∞(X) with (xn) ≤ (zn). Then, since xn ≤ zn for
all n, {λ ∈ R : λ1 ≤ xn + yn} ⊂ {λ ∈ R : λ1 ≤ zn + yn}. Hence,

ψ(yn)((xn)) = ψ((xn), (yn))

= (sup{λ ∈ R : λ1 ≤ xn + yn})
≤ (sup{λ ∈ R : λ1 ≤ zn + yn})
= ψ(yn)((zn)).

(2) Let (xn) ∈ ℓ∞(X) and (αn) ∈ ℓ∞(R) be arbitrary. Then

ψ(yn)((xn) + (αn)1) = ψ((xn) + (αn)1, (yn))

= (sup{λ ∈ R : λ1 ≤ xn + αn1 + yn})
= (sup{λ ∈ R : (λ− αn)1 ≤ xn + yn}).
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Let λ− αn = β. Then λ = β + αn. Hence

ψ(yn)((xn) + (αn)1) = (sup{β + αn ∈ R : β1 ≤ xn + yn})
= (sup{β ∈ R : β1 ≤ xn + yn, }) + (αn)

= ψ((xn), (yn)) + (αn)

= ψ(yn) ((xn)) + (αn).

�

Theorem 10. The function ψ(yn) is Lipschitz continuous in the ℓ∞ norm.

Proof. Let (xn), (zn) ∈ ℓ∞(X) be arbitrary. Since |xn − zn| ≤ ∥(xn)− (zn)∥∞ 1,
it follows that

zn − ∥(xn)− (zn)∥∞ ≤ xn ≤ zn + ∥(xn)− (zn)∥∞ .

In view of (Lemma 9) we have

ψ(yn)((zn))−(∥(xn)− (zn)∥∞ 1) ≤ ψ(yn)((xn)) ≤ ψ(yn)((zn))+(∥(xn)− (zn)∥∞ 1),

and hence

(2.3)
∥∥ψ(yn)((xn))− ψ(yn)((zn))

∥∥
∞ ≤ ∥(xn)− (zn)∥∞ .

Therefore, ψ(yn) is Lipschitz continuous. �

Corollary 11. The function ψ defined in (2.1) is continuous in the ℓ∞ norm.

Proof. It follows directly from (2.3). �
Now we prove one of the main results in this paper

Theorem 12. Let W be a closed downward subset of X and (y◦k) ∈ ℓ∞(W ). If
S = {k ∈ N, y◦k ∈ bd (W )} ̸= ϕ, then,

(a) (y◦n) ∈ bd (ℓ∞(W )) .

(b) Φ (wk,−y◦k) ≤ 0, for all k ∈ S and all (wn) ∈ ℓ∞(W ).

Proof. (a) Let (y◦n) ∈ ℓ∞(W ) and B (y◦n, ϵ) be any neighborhood of (y◦n) . Then
if

B (y◦n, ϵ) = {(xn) ∈ ℓ∞(X) : ∥(xn)− (y◦n)∥∞ < ϵ} ,

it follows that for all n,

∥xn − y◦n∥ < ∥(xn)− (y◦n)∥∞ = sup
n

∥xn − y◦n∥ < ϵ.

So, for k ∈ S, ∥xk − y◦k∥ < ϵ. Since y◦k ∈ bd(W ), any neighborhood of y◦k contains
a point uk ∈W and a point zk /∈W. Now consider the sequence u given by, u =
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(
y◦1, y

◦
2, ..., y

◦
k−1, uk, y

◦
k+1, ...

)
∈ ℓ∞(W ) and, z =

(
y◦1, y

◦
2, ..., y

◦
k−1, zk, y

◦
k+1, ...

)
/∈

ℓ∞(W ). Then,

∥uk − y◦k∥ < ϵ and ∥zk − y◦k∥ < ϵ⇒ ∥uk∥ ≤ ∥y◦k∥+ ϵ and

∥zk − y◦k∥ < ϵ⇒ ∥zk∥ ≤ ∥y◦k∥+ ϵ

and so

∥uk∥ ≤ ∥y◦k∥+ ϵ and ∥zk∥ ≤ ∥y◦k∥+ ϵ.

Therefore, ∥u∥∞ , ∥z∥∞ ≤ ∥(y◦n)∥∞ + ϵ <∞. Hence,

ϕ ̸= B (y◦n, ϵ) ∩ ℓ∞(W ) ⊇ {u}
ϕ ̸= B (y◦n, ϵ) ∩ (ℓ∞(W ))c ⊇ {z} ,

and (y◦n) ∈ bd (ℓ∞(W )) .

(b) Let (wn) ∈ ℓ∞(W ) such that Φ (wk,−y◦k) = sup{λ ∈ R : λ1 ≤ wk−y◦k} >
0 for some k ∈ S. Then there exists λ◦ > 0 such that λ◦1 ≤ wk−y◦k. This means
that λ◦1 + y◦k ≤ wk. Since W is a downward set and wk ∈ W, it follows that
λ◦1+y

◦
k ∈W . Therefore, by (Proposition 3.1 in [4]) we have, y◦k ∈ int(W ). This

is a contradiction. �

Corollary 13. Let W be a closed downward subset of X, y◦n ∈ bd(W ) for all n.
Then ψ ((wn), (−y◦n)) ≤ 0, for all (wn) ∈ ℓ∞(W ).

Proof. Since y◦n ∈ bd(W ), for all n, by Theorem 12, Φ (wn,−y◦n) < 0. Hence
ψ ((wn), (−y◦n)) ≤ 0. �

In the following two theorems we give some characterizations of the down-
ward set ℓ∞(W ) in terms of the function ψ.

Theorem 14. Let W be a subset of X and ψ be the coupling function of (2.1).
Then the following are equivalent:

(1) ℓ∞(W ) is a downward set.

(2) For each (xn) ∈ ℓ∞(X)\ℓ∞(W ), there exist ϕ ̸= S ⊆ N, Φ(wk,−xk) <
0, ∀k ∈ S and (wn) ∈ ℓ∞(W ).

(3) For each (xn) ∈ ℓ∞(X)\ℓ∞(W ), there exists (Ln) ∈ ℓ∞(X) and ϕ ̸= S ⊆
N,

Φ(wk, Lk) < 0 ≤ Φ(xk, Lk) , ∀k ∈ S and (wn) ∈ ℓ∞(W ).

Proof. (1) ⇒ (2) Let ℓ∞(W ) be downward set and (xn) ∈ ℓ∞(X)\ℓ∞(W ).
Suppose that for all n ∈ N, Φ(wn,−xn) ≥ 0. Then by Proposition 8(2), 0 ≤
(Φ (wn,−xn) 1) ≤ (wn − xn). Since W is downward set and wn ∈ W, it follows
that for all n, xn ∈W, which is a contradiction.

Hence S = {k,Φ(wk,−y◦k) < 0} ̸= ϕ.

(2) ⇒ (3). Assume that (2) holds and (xn) ∈ ℓ∞(X)\ℓ∞(W ) is arbitrary.
Then, by hypothesis, there exists ϕ ̸= S ⊆ N, such that Φ (wk,−xk) < 0, ∀k ∈ S.
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Now, let (Ln) = (−xn) ∈ ℓ∞(X). Using proposition 8 (2) , we have for each
(wn) ∈ ℓ∞(W ) and k ∈ S.

Φ(wk, Lk) = Φ (wk,−xk) < 0 = Φ (xk,−xk) = Φ (xk, Lk)

(3) ⇒ (1). Suppose that ℓ∞(W ) is not a downward set. Then there exists
(w◦

n) ∈ ℓ∞(W ) and (x◦n) ∈ ℓ∞(X)\ℓ∞(W ) with (x◦n) ≤ (w◦
n). Using (3), there

exists (Ln) ∈ ℓ∞(X) and ϕ ̸= S ⊆ N, such that for all k ∈ S.

(2.4) Φ (w◦
k, Lk) < 0 ≤ Φ (x◦k, Lk)

But ψ is increasing, we have ψ(Ln) ((x
◦
n)) ≤ ψ(Ln) ((w

◦
n)) . This mean

Φ (x◦n, Ln) ≤ Φ (w◦
n, Ln) ,

for all n ∈ N and this is a contradiction to (2.4). �

Theorem 15. Let ψ be the function defined by (2.1). Then for a subset W of
X the following are equivalent:

(1) ℓ∞(W ) is a closed downward subset of ℓ∞(X).
(2) ℓ∞(W ) is downward, and for each (xn) ∈ ℓ∞(X) the set

H = {(λn) ∈ ℓ∞(R) : (xn + λn1) ∈ ℓ∞(W )}

is closed in ℓ∞(R).
(3) For each (xn) ∈ ℓ∞(X)\ℓ∞(W ), there exists (Ln) ∈ ℓ∞(X) and ϕ ̸= S ⊆

N, such that,
Φ(wk, Lk) < 0 < Φ(xk, Lk),

for all (wn) ∈ ℓ∞(W )) and for all k ∈ S.
(4) For each (xn) ∈ ℓ∞(X)\ℓ∞(W ), there exists (Ln) ∈ ℓ∞(X) and ϕ ̸= S ⊆

N such that,
sup

(wn)∈ℓ∞(W )
Φ(wk, Lk) < Φ(xk, Lk).

Proof. (1) ⇒ (2). Let (xn) ∈ ℓ∞(X), (λkn) ∈ ℓ∞(R), (xn + λkn1) ∈ ℓ∞(W )
(k = 1, 2, ...) and (λkn) −→ (λn) in ℓ

∞ norm. Then,∥∥∥(xn + λkn1)− (xn + λn1)
∥∥∥
∞

=
∥∥∥(λkn − λn)1

∥∥∥
∞

= sup
n

∣∣∣λkn − λn

∣∣∣ −→ 0 as k −→ +∞.

Since (xn + λkn1) ∈ ℓ∞(W ) and ℓ∞(W ) is closed, it follows that (xn + λn1) ∈
ℓ∞(W ). Hence, (λn) ∈ H and H is a closed subset of ℓ∞(R).

(2) ⇒ (3). Let (xn) ∈ ℓ∞(X)\ℓ∞(W ) be arbitrary. We claim that there
exists (λ◦n) > (0) such that (−λ◦n) /∈ H. Indeed, if (−λn) ∈ H for all (λn) >
(0, 0, ..., 0, ...). Then due to the closedness of H, we have (0, 0, ..., 0..) ∈ H. This
implies (xn) = (xn + 0 · 1) ∈ ℓ∞(W ). This is a contradiction.
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Now, let (Ln) = (λ◦n1−xn) ∈ ℓ∞(X). We show that, ∃ϕ ̸= S ⊆ N such that
Φ(wk, Lk) < 0, for all k ∈ S and for all (wn) ∈ ℓ∞(W ). Assume that there exists
(w◦

n) ∈ ℓ∞(W ) such that ψ((w◦
n), (Ln)) ≥ (0). Then by proposition 8 (2), for all

n,
0 ≤ Φ(w◦

n, Ln)1 ≤ w◦
n + Ln

and so w◦
n ≥ −Ln = xn − λ◦n1. Since ℓ

∞(W ) is downward and (w◦
n) ∈ ℓ∞(W ),

it follows that (xn − λ◦n1) ∈ ℓ∞(W ), and consequently −λn ∈ H. This is a
contradiction. Hence, ∃S ̸= ϕ,

Φ(wk, Lk) < 0 for all (wn) ∈ ℓ∞(W )), for all k ∈ S.

On the other hand, for all k ∈ S

Φ(xk, Lk) = sup{λ ∈ R : λ1 ≤ xk + Lk}
= sup{λ ∈ R : λ1 ≤ xk + λ◦k1− xk = λ◦k1}
= sup{λ ∈ R : (λ− λ◦k)1 ≤ 0}.

Let λ− λ◦k = αk. Then λ = λ◦k + αk. Hence

Φ(wk, Lk) = sup{αk + λ◦k ∈ R : αk1 ≤ 0}
= sup{αk ∈ R : αk1 ≤ 0}+ λ◦k

= λ◦k > 0.

(3) ⇒ (4). By (3) for each (xn) ∈ ℓ∞(X)\ℓ∞(W ), there exists (Ln) ∈ ℓ∞(X)
and ϕ ̸= S ⊆ N

Φ(wk, Lk) < 0 < Φ(xk, Lk),

for all (wn) ∈ ℓ∞(W )). Then

sup
(wn)∈ℓ∞(W )

Φ(wk, Lk) < Φ(xk, Lk), for all k ∈ S.

(4) ⇒ (1). Suppose that ℓ∞(W ) is not a downward set. Then there exists
(w◦

n) ∈ ℓ∞(W ) and (x◦n) ∈ ℓ∞(X)\ℓ∞(W ) with (x◦n) ≤ (w◦
n). By hypothesis,

there exists (Ln) ∈ ℓ∞(X) and ϕ ̸= S ⊆ N,

sup
(wn)∈ℓ∞(W )

Φ(wk, Lk) < Φ(x◦k, Lk),

for all k ∈ S. Since ψ(., (Ln)) = ψ(Ln)(.) is increasing, it follows that

ψ((x◦n), (Ln)) ≤ ψ((w◦
n), (Ln))

Hence, for all k ∈ S

Φ(x◦k, Lk) ≤ sup
(wn)∈ℓ∞(W )

Φ(wk, Lk) < Φ(x◦k, Lk).
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This is a contradiction. Hence, ℓ∞(W ) is a downward set.
Finally, assume that ℓ∞(W ) is not closed. Then there exists a sequence

{wm
n }m≥1 ⊂ ℓ∞(W ) and (x◦n) ∈ ℓ∞(X)\ℓ∞(W ) such that

∥wm
n − x◦n∥∞ −→ 0 as m −→ +∞.

Since (x◦n) ∈ ℓ∞(X)\ℓ∞(W ), by hypothesis, there exists (Ln) ∈ ℓ∞(X) and
ϕ ̸= S ⊆ N, such that

sup
(wn)∈ℓ∞(W )

Φ(wk, Lk) < Φ(x◦k, Lk),

for all k ∈ S, ∀(wn) ∈ ℓ∞(W ). Hence

Φ((wm
k ), (Lk)) ≤ sup

(wn)∈ℓ∞(W )
Φ((wk), (Lk)),

for all m, ∀k ∈ S. By continuity of ψLn(., (Ln)) = (ΦLn(., Ln)) it follows that

Φ((x◦k), (Lk)) ≤ sup
(wn)∈ℓ∞(W )

Φ((wk), (Lk)),

for all k ∈ S. This is a contradiction. �

3. Best approximation of ℓ∞(W ) in ℓ∞(X)

A subset W in a Banach space X is said to be proximinal if there corre-
sponds to each x ∈ X at least one w ∈ W such that ∥x− w∥ = dist(x,W ) =
infz∈W ∥(x− z∥ . A necessary condition for proximinality of a subset W of a
normed linear space X is closeness (see, [2]). The set (possibly empty) of best
approximations to x from W is defined by: PW (x) = {w ∈ W : ∥x− w∥ =
d(x,W )}.

In this section we prove that if W is a closed downward set in X, then
ℓ∞(W ) is proximinal in ℓ∞(X) and the set Pℓ∞(W )((xn)) of all of points of best
approximation of the point x = (xn) ∈ ℓ∞(X) in ℓ∞(W ) has minimal element.

Theorem 16. Let W be a closed downward subset of X. Then ℓ∞(W ) is
proximinal in ℓ∞(X).

Proof. Let (x◦n) ∈ ℓ∞(X)\ℓ∞(W ) be arbitrary and

d((x◦n), ℓ
∞(W )) = inf

(wn)∈ℓ∞(W )
∥(x◦n)− (wn)∥∞

= inf
(wn)∈ℓ∞(W )

sup
n

∥x◦n − wn∥ = r > 0.

This implies for all ϵ > 0, there exists (wnϵ) ∈ ℓ∞(W ) such that

∥(x◦n)− (wnϵ)∥∞ < r + ϵ.
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Consequently using (1.2) we get

B((x◦n), r + ϵ) =

{
(wnϵ) ∈ ℓ∞(X) : ||x◦n − wnϵ|| ≤ supn ||x◦n − wnϵ||

= ||(x◦n)− (wnϵ)||∞ ≤ r + ϵ

}
= {(wnϵ) ∈ ℓ∞(X) : x◦n − (r + ϵ)1 ≤ wnϵ ≤ x◦n + (r + ϵ)1} .

If (w◦
n) = (x◦n − r1), then

||(x◦n)− (w◦
n)||∞ = sup

n
||x◦n − w◦

n|| = sup
n

||r|| = r.

Hence (w◦
n− ϵ1) = (x◦n− r1− ϵ1) ≤ (wnϵ). Since W is closed downward set and

(wnϵ) ∈ ℓ∞(W ), it follows that (w◦
n − ϵ1) ∈ ℓ∞(W ), for all ϵ > 0 and w◦

n ∈ W .
So (w◦

n) ∈ Pℓ∞(W )((x
◦
n)). �

Remark 17. We prove that for each (x◦n) ∈ ℓ∞(X)\ℓ∞(W ), the set Pℓ∞(W )((x
◦
n))

contains (w◦
n) = (x◦n − r1) with r = d((x◦n), ℓ

∞(W )). If (x◦n) ∈ ℓ∞(W ), then
(w◦

n) = (x◦n) and Pℓ∞(W )((x
◦
n)) = {(w◦

n)}.

Theorem 18. Let W be a closed downward subset of X and (x◦n) ∈ ℓ∞(X).

Then there exists the least element (w◦
n) = minPℓ∞(W )((x

◦
n)) of the set

Pℓ∞(W )((x
◦
n)), namely, (w◦

n) = (x◦n − r1), where r = d((x◦n), ℓ
∞(W )).

Proof. If (x◦n) ∈ ℓ∞(W ), then the result holds. Assume that (x◦n) /∈ ℓ∞(W )
and (w◦

n) = (x◦n − r1). Then by (Remark 17), we have

(w◦
n) = (x◦n − r1) ∈ Pℓ∞(W )((x

◦
n)).

Since applying (1.2) and the equality ∥(x◦n)− (wn)∥∞ = r, we get

B((x◦n), r) = {(xn) ∈ ℓ∞(X) : ∥(xn)− (x◦n)∥∞ ≤ r}

=

{
(xn) ∈ ℓ∞(X) : sup

n
∥xn − x◦n∥ ≤ r

}
.

Consequently for all n,

∥xn − x◦n∥ ≤ ∥(xn)− (x◦n)∥∞ = sup
n

∥xn − x◦n∥ ≤ r,

and using (1.1) we have

−r1 ≤ xn − x◦n ≤ r1 ⇒ x◦n − r1 ≤ xn ≤ x◦n + r1.

Hence, w◦
n = x◦n − r1 ≤ xn, and so (w◦

n) ≤ (xn) for all (xn) ∈ B((x◦n), r), and
this implies (w◦

n) is the least element of the closed ball B((x◦n), r).

Now, let (wn) ∈ Pℓ∞(W )(x
◦
n) be arbitrary. Then, ∥(x◦n)− (wn)∥ = r and so

(wn) ∈ B((x◦n), r). Therefore, (wn) ≥ (w◦
n). Hence, (w

◦
n) is the least element of

the set Pℓ∞(W )(x
◦
n). �
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Corollary 19. Let W be a closed downward subset of X, (x◦n) ∈ ℓ∞(X) and
(w◦

n) = minPℓ∞(W )(x
◦
n). Then, (w

◦
n) ≤ (x◦n).

Proof. Since (w◦
n) = minPℓ∞(W )(x

◦
n). Then by Theorem 18, we get (w◦

n) =
(x◦n − r1) ≤ (x◦n). �
Corollary 20. Let W be a closed downward subset of X and (xn) ∈ ℓ∞(X) be
arbitrary. Then d((xn), ℓ

∞(W )) = min{λ ≥ 0, (xn − λ1) ∈ ℓ∞(W )}.

Proof. Let A = {λ ≥ 0, (xn − λ1) ∈ ℓ∞(W )}. If (xn) ∈ ℓ∞(W ), then (xn −
0.1) = (xn) ∈ ℓ∞(W ), and so min (A) = 0 = d((xn), ℓ

∞(W )). Suppose that
(xn) /∈ ℓ∞(W ). Then r = d((xn), ℓ

∞(W )) > 0. Let λ > 0 be arbitrary such that
(xn − λ1) ∈ ℓ∞(W ). Thus, we have

λ= ∥(λ1)∥∞= ∥(xn − xn − λ1)∥∞=sup
n

∥xn − (xn − λ1)∥ ≥ d((xn), ℓ
∞(W )) = r.

Since by (Theorem 18), (xn − r1) ∈ ℓ∞(W ), it follows that r ∈ A. Hence
min (A) = r. �
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