SOME PROPERTIES OF A NEW KIND OF DOWNWARD SETS IN CERTAIN BANACH SPACES*

Sh. Al-Sharif[†] M. Al-Qahtani Department of Mathematics Yarmouk University Irbid Jordan sharifa@yu.edu.jo mesfer-alqhtani@hotmail.com

Abstract. Let X be a Banach lattice with strong unit. In this paper, we give some characterizations of certain kind of downward sets in the sequence space $\ell^{\infty}(X)$. Further some results on best approximation of those sets are presented. **Keywords:** Downwards sets, proximinal sets, Banach lattices.

1. Introduction

A vector lattice is an ordered vector space such that $x \vee y = \sup\{x, y\}$ and $x \wedge y = \inf\{x, y\}$ exist for all $x, y \in X$. Vector lattices are also called Riesz spaces or linear lattices, [9]. The most obvious example of a vector lattice is the set of real numbers, \mathbb{R} with all the usual operations. A normed linear lattice X is a real normed vector lattice such that

$$|x| \le |y| \Rightarrow ||x|| \le ||y||$$
 for any $x, y \in X$,

where, $|x| := \sup \{x, -x\}$ for each $x \in X$. If (X, \leq) is a normed ordered vector space, recall that an element in X, denoted by 1, is called a strong unit if ||1|| = 1 and for each $x \in X$, there exists $0 < \lambda \in \mathbb{R}$ such that $x \leq \lambda 1$. Using the strong unit 1 a norm on X is defined by

$$||x|| = \inf\{\lambda > 0 : |x| \le \lambda 1\}$$

for all $x \in X$. It is clear that for all $x \in X$,

$$(1.1) |x| \le ||x|| \, 1$$

Using (1.1), the closed unit ball of X, $B(x,r) = \{y \in X : ||y-x|| \le r\}$, with center x and radius r can be written as

(1.2)
$$B(x,r) = \{ y \in X : x - r1 \le y \le x + r1 \}.$$

^{*.} This research is supported in part by Yarmouk University

^{†.} Corresponding author

Certain kind of sets in Banach lattices that is called downward sets plays an important role in some part of mathematical economics and game theory. Recall that a subset W of a Banach lattice X is said to be downward, if $(w \in W, x \le w)$ implies that $x \in W$. The set of the form $\{w \in \mathbb{R}^n : w \le x\}$, where $x \in \mathbb{R}^n$ is a simple example of a downward set. For more on Banach Lattices we refer the reader to [7, 8, 9].

Convex sets in normed linear spaces and their best approximation properties has many important applications in science. However, since convexity in somehow is a restrictive assumption, so there is a need to study the best approximation by elements of some kind of non convex sets. In [6], Rubinov and Singer developed a theory of best approximation by elements of so-called normal sets in the finite-dimensional coordinate space \mathbb{R}^n endowed with the max-norm. Martinez-Legaz, Rubionv and Singer in [3] have developed a theory of best approximation of downward subsets of the space \mathbb{R}^n . While the problem of best approximation by elements of downward sets in a Banach lattice was studied in [4, 5], the problem of best approximation in vector valued functions such as $\ell^p(X)$, $1 \leq p \leq \infty$, where X is a Banach lattice has never been considered.

It is the aim of this paper to give some characterization of some kind of downward sets in the space of bounded sequences $\ell^{\infty}(X)$ endowed with the max norm in terms of a coupling function. Further we study the problem of best approximation of those kind of sets. Indeed we precisely study proximity of $\ell^{\infty}(W)$ in $\ell^{\infty}(X)$, where X is a Banach lattice and W is a downward subset of X.

Throughout of this paper, X is a Banach Lattice with a strong unit and \mathbb{N} is the set of all positive integers. Moreover the interior, the closure and the boundary of the subset W of X will be denoted by intW, clW and bd(W) respectively.

2. Characterization of downward sets in $\ell^{\infty}(X)$

For a Banach space X, let $\ell^{\infty}(X)$ denotes the space of all sequences $x = (x_i)$, $x_i \in X$, with $||x||_{\infty} = \sup_{i \in \mathbb{N}} ||x_i|| < \infty$. If W is a downward subset of X, by $\ell^{\infty}(W)$ we denote the subset of all sequences $w = (w_i)$, $w_i \in W$, with $||w||_{\infty} = \sup_{i \in \mathbb{N}} ||w_i|| < \infty$. In this section we characterize some kind of downward sets in the sequence space $\ell^{\infty}(X)$ in terms of a coupling function. We start by defining a partial order relation " \leq " on $\ell^{\infty}(X)$, where X is a Banach lattice with strong unit "1" as follows:

Definition 1. For $x = (x_n), y = (y_n) \in \ell^{\infty}(X)$, we say that $x \leq y$ if and only if $x_n \leq y_n$ for all n.

Proposition 2. A relation \leq is a partial order in $\ell^{\infty}(X)$.

Proof. Follows from the definition.

Proposition 3. If X is a Banach lattice with strong unit 1, then $\ell^{\infty}(X)$ is a Banach lattice with strong unit (1, 1, ..., 1, ...).

Proof. Let $(x_n) \in \ell^{\infty}(X)$. Then, $\sup_{n \in \mathbb{N}} ||x_n|| < \infty$. Since for all $n, x_n \in X$, and 1 is the strong unit of X, there exists $\lambda_n > 0$, such that $x_n \leq \lambda_n 1$. With no less of generality, we can choose λ_n to be $||x_n||$. If $\lambda = \sup_{n \in \mathbb{N}} |\lambda_n| = ||(x_n)||_{\infty} < \infty$, then, for all $n, x_n \leq ||x_n|| \le (\sup_{n \in \mathbb{N}} ||x_n||) = \lambda$ 1. Hence, $(x_n) \leq (\lambda 1, \lambda 1, ..., \lambda 1, ...) = \lambda (1, 1, ..., 1, ...) = \lambda 1$.

Proposition 4. W is a downward set in X if and only if $\ell^{\infty}(W)$ is a downward set in $\ell^{\infty}(X)$.

Proof. Let $x = (x_n) \in \ell^{\infty}(W)$ and $w = (w_n) \in \ell^{\infty}(X)$, such that $w \leq x$. Then for all $n, w_n \leq x_n$. But W is downward set in X and $x_n \in W$ for all n, it follow that $w_n \in W$ for all n, and $w \in \ell^{\infty}(W)$.

Conversely, let $w \in W, x \in X$, such that $x \leq w$, consider the sequence $u = (x, x, x, ...) \in \ell^{\infty}(W)$, $v = (w, w, w, ...) \in \ell^{\infty}(X)$. Since $\ell^{\infty}(W)$ is a downward set and $u \leq v$ it follows that $x \in W$.

Proposition 5. If G is a closed subset of X, then $\ell^{\infty}(G)$ is a closed subset of $\ell^{\infty}(X)$.

Proof. Let (x_n^k) , $k \ge 1$ be a sequence of $\ell^{\infty}(G)$, such that $(x_n^k) \to (x_n)$. Since for all $n, x_n^k \in G$ and G closed, it follows that, $x_n \in G$ for all n. Hence $(x_n) \in \ell^{\infty}(G)$.

Theorem 6. Let W be a closed downward subset of X and $(x_n) \in \ell^{\infty}(X)$. Then the following are true:

(a) If $(x_n) \in \ell^{\infty}(W)$, then $(x_n - \lambda_n 1) \in int(\ell^{\infty}(W))$, for all $\epsilon > 0$, and all $(\lambda_n) \in \ell^{\infty}(\mathbb{R})$ with $\inf_{n \in \mathbb{N}} \lambda_n \ge \epsilon$.

(b) $int(\ell^{\infty}(W)) = \{(x_n) \in \ell^{\infty}(X) : (x_n + \epsilon 1) \in \ell^{\infty}(W) \text{ for some } \epsilon > 0\}.$

Proof. (a) For $\epsilon > 0$ and $(x_n) \in \ell^{\infty}(W)$, let, $\lambda_n \in \ell^{\infty}(\mathbb{R})$ with $\inf(\lambda_n) \ge \epsilon$ and

$$V = \{(y_n) \in \ell^{\infty}(X) : ||(y_n) - (x_n - \lambda_n 1)||_{\infty} < \epsilon\},\$$

be an open neighborhood for $(x_n - \lambda_n 1)$ in $\ell^{\infty}(X)$. Then, for all, n

$$||y_n - (x_n - \lambda_n 1)|| \le \sup_n ||y_n - (x_n - \lambda_n 1)|| = ||(y_n) - (x_n - \lambda_n 1)||_{\infty} < \epsilon.$$

Hence, $|y_n - (x_n - \lambda_n 1)| \le ||y_n - (x_n - \lambda_n 1)|| < \epsilon$. Using (1.2)

$$-\epsilon 1 < y_n - (x_n - \lambda_n 1) < \epsilon 1$$

$$-\epsilon 1 + x_n - \lambda_n 1 < y_n < \epsilon 1 + (x_n - \lambda_n 1) = x_n + (\epsilon - \lambda_n) 1 < x_n.$$

Since W is a downward set it follows that $y_n \in W$ for all n. Consequently $(y_n) \in \ell^{\infty}(W)$ and $V \subset \ell^{\infty}(W)$. Hence $(x_n - \lambda_n 1) \in \operatorname{int}(\ell^{\infty}(W))$. Notice that, (λ_n) can be chosen so that $\lambda_n = \epsilon \forall n$.

(b) Let $(x_n) \in int(\ell^{\infty}(W))$. Then there exists $\epsilon_0 > 0$, such that the closed ball $B((x_n), \epsilon_0) \subseteq \ell^{\infty}(W)$. That is

$$B((x_n),\epsilon_\circ) = \left\{ (y_n) \in \ell^\infty(X) : \sup_n \|y_n - x_n\| \le \epsilon_\circ \right\} \subseteq \ell^\infty(W).$$

Hence

$$B((x_n), \epsilon_{\circ}) = \{(y_n) \in \ell^{\infty}(X) : ||y_n - x_n|| \le \sup_n ||y_n - x_n||$$

= $||(y_n) - (x_n)||_{\infty} \le \epsilon_{\circ}\}.$

Consequently using (1.2) we get

$$B((x_n),\epsilon_\circ) = \{(y_n) \in \ell^\infty(X) : x_n - \epsilon_\circ 1 \le y_n \le x_n + \epsilon_\circ 1\} \subseteq \ell^\infty(W),$$

and $(\epsilon_0 1 + x_n) \in \ell^{\infty}(W)$.

Conversely, suppose that there exists $\epsilon > 0$, such that $(x_n + \epsilon 1) \in \ell^{\infty}(W)$. Then, by part (a), we get $(x_n) = (x_n + \epsilon 1 - \epsilon 1) \in \operatorname{int}(\ell^{\infty}(W))$, which completes the proof.

Corollary 7. Let W be a closed downward subset of X and $(w_n) \in \ell^{\infty}(W)$. Then, $(w_n) \in bd(\ell^{\infty}(W))$ if and only if $(\lambda 1 + w_n) \notin \ell^{\infty}(W)$ for all $\lambda > 0$.

Proof. Suppose that $(\lambda 1 + w_n) \in \ell^{\infty}(W)$ for some $\lambda > 0$. Then

$$(w_n) = (w_n + \lambda 1 - \lambda 1) \in \operatorname{int}(\ell^{\infty}(W)),$$

which is a contradiction, since $(w_n) \in \mathrm{bd}(\ell^{\infty}(W))$. Hence, $(\lambda 1 + w_n) \notin \ell^{\infty}(W)$, for all $\lambda > 0$.

Conversely, suppose that $(w_n) \in \operatorname{int}(\ell^{\infty}(W))$. Then by Theorem 6, $(\lambda 1 + w_n) \in \ell^{\infty}(W)$, for some $\lambda > 0$. This is a contradiction, since $(\lambda 1 + w_n) \notin \ell^{\infty}(W)$. Hence $(w_n) \notin \operatorname{int}(\ell^{\infty}(W))$. But $(w_n) \in \ell^{\infty}(W)$, it follows that $(w_n) \in \operatorname{bd}(\ell^{\infty}(W))$.

Now, we will define what we call it a coupling ψ function that will be used later to characterize some kind of downward sets as follows:

(2.1)
$$\psi: \ell^{\infty}(X) \times \ell^{\infty}(X) \to \ell^{\infty}(\mathbb{R})$$

$$\psi((x_n),(y_n)) = (\Phi(x_n,y_n)),$$

where, $\Phi(x_n, y_n) = \sup\{\lambda \in \mathbb{R} : \lambda 1 \leq x_n + y_n\}$, for all $(x_n), (y_n) \in \ell^{\infty}(X)$. Since 1 is a strong unit of X, it follows that the set $\{\lambda \in \mathbb{R} : \lambda 1 \leq x_n + y_n\}$ is non-empty and bounded above (by the number $||x_n + y_n||$). Clearly this set is closed.

For each $(y_n) \in \ell^{\infty}(X)$, define the function $\psi_{(y_n)} : \ell^{\infty}(X) \to \ell^{\infty}(\mathbb{R})$ by

(2.2)
$$\psi_{(y_n)}((x_n)) = \psi((x_n), (y_n)) = (\Phi(x_n, y_n)).$$

Proposition 8. The function ψ satisfies the following properties.

(1) For all
$$(x_n), (y_n) \in \ell^{\infty}(X), -\infty \le \|\psi((x_n), (y_n))\|_{\infty} \le \|(x_n) + (y_n)\|_{\infty}$$
.

- (2) $(\Phi(x_n, y_n) 1) \le (x_n + y_n)$ for all $(x_n), (y_n) \in \ell^{\infty}(X)$.
- (3) $\psi((x_n), (y_n)) = \psi((y_n), (x_n))$ for all $(x_n), (y_n) \in \ell^{\infty}(X)$.
- (4) $\psi((x_n), (-x_n)) = (0, 0, ..., 0, ...)$ for all $(x_n) \in \ell^{\infty}(X)$.

Proof.

(1)
$$-\infty \le \|\psi((x_n), (y_n))\|_{\infty} = \sup_{n} \|\Phi(x_n, y_n)\| \le \sup_{n} \|x_n + y_n\| = \|(x_n + y_n)\|_{\infty}$$

(2)
$$(\Phi(x_n, y_n) 1) = ((\sup\{\lambda \in \mathbb{R} : \lambda 1 \le x_n + y_n\}) 1) \le (x_n + y_n)$$

(3)

$$\psi((x_n), (y_n)) = (\Phi(x_n, y_n)) = (\sup\{\lambda \in \mathbb{R} : \lambda 1 \le x_n + y_n\})$$

$$= (\sup\{\lambda \in \mathbb{R} : \lambda 1 \le y_n + x_n\}) = \psi((y_n), (x_n)).$$

(4)
$$\psi((x_n), (-x_n)) = (\sup \{\lambda \in \mathbb{R} : \lambda 1 \le x_n - x_n\}) = (0, 0, ..., 0, ...).$$

A function $f : \ell^{\infty}(X) \to \ell^{\infty}(\mathbb{R})$ is said to be increasing, whenever $(x_n), (y_n) \in \ell^{\infty}(X), [(x_n) \ge (y_n) \Rightarrow f((x_n)) \ge f((y_n))]$, and plus-homogeneous if

$$(f((x_n) + (\alpha_n 1)) = f((x_n)) + (\alpha_n) \text{ for all } (x_n) \in \ell^{\infty}(X) \text{ and } (\alpha_n) \in \ell^{\infty}(\mathbb{R})).$$

A function $f: \ell^{\infty}(X) \to \ell^{\infty}(\mathbb{R})$ is called topical if this function is increasing and plus-homogeneous.

Lemma 9. The function $\psi_{(y_n)}$ defined by (2.2) is topical.

Proof. (1) Let $(x_n), (z_n) \in \ell^{\infty}(X)$ with $(x_n) \leq (z_n)$. Then, since $x_n \leq z_n$ for all $n, \{\lambda \in \mathbb{R} : \lambda 1 \leq x_n + y_n\} \subset \{\lambda \in \mathbb{R} : \lambda 1 \leq z_n + y_n\}$. Hence,

$$\psi_{(y_n)}((x_n)) = \psi((x_n), (y_n))$$

= $(\sup\{\lambda \in \mathbb{R} : \lambda 1 \le x_n + y_n\})$
 $\le (\sup\{\lambda \in \mathbb{R} : \lambda 1 \le z_n + y_n\})$
= $\psi_{(y_n)}((z_n)).$

(2) Let $(x_n) \in \ell^{\infty}(X)$ and $(\alpha_n) \in \ell^{\infty}(\mathbb{R})$ be arbitrary. Then

$$\psi_{(y_n)}((x_n) + (\alpha_n)1) = \psi((x_n) + (\alpha_n)1, (y_n))$$

= $(\sup\{\lambda \in \mathbb{R} : \lambda 1 \le x_n + \alpha_n 1 + y_n\})$
= $(\sup\{\lambda \in \mathbb{R} : (\lambda - \alpha_n)1 \le x_n + y_n\}).$

Let $\lambda - \alpha_n = \beta$. Then $\lambda = \beta + \alpha_n$. Hence

$$\psi_{(y_n)}((x_n) + (\alpha_n)1) = (\sup\{\beta + \alpha_n \in \mathbb{R} : \beta 1 \le x_n + y_n\})$$

= $(\sup\{\beta \in \mathbb{R} : \beta 1 \le x_n + y_n, \}) + (\alpha_n)$
= $\psi((x_n), (y_n)) + (\alpha_n)$
= $\psi_{(y_n)}((x_n)) + (\alpha_n).$

Theorem 10. The function $\psi_{(y_n)}$ is Lipschitz continuous in the ℓ^{∞} norm.

Proof. Let $(x_n), (z_n) \in \ell^{\infty}(X)$ be arbitrary. Since $|x_n - z_n| \leq ||(x_n) - (z_n)||_{\infty} 1$, it follows that

$$z_n - \|(x_n) - (z_n)\|_{\infty} \le x_n \le z_n + \|(x_n) - (z_n)\|_{\infty}.$$

In view of (Lemma 9) we have

$$\psi_{(y_n)}((z_n)) - (\|(x_n) - (z_n)\|_{\infty} 1) \le \psi_{(y_n)}((x_n)) \le \psi_{(y_n)}((z_n)) + (\|(x_n) - (z_n)\|_{\infty} 1),$$

and hence

(2.3)
$$\left\|\psi_{(y_n)}((x_n)) - \psi_{(y_n)}((z_n))\right\|_{\infty} \le \left\|(x_n) - (z_n)\right\|_{\infty}.$$

Therefore, $\psi_{(y_n)}$ is Lipschitz continuous.

Corollary 11. The function ψ defined in (2.1) is continuous in the ℓ^{∞} norm.

Proof. It follows directly from (2.3). Now we prove one of the main results in this paper

Theorem 12. Let W be a closed downward subset of X and $(y_k^\circ) \in \ell^\infty(W)$. If $S = \{k \in \mathbb{N}, y_k^\circ \in bd(W)\} \neq \phi$, then, (a) $(y_n^\circ) \in bd(\ell^\infty(W))$. (b) $\Phi(w_k, -y_k^\circ) \leq 0$, for all $k \in S$ and all $(w_n) \in \ell^\infty(W)$.

Proof. (a) Let $(y_n^{\circ}) \in \ell^{\infty}(W)$ and $B(y_n^{\circ}, \epsilon)$ be any neighborhood of (y_n°) . Then if

$$B(y_n^{\circ}, \epsilon) = \{(x_n) \in \ell^{\infty}(X) : ||(x_n) - (y_n^{\circ})||_{\infty} < \epsilon\},\$$

it follows that for all n,

$$||x_n - y_n^{\circ}|| < ||(x_n) - (y_n^{\circ})||_{\infty} = \sup_n ||x_n - y_n^{\circ}|| < \epsilon.$$

So, for $k \in S$, $||x_k - y_k^{\circ}|| < \epsilon$. Since $y_k^{\circ} \in bd(W)$, any neighborhood of y_k° contains a point $u_k \in W$ and a point $z_k \notin W$. Now consider the sequence u given by, u =

 $(y_1^{\circ}, y_2^{\circ}, ..., y_{k-1}^{\circ}, u_k, y_{k+1}^{\circ}, ...) \in \ell^{\infty}(W) \text{ and, } z = (y_1^{\circ}, y_2^{\circ}, ..., y_{k-1}^{\circ}, z_k, y_{k+1}^{\circ}, ...) \notin \ell^{\infty}(W).$ Then,

$$\begin{aligned} \|u_k - y_k^{\circ}\| &< \epsilon \text{ and } \|z_k - y_k^{\circ}\| < \epsilon \Rightarrow \|u_k\| \le \|y_k^{\circ}\| + \epsilon \text{ and } \\ \|z_k - y_k^{\circ}\| &< \epsilon \Rightarrow \|z_k\| \le \|y_k^{\circ}\| + \epsilon \end{aligned}$$

and so

$$||u_k|| \le ||y_k^{\circ}|| + \epsilon \text{ and } ||z_k|| \le ||y_k^{\circ}|| + \epsilon.$$

Therefore, $||u||_{\infty}$, $||z||_{\infty} \le ||(y_n^{\circ})||_{\infty} + \epsilon < \infty$. Hence,

$$\begin{split} \phi &\neq B\left(y_n^{\circ}, \epsilon\right) \cap \ell^{\infty}(W) \supseteq \{u\} \\ \phi &\neq B\left(y_n^{\circ}, \epsilon\right) \cap \left(\ell^{\infty}(W)\right)^c \supseteq \{z\}, \end{split}$$

and $(y_n^{\circ}) \in bd(\ell^{\infty}(W))$.

(b) Let $(w_n) \in \ell^{\infty}(W)$ such that $\Phi(w_k, -y_k^{\circ}) = \sup\{\lambda \in \mathbb{R} : \lambda 1 \le w_k - y_k^{\circ}\} > 0$ for some $k \in S$. Then there exists $\lambda_{\circ} > 0$ such that $\lambda_{\circ} 1 \le w_k - y_k^{\circ}$. This means that $\lambda_{\circ} 1 + y_k^{\circ} \le w_k$. Since W is a downward set and $w_k \in W$, it follows that $\lambda_{\circ} 1 + y_k^{\circ} \in W$. Therefore, by (Proposition 3.1 in [4]) we have, $y_k^{\circ} \in \operatorname{int}(W)$. This is a contradiction.

Corollary 13. Let W be a closed downward subset of X, $y_n^{\circ} \in bd(W)$ for all n. Then $\psi((w_n), (-y_n^{\circ})) \leq 0$, for all $(w_n) \in \ell^{\infty}(W)$.

Proof. Since $y_n^{\circ} \in bd(W)$, for all n, by Theorem 12, $\Phi(w_n, -y_n^{\circ}) < 0$. Hence $\psi((w_n), (-y_n^{\circ})) \leq 0$.

In the following two theorems we give some characterizations of the downward set $\ell^{\infty}(W)$ in terms of the function ψ .

Theorem 14. Let W be a subset of X and ψ be the coupling function of (2.1). Then the following are equivalent:

(1) $\ell^{\infty}(W)$ is a downward set.

(2) For each $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$, there exist $\phi \neq S \subseteq \mathbb{N}$, $\Phi(w_k, -x_k) < 0, \forall k \in S \text{ and } (w_n) \in \ell^{\infty}(W)$.

(3) For each $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$, there exists $(L_n) \in \ell^{\infty}(X)$ and $\phi \neq S \subseteq \mathbb{N}$,

$$\Phi(w_k, L_k) < 0 \le \Phi(x_k, L_k), \ \forall k \in S \ and \ (w_n) \in \ell^{\infty}(W).$$

Proof. (1) \Rightarrow (2) Let $\ell^{\infty}(W)$ be downward set and $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$. Suppose that for all $n \in \mathbb{N}$, $\Phi(w_n, -x_n) \geq 0$. Then by Proposition 8(2), $0 \leq (\Phi(w_n, -x_n) 1) \leq (w_n - x_n)$. Since W is downward set and $w_n \in W$, it follows that for all $n, x_n \in W$, which is a contradiction.

Hence $S = \{k, \Phi(w_k, -y_k^{\circ}) < 0\} \neq \phi$.

(2) \Rightarrow (3). Assume that (2) holds and $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$ is arbitrary. Then, by hypothesis, there exists $\phi \neq S \subseteq \mathbb{N}$, such that $\Phi(w_k, -x_k) < 0, \forall k \in S$. Now, let $(L_n) = (-x_n) \in \ell^{\infty}(X)$. Using proposition 8 (2), we have for each $(w_n) \in \ell^{\infty}(W)$ and $k \in S$.

$$\Phi(w_k, L_k) = \Phi(w_k, -x_k) < 0 = \Phi(x_k, -x_k) = \Phi(x_k, L_k)$$

(3) \Rightarrow (1). Suppose that $\ell^{\infty}(W)$ is not a downward set. Then there exists $(w_n^{\circ}) \in \ell^{\infty}(W)$ and $(x_n^{\circ}) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$ with $(x_n^{\circ}) \leq (w_n^{\circ})$. Using (3), there exists $(L_n) \in \ell^{\infty}(X)$ and $\phi \neq S \subseteq \mathbb{N}$, such that for all $k \in S$.

(2.4)
$$\Phi\left(w_{k}^{\circ}, L_{k}\right) < 0 \leq \Phi\left(x_{k}^{\circ}, L_{k}\right)$$

But ψ is increasing, we have $\psi_{(L_n)}((x_n^\circ)) \leq \psi_{(L_n)}((w_n^\circ))$. This mean

$$\Phi\left(x_{n}^{\circ}, L_{n}\right) \leq \Phi\left(w_{n}^{\circ}, L_{n}\right),$$

for all $n \in \mathbb{N}$ and this is a contradiction to (2.4).

Theorem 15. Let ψ be the function defined by (2.1). Then for a subset W of X the following are equivalent:

- (1) $\ell^{\infty}(W)$ is a closed downward subset of $\ell^{\infty}(X)$.
- (2) $\ell^{\infty}(W)$ is downward, and for each $(x_n) \in \ell^{\infty}(X)$ the set

$$H = \{(\lambda_n) \in \ell^{\infty}(\mathbb{R}) : (x_n + \lambda_n 1) \in \ell^{\infty}(W)\}$$

is closed in $\ell^{\infty}(\mathbb{R})$.

(3) For each $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$, there exists $(L_n) \in \ell^{\infty}(X)$ and $\phi \neq S \subseteq \mathbb{N}$, such that,

$$\Phi(w_k, L_k) < 0 < \Phi(x_k, L_k),$$

for all $(w_n) \in \ell^{\infty}(W)$ and for all $k \in S$.

(4) For each $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$, there exists $(L_n) \in \ell^{\infty}(X)$ and $\phi \neq S \subseteq \mathbb{N}$ such that,

$$\sup_{(w_n)\in\ell^{\infty}(W)}\Phi(w_k,L_k)<\Phi(x_k,L_k).$$

Proof. (1) \Rightarrow (2). Let $(x_n) \in \ell^{\infty}(X)$, $(\lambda_n^k) \in \ell^{\infty}(\mathbb{R})$, $(x_n + \lambda_n^k 1) \in \ell^{\infty}(W)$ (k = 1, 2, ...) and $(\lambda_n^k) \longrightarrow (\lambda_n)$ in ℓ^{∞} norm. Then,

$$\begin{aligned} \left\| (x_n + \lambda_n^k 1) - (x_n + \lambda_n 1) \right\|_{\infty} &= \left\| (\lambda_n^k - \lambda_n) 1 \right\|_{\infty} \\ &= \sup_n \left| \lambda_n^k - \lambda_n \right| \longrightarrow 0 \text{ as } k \longrightarrow +\infty. \end{aligned}$$

Since $(x_n + \lambda_n^k 1) \in \ell^{\infty}(W)$ and $\ell^{\infty}(W)$ is closed, it follows that $(x_n + \lambda_n 1) \in \ell^{\infty}(W)$. Hence, $(\lambda_n) \in H$ and H is a closed subset of $\ell^{\infty}(\mathbb{R})$.

 $(2) \Rightarrow (3)$. Let $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$ be arbitrary. We claim that there exists $(\lambda_n^{\circ}) > (0)$ such that $(-\lambda_n^{\circ}) \notin H$. Indeed, if $(-\lambda_n) \in H$ for all $(\lambda_n) > (0, 0, ..., 0, ...)$. Then due to the closedness of H, we have $(0, 0, ..., 0...) \in H$. This implies $(x_n) = (x_n + 0 \cdot 1) \in \ell^{\infty}(W)$. This is a contradiction.

Now, let $(L_n) = (\lambda_n^{\circ} 1 - x_n) \in \ell^{\infty}(X)$. We show that, $\exists \phi \neq S \subseteq \mathbb{N}$ such that $\Phi(w_k, L_k) < 0$, for all $k \in S$ and for all $(w_n) \in \ell^{\infty}(W)$. Assume that there exists $(w_n^{\circ}) \in \ell^{\infty}(W)$ such that $\psi((w_n^{\circ}), (L_n)) \ge (0)$. Then by proposition 8 (2), for all n,

$$0 \le \Phi(w_n^\circ, L_n) 1 \le w_n^\circ + L_n$$

and so $w_n^{\circ} \geq -L_n = x_n - \lambda_n^{\circ} 1$. Since $\ell^{\infty}(W)$ is downward and $(w_n^{\circ}) \in \ell^{\infty}(W)$, it follows that $(x_n - \lambda_n^{\circ} 1) \in \ell^{\infty}(W)$, and consequently $-\lambda_n \in H$. This is a contradiction. Hence, $\exists S \neq \phi$,

$$\Phi(w_k, L_k) < 0$$
 for all $(w_n) \in \ell^{\infty}(W)$, for all $k \in S$.

On the other hand, for all $k \in S$

$$\Phi(x_k, L_k) = \sup\{\lambda \in \mathbb{R} : \lambda 1 \le x_k + L_k\} \\ = \sup\{\lambda \in \mathbb{R} : \lambda 1 \le x_k + \lambda_k^\circ 1 - x_k = \lambda_k^\circ 1\} \\ = \sup\{\lambda \in \mathbb{R} : (\lambda - \lambda_k^\circ) 1 \le 0\}.$$

Let $\lambda - \lambda_k^{\circ} = \alpha_k$. Then $\lambda = \lambda_k^{\circ} + \alpha_k$. Hence

$$\Phi(w_k, L_k) = \sup\{\alpha_k + \lambda_k^{\circ} \in \mathbb{R} : \alpha_k 1 \le 0\}$$

=
$$\sup\{\alpha_k \in \mathbb{R} : \alpha_k 1 \le 0\} + \lambda_k^{\circ}$$

=
$$\lambda_k^{\circ} > 0.$$

(3) \Rightarrow (4). By (3) for each $(x_n) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$, there exists $(L_n) \in \ell^{\infty}(X)$ and $\phi \neq S \subseteq \mathbb{N}$

$$\Phi(w_k, L_k) < 0 < \Phi(x_k, L_k),$$

for all $(w_n) \in \ell^{\infty}(W)$). Then

$$\sup_{(w_n)\in\ell^{\infty}(W)}\Phi(w_k,L_k)<\Phi(x_k,L_k), \text{ for all } k\in S.$$

(4) \Rightarrow (1). Suppose that $\ell^{\infty}(W)$ is not a downward set. Then there exists $(w_n^{\circ}) \in \ell^{\infty}(W)$ and $(x_n^{\circ}) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$ with $(x_n^{\circ}) \leq (w_n^{\circ})$. By hypothesis, there exists $(L_n) \in \ell^{\infty}(X)$ and $\phi \neq S \subseteq \mathbb{N}$,

$$\sup_{(w_n)\in\ell^{\infty}(W)}\Phi(w_k,L_k)<\Phi(x_k^{\circ},L_k),$$

for all $k \in S$. Since $\psi(., (L_n)) = \psi_{(L_n)}(.)$ is increasing, it follows that

$$\psi((x_n^{\circ}), (L_n)) \le \psi((w_n^{\circ}), (L_n))$$

Hence, for all $k \in S$

$$\Phi(x_k^{\circ}, L_k) \le \sup_{(w_n) \in \ell^{\infty}(W)} \Phi(w_k, L_k) < \Phi(x_k^{\circ}, L_k)$$

This is a contradiction. Hence, $\ell^{\infty}(W)$ is a downward set.

Finally, assume that $\ell^{\infty}(W)$ is not closed. Then there exists a sequence $\{w_n^m\}_{m\geq 1} \subset \ell^{\infty}(W)$ and $(x_n^\circ) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$ such that

$$||w_n^m - x_n^\circ||_{\infty} \longrightarrow 0 \text{ as } m \longrightarrow +\infty.$$

Since $(x_n^{\circ}) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$, by hypothesis, there exists $(L_n) \in \ell^{\infty}(X)$ and $\phi \neq S \subseteq \mathbb{N}$, such that

$$\sup_{(w_n)\in\ell^{\infty}(W)}\Phi(w_k,L_k)<\ \Phi(x_k^\circ,L_k),$$

for all $k \in S, \forall (w_n) \in \ell^{\infty}(W)$. Hence

$$\Phi((w_k^m), (L_k)) \le \sup_{(w_n) \in \ell^{\infty}(W)} \Phi((w_k), (L_k)),$$

for all $m, \forall k \in S$. By continuity of $\psi_{L_n}(., (L_n)) = (\Phi_{L_n}(., L_n))$ it follows that

$$\Phi((x_k^\circ), (L_k)) \le \sup_{(w_n) \in \ell^\infty(W)} \Phi((w_k), (L_k)),$$

for all $k \in S$. This is a contradiction.

3. Best approximation of $\ell^{\infty}(W)$ in $\ell^{\infty}(X)$

A subset W in a Banach space X is said to be proximinal if there corresponds to each $x \in X$ at least one $w \in W$ such that $||x - w|| = \operatorname{dist}(x, W) = \operatorname{inf}_{z \in W} ||(x - z)||$. A necessary condition for proximinality of a subset W of a normed linear space X is closeness (see, [2]). The set (possibly empty) of best approximations to x from W is defined by: $P_W(x) = \{w \in W : ||x - w|| = d(x, W)\}$.

In this section we prove that if W is a closed downward set in X, then $\ell^{\infty}(W)$ is proximinal in $\ell^{\infty}(X)$ and the set $P_{\ell^{\infty}(W)}((x_n))$ of all of points of best approximation of the point $x = (x_n) \in \ell^{\infty}(X)$ in $\ell^{\infty}(W)$ has minimal element.

Theorem 16. Let W be a closed downward subset of X. Then $\ell^{\infty}(W)$ is proximinal in $\ell^{\infty}(X)$.

Proof. Let $(x_n^{\circ}) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$ be arbitrary and

$$d((x_n^{\circ}), \ell^{\infty}(W)) = \inf_{\substack{(w_n) \in \ell^{\infty}(W) \\ (w_n) \in \ell^{\infty}(W)}} \|(x_n^{\circ}) - (w_n)\|_{\infty}$$
$$= \inf_{\substack{(w_n) \in \ell^{\infty}(W) \\ n}} \sup_{n} \|x_n^{\circ} - w_n\| = r > 0.$$

This implies for all $\epsilon > 0$, there exists $(w_{n\epsilon}) \in \ell^{\infty}(W)$ such that

$$\left\| (x_n^{\circ}) - (w_{n\epsilon}) \right\|_{\infty} < r + \epsilon.$$

Consequently using (1.2) we get

$$B((x_n^{\circ}), r+\epsilon) = \left\{ \begin{array}{l} (w_{n\epsilon}) \in \ell^{\infty}(X) : ||x_n^{\circ} - w_{n\epsilon}|| \leq \sup_n ||x_n^{\circ} - w_{n\epsilon}|| \\ = ||(x_n^{\circ}) - (w_{n\epsilon})||_{\infty} \leq r+\epsilon \end{array} \right\}$$
$$= \left\{ (w_{n\epsilon}) \in \ell^{\infty}(X) : x_n^{\circ} - (r+\epsilon) \leq w_{n\epsilon} \leq x_n^{\circ} + (r+\epsilon) \right\}.$$

If $(w_n^\circ) = (x_n^\circ - r1)$, then

$$||(x_n^{\circ}) - (w_n^{\circ})||_{\infty} = \sup_n ||x_n^{\circ} - w_n^{\circ}|| = \sup_n ||r|| = r.$$

Hence $(w_n^{\circ} - \epsilon 1) = (x_n^{\circ} - r1 - \epsilon 1) \leq (w_{n\epsilon})$. Since W is closed downward set and $(w_{n\epsilon}) \in \ell^{\infty}(W)$, it follows that $(w_n^{\circ} - \epsilon 1) \in \ell^{\infty}(W)$, for all $\epsilon > 0$ and $w_n^{\circ} \in W$. So $(w_n^{\circ}) \in P_{\ell^{\infty}(W)}((x_n^{\circ}))$.

Remark 17. We prove that for each $(x_n^{\circ}) \in \ell^{\infty}(X) \setminus \ell^{\infty}(W)$, the set $P_{\ell^{\infty}(W)}((x_n^{\circ}))$ contains $(w_n^{\circ}) = (x_n^{\circ} - r1)$ with $r = d((x_n^{\circ}), \ell^{\infty}(W))$. If $(x_n^{\circ}) \in \ell^{\infty}(W)$, then $(w_n^{\circ}) = (x_n^{\circ})$ and $P_{\ell^{\infty}(W)}((x_n^{\circ})) = \{(w_n^{\circ})\}$.

Theorem 18. Let W be a closed downward subset of X and $(x_n^{\circ}) \in \ell^{\infty}(X)$.

Then there exists the least element $(w_n^{\circ}) = \min P_{\ell^{\infty}(W)}((x_n^{\circ}))$ of the set $P_{\ell^{\infty}(W)}((x_n^{\circ}))$, namely, $(w_n^{\circ}) = (x_n^{\circ} - r1)$, where $r = d((x_n^{\circ}), \ell^{\infty}(W))$.

Proof. If $(x_n^{\circ}) \in \ell^{\infty}(W)$, then the result holds. Assume that $(x_n^{\circ}) \notin \ell^{\infty}(W)$ and $(w_n^{\circ}) = (x_n^{\circ} - r1)$. Then by (Remark 17), we have

$$(w_n^\circ) = (x_n^\circ - r1) \in P_{\ell^\infty(W)}((x_n^\circ)).$$

Since applying (1.2) and the equality $||(x_n^\circ) - (w_n)||_{\infty} = r$, we get

$$B((x_n^{\circ}), r) = \{(x_n) \in \ell^{\infty}(X) : ||(x_n) - (x_n^{\circ})||_{\infty} \le r\}$$

= $\{(x_n) \in \ell^{\infty}(X) : \sup_n ||x_n - x_n^{\circ}|| \le r\}.$

Consequently for all n,

$$||x_n - x_n^{\circ}|| \le ||(x_n) - (x_n^{\circ})||_{\infty} = \sup_n ||x_n - x_n^{\circ}|| \le r,$$

and using (1.1) we have

$$-r1 \le x_n - x_n^{\circ} \le r1 \Rightarrow x_n^{\circ} - r1 \le x_n \le x_n^{\circ} + r1.$$

Hence, $w_n^{\circ} = x_n^{\circ} - r1 \leq x_n$, and so $(w_n^{\circ}) \leq (x_n)$ for all $(x_n) \in B((x_n^{\circ}), r)$, and this implies (w_n°) is the least element of the closed ball $B((x_n^{\circ}), r)$.

Now, let $(w_n) \in P_{\ell^{\infty}(W)}(x_n^{\circ})$ be arbitrary. Then, $||(x_n^{\circ}) - (w_n)|| = r$ and so $(w_n) \in B((x_n^{\circ}), r)$. Therefore, $(w_n) \ge (w_n^{\circ})$. Hence, (w_n°) is the least element of the set $P_{\ell^{\infty}(W)}(x_n^{\circ})$.

Corollary 19. Let W be a closed downward subset of X, $(x_n^{\circ}) \in \ell^{\infty}(X)$ and $(w_n^{\circ}) = \min P_{\ell^{\infty}(W)}(x_n^{\circ})$. Then, $(w_n^{\circ}) \leq (x_n^{\circ})$.

Proof. Since $(w_n^{\circ}) = \min P_{\ell^{\infty}(W)}(x_n^{\circ})$. Then by Theorem 18, we get $(w_n^{\circ}) = (x_n^{\circ} - r1) \leq (x_n^{\circ})$.

Corollary 20. Let W be a closed downward subset of X and $(x_n) \in \ell^{\infty}(X)$ be arbitrary. Then $d((x_n), \ell^{\infty}(W)) = \min\{\lambda \ge 0, (x_n - \lambda 1) \in \ell^{\infty}(W)\}.$

Proof. Let $A = \{\lambda \ge 0, (x_n - \lambda 1) \in \ell^{\infty}(W)\}$. If $(x_n) \in \ell^{\infty}(W)$, then $(x_n - 0.1) = (x_n) \in \ell^{\infty}(W)$, and so $\min(A) = 0 = d((x_n), \ell^{\infty}(W))$. Suppose that $(x_n) \notin \ell^{\infty}(W)$. Then $r = d((x_n), \ell^{\infty}(W)) > 0$. Let $\lambda > 0$ be arbitrary such that $(x_n - \lambda 1) \in \ell^{\infty}(W)$. Thus, we have

 $\lambda = \|(\lambda 1)\|_{\infty} = \|(x_n - x_n - \lambda 1)\|_{\infty} = \sup_{n} \|x_n - (x_n - \lambda 1)\| \ge d((x_n), \ell^{\infty}(W)) = r.$

Since by (Theorem 18), $(x_n - r_1) \in \ell^{\infty}(W)$, it follows that $r \in A$. Hence $\min(A) = r$.

References

- D. Fang, X. Luo, C. Li, Non linear Simultaneous approximation in complete Lattice Banach spaces, Taiw. J. Math., 12, 9 (2008), 2373-2385.
- [2] F. Girosi, T. Poggio, Networks and the Best Approximation Property, Biological Cybernetics, 63 (1990), 169-176.
- [3] J. E. Martinez-Legaz, A. M. Rubinov and I. Singer, Downward sets and their separation and approximation properties, J. Global Optim. 23(2002), 111-137.
- [4] S. Modarres, M. Dehghani, New results for best approximation on Banach lattices, Nonlinear Analysis, 70 (2009), 3342-3347.
- [5] H. Mohebi, A. M. Rubinov, Best approximation by downward sets with application, Anal. Theory Appl. 22, 1 (2006), 20-40.
- [6] A. M. Rubinov, I. Singer, Best approximation by normal and conormal sets, J. Approximation Theory, 107(2000), 212-243.
- [7] A. M. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Boston, 2000.
- [8] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin Heidelberg New York, 1974.
- [9] B. Z. Vulikh, Introduction to the theory of partially ordered vector spaces, Wolters-Noordhoff, Groningen, 1967.

Accepted: 26.04.2017