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Abstract. This paper deals with the dynamics of almost periodic Nicholson’s blowflies
model with nonlinear density-dependent mortality. Prior to the main results, we prove
the boundedness and extinction of the solutions for the addressed model. By applying
Shauder’s fixed point theorem, we establish sufficient conditions for the existence of
almost periodic positive solution. Under less restrictive assumptions, the exponential
stability is derived by means of the Liapunov functional method. The reported results
give an affirmative answer to the problem raised by L. Berezansky.
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1. Introduction

In [1], Gurney proposed the following delay differential equation

(1.1) x′(t) = −ax(t) + px(t− τ)e−βx(t−τ)

to describe the population of the Australian sheep-blowfly and to agree with
the experimental data obtained by Nicholson in [2]. Equation (1.1) describes
Nicholson’s data of blowfly and thus it has been referred to as the Nicholson’s
blowflies model. The theory of this model has made a substantial progress during
the last two decades [3-15]. Due to various seasonal effects of the environmental
factors in real life situation (e.g., seasonal effects of weather, food supplies,
mating habits, harvesting, etc.), researchers have found it rational and practical
to study the population models under periodic assumptions. The recent years
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have witnessed the appearance of many papers that studied non autonomous
differential equations with periodic coefficients of various versions of model (1.1);
see for instance [4,5,7,9,12].

New studies indicated that the consideration of population models with den-
sity dependent mortality will be more accurate at low densities. In his remark-
able paper [11], Berezansky has put forward an open problem about the dynam-
ical behaviors of Nicholson’s blowflies model with density-dependent mortality
of the form

(1.2) x′(t) = −M(x) + px(t− τ)e−βx(t−τ),

where M denotes the mortality term that might be expressed in the form ax
b+x

or a − be−x. Although the papers [16-22] have dealt with the permanence and
periodicity of solutions, they have provided insufficient outcomes to answer the
problem raised by Berezansky for model (1.2). The almost periodicity which is a
natural generalization of periodicity has been the object of many researchers in
the last years. Indeed, it has been encompassed to Nicholson’s model and thus
several results have been recently reported; see for instance the papers [23,24]
and the monograph [28] for more details.

Motivated by the above discussions, we consider the non-autonomous almost
periodic Nicholson’s blowflies model with density-dependent mortality term of
the form

(1.3) x′(t) = − a(t)x(t)

b(t) + x(t)
+ p(t)x(t− τ(t))e−β(t)x(t−τ(t)),

where a(t), b(t), β(t), p(t), τ(t) ∈ C(R,R+) and a(t), b(t), β(t), p(t), τ(t) are boun-
ded almost periodic functions. Due to biological significance, we restrict our at-
tention to positive solutions of equation (1.3). The initial condition of equation
(1.2) is x(t) = ϕ(t) > 0 for t ∈ [−τ , 0], τ = supt∈R τ(t), ϕ ∈ BC([−τ , 0], R+),
where BC([−τ , 0], R+) = {ϕ|ϕ : [−τ , 0] → R+ is bounded continuous function }.

In this paper, we provide sufficient conditions for the existence and exponen-
tial stability of almost periodic solution for model (1.3). Prior to the main re-
sults, we prove the boundedness and extinction for the addressed model. Unlike
previously obtained results such as those given in [23,24], we utilize Shauder’s
fixed point theorem to prove the existence result. In addition to this, the ex-
ponential stability has been proved under less restrictive assumptions. To the
best of our observation, no published paper has dealt with model (1.3) by the
implementation of these two distinctive features.

2. Preliminaries

For any bounded function f(t), we denote f = supt∈R f(t) and f = inft∈R f(t).
Therefore, in the remaining part of the paper, we assume that the bounded
almost periodic functions a(t), b(t), β(t), p(t), τ(t) satisfy 0 ≤ a ≤ a(t) ≤ a,
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0 ≤ b ≤ b(t) ≤ b, 0 ≤ β ≤ β(t) ≤ β, 0 < p ≤ p(t) ≤ p and 0 < τ ≤ τ(t) ≤ τ . In
what follows, we set forth some assertions that will be used throughout the rest
of the paper.

Definition 2.1 ([25]). Let u(t) : R → Rn be continuous in t, u(t) is said to be
almost periodic on R if, for any ε > 0,the set T (u, ε) = {δ : |u(t + δ) − u(t)| <
ε, t ∈ R} is relatively dense, i.e., for any ε > 0, it is possible to find a real
number l = l(ε) > 0, for any interval with length l(ε), for which there exists a
number δ = δ(ε) in this interval such that |u(t+ δ)− u(t)| < ε, for all t ∈ R.

Definition 2.2 ([25]). Let x ∈ R and Q(t) be n× n continuous matrix defined
on R. The linear system

(2.1) x′(t) = Q(t)x(t)

is said to admit an exponential dichotomy on R if there exist positive constants
k, α, projection P and the fundamental solution matrix X(t) of (2.1) satisfying

∥X(t)PX−1(s)∥ ≤ ke−α(t−s) for t ≥ s

∥X(t)(I − P )X−1(s)∥ ≤ ke−α(s−t) for t ≤ s.

Definition 2.3 ([27]). Let x̃(t) be an almost periodic solution of Eq. (1.3), x(t)
be another solution of Eq. (1.3). The solution x(t) is said to be exponentially
convergent to x̃(t) as t → +∞ if there exist constants λ > 0,K > 0 such that
|x(t)− x̃(t)| ≤ Ke−λt, for all t > 0.

Lemma 2.4 ([25]). If the linear system (2.1) admits an exponential dichotomy,
then the almost periodic system

(2.2) x′(t) = Q(t)x(t) + g(t)

has a unique almost periodic solution x(t), and

x(t) =

∫ t

−∞
X(t)PX−1(s)g(s)ds−

∫ +∞

t
X(t)(I − P )X−1(s)g(s)ds.

Lemma 2.5. Let ci(t) be almost periodic function on R and

M [ci] = lim
T→+∞

1

T

∫ t+T

t
ci(s)ds > 0, i = 1, 2, . . . , n.

Then, the linear system

x′(t) = diag(−c1(t),−c2(t), . . . ,−cn(t))x(t)

admits an exponential dichotomy on R.

Lemma 2.6. Every solution of equation (1.3) is positive.
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Proof. Let x(t) be any solution of equation (1.3) with initial condition x(t) =
ϕ(t) > 0 for t ∈ [−τ , 0]. We claim that

(2.3) x(t) > 0, for all t > 0.

Suppose the claim (2.3) is not true, then there must exist t1 ∈ (0,+∞) such
that x(t1) = 0, x′(t1) ≤ 0 and x(t) > 0 for t ∈ [−τ , t1). From (1.3), we have

x′(t1) = − a(t1)x(t1)

b(t1) + x(t1)
+ p(t1)x(t1 − τ(t1))e

−β(t1)x(t1−τ(t1))

= p(t1)x(t1 − τ(t1))e
−β(t1)x(t1−τ(t1)).(2.4)

Since x(t1 − τ(t1)) > 0, then it follows from (2.4) that x′(t1) > 0, which contra-
dicts x′(t1) ≤ 0. Therefore, the claim (2.3) is true. The proof is complete.

Schauder fixed point theorem is an important tool in our proof.

Lemma 2.7 ([26]). (Shauder’s fixed point theorem) Let Ω be a closed convex
subset of Banach space X, A : Ω → Ω be a continuous operator such that AΩ
is relatively compact. Then the operator A has at least one fixed point in Ω.

3. Boundedness and extinction of solutions

Let m = p
βe and H = mb

a−m . We make the assumption:

(C1) a > m.

Theorem 3.1. Let (C1) hold. Then, every solution of equation (1.3) is bounded.

Proof. Let x(t) be any solution of equation (1.3) with initial condition x(t) =
ϕ(t) > 0 for t ∈ −[τ , 0]. By Lemma 2.6, we know that x(t) > 0, for all t > 0.

Now, we prove that x(t) is bounded.
Suppose x(t) is unbounded, then there exists t∗ > 0 such that x(t′) > H,

and there also exists t > 0 satisfying 0 < t < t∗, x(t) < x(t∗). From (1.3), we
have

x′(t∗) = −a(t
∗)x(t∗)
b(t∗)

+ p(t∗)x(t∗ − τ(t∗))e−β(t∗)x(t∗−τ(t∗))

≤ − ax(t∗)

b+ x(t∗)
+ px(t∗ − τ(t∗))e−βx(t∗−τ(t∗)).(3.1)

It is clear that the function f(u) = ue−βu, u ∈ [0,+∞) reaches its maximum
1
βe at u = 1

β . Then, we get x(t∗ − τ(t∗))e−βx(t∗−τ(t∗)) ≤ 1
βe . Thus, (3.1) implies

that

(3.2) x′(t∗) ≤ − ax(t∗)

b+ x(t∗)
+ p

1

βe
.
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Note that the function g(u) = au
b+u is strictly increasing on u ∈ (0,+∞). Since

x(t∗) > H, then we have g(x(t∗)) > g(H), that is

(3.3)
ax(t∗)

b+ x(t∗)
>

aH

b+H
.

By (3.2) and (3.3), we get

x′(t∗) < − aH

b+H
+ p

1

βe
= 0.

Let x(t̂) = maxt≤t≤t∗ . Since x(t̃) < x(t∗) and x′(t∗) < 0, then it follows that

t̃ < t̂ < t∗ and x(t̂) > x(t∗). Hence we have

(3.4) x′(t̂) = 0.

On the other hand, from (1.3), we get

x′(t̂) = − a(t̂)x(t̂)

b(t̂) + x(t̂)
+ p(t̂)x(t̂− τ(t̂))e−β(t̂)x(t̂)x(t̂−τ(t̂))

≤ −ax(t̂)(t̂)
b+ x(t̂)

+ px(t̂− τ(t̂))e−βx(t̂−τ(t̂))

≤ − ax(t̂)

b+ x(t̂)
+ p

1

βe

< − ax(t∗)

b+ x(t∗)
+ p

1

βe

− aH

b+H
+ p

1

βe
= 0,

which contradicts (3.4). Therefore, x(t) is bounded. The proof is complete.

Let L > H, we define UL = {ϕ|ϕ ∈ BC([−τ , 0],R+), 0 < ϕ(t) < L, t ∈
[−τ , 0]}.

Theorem 3.2. Let (C1) hold. Then every solution x(t) of equation (1.3) with
the initial function ϕ ∈ UL satisfies

0 < x(t) < L, for all t > 0.

Proof. Let x(t) be any solution of equation (1.3) with initial function ϕ ∈ UL.
For t ∈ [−τ , 0], we have 0 < x(t) = ϕ(t) < L. By Lemma 2.6, we have x(t) > 0,
for all t > 0. Now, we claim that

(3.5) x(t) < L, for all t > 0.
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Suppose that (3.5) is not true. Then there must exist a t1 ∈ (0,+∞) such that
x(t1) = L, x′(t) ≥ 0 and 0 < x(t) < L for t ∈ (0, t1). From (1.3), we have

x′(t1) = − a(t1)x(t1)

b(t1) + x(t1)
+ p(t1)x(t1 − τ(t1))e

β(t1)x(t1−τ(t1))

= − a(t1)L

b(t1) + L
+ p(t1)x(t1)x(t1 − τ(t1))e

−β(t1)x(t1−τ(t1))

≤ − aL

b+ L
+ px(t1 − τ(t1))e

−βx(t1−τ(t1))

≤ − aL

b+ L
+ p

1

βe
& < − aH

b+H
+ p

1

βe
= 0,

which contradicts x′(t1) ≥ 0. So the claim (3.5) is true. The proof is complete.

Furthermore, we assume that

(C2)
a− pb

p
> H.

Theorem 3.3. Assume that (C1) and (C2) hold. Let L be a positive constant

satisfying H < L < a−pb
p . Then every solution x(t) of equation (1.3) with initial

function ϕ ∈ UL satisfies

x(t) → 0 as t→ +∞.

That is , every solution x(t) with initial function ϕ ∈ UL tends to extinction.

Proof. Let x(t) be any solution of equation (1.3) with the initial function ϕ ∈
UL. For t ∈ [−τ , 0], we have 0 < x(t) = ϕ(t) < L. By Theorem 2, we know that

0 < x(t) < L for all t > 0. From H < L < a−pb
p , it follows that a > pb + pL.

Consider the function F (x) = pbeτx + bx + Lx + pL − a, x ∈ [0, 1]. Since
F (0) = pb + pL − a < 0, then there exists a constant λ ∈ (0, 1) such that
F (λ) < 0. That is

(3.6) pbeλτ + λb+ λL+ pL− a < 0

Let δ(t) = x(t)eλt, then we have

δ′(t) = x′(t)eλt + λx(t)eλt

= [− a(t)x(t)

b(t) + x(t)
+ p(t)x(t− τ(t))e−β(t)x(t−τ(t)) + λx(t)]eλt.(3.7)

Let M = L+ sup−τ≤t≤0 ϕ(t). For all t ∈ [−τ , 0], we have

0 < δ(t) = x(t)eλt = ϕ(t)eλt ≤ ϕ(t) ≤ − sup
−τ≤t≤0

ϕ(t) < L+ sup
−τ≤t≤0

ϕ(t) =M.
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For all t ∈ (0,+∞), it is obvious that δ(t) = x(t)eλt > 0. Now, we claim that

(3.8) δ(t) < M for all t > 0.

Suppose that (3.8) is not true. Then, there must exist a t∗ > 0, such that
δ(t∗) =M, δ′(t∗) ≥ 0 and δ(t) < M for t < t∗. It follows from (3.7) that

0 ≤ δ′(t∗) = [− a(t∗)x(t∗)

b(t∗) + x(t∗)

+ p(t∗)x(t∗ − τ(t∗))e−β(t∗)x(t∗−τ(t∗)) + λx(t∗)]eλt
∗

≤ [− ax(t∗)

b+ x(t∗)
+ px(t∗ − τ(t∗)) + λx(t∗)]eλt

∗

=

−ax(t∗)eλt∗ + pbx(t∗ − τ(t∗))eλt
∗
+ px(t∗ − τ(t∗))x(t∗)eλt

∗

+λbx(t∗)eλt
∗
+ λx2(t∗)eλt

∗

b+ x(t∗)

=

−aδ(t∗) + pbx(t∗ − τ(t∗))eλ(t
∗−τ(t∗)) + px(t∗

−τ(t∗))δ(t∗) + λbδ(t∗) + λx(t∗)δ(t∗)

b+ x(t∗)
(3.9)

=
−aM + pbδ(t∗ − τ(t∗))eλτ(t

∗) + px(t∗ − τ(t∗))M + λbM + λx(t∗)M

b+ x(t∗)

<
−aM + pbMeλτ + pLM + λbM + λLM

b+ x(t∗)

=
M

b+ x(t∗)
(−a+ pbeλτ + pL+ λb+ λL)

Thus, (3.9) implies −a + pbeλτ + pL + λb + λL > 0, which contradicts (3.6).
Therefore (3.8) is true. Hence, δ(t) = x(t)eλt < M , for all t > 0. That is

0 < x(t) < Me−λt, for all t > 0.

which implies that x(t) → 0 as t→ +∞. The proof is complete.

4. Existence of almost periodic positive solution

It is assumed that (C3) there exist two positive constants L2 > L1 ≥ 1
β , and a

bounded positive almost periodic function γ(t) ∈ C(R,R+) with γ > 0, satisfy-
ing the following inequalities

sup
t∈R

{− a(t)L1

b(t) + L1
+ γ(t)L2 +

p(t)

β(t)

l

e
} ≤ γL2

and

inf
t∈R,v∈[L1,L2]

{− a(t)L2

b(t) + L2
+ γ(t)L1 + p(t)ve−βv} ≥ γL1.
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Let X = {w(t) ∈ C(R,R), w(t) is almost periodic function }. For w ∈ X, we
define ∥w∥ = supt∈R |w(t)|, then X is a Banach space.

We note that equation (1.3) is equivalent to

(4.1) x′(t) = −γ(t)x(t)− a(t)x(t)

b(t) + x(t)
+ γ(t)x(t) + p(t)x(t− τ(t))e−β(t)x(t−τ(t)).

For w(t) ∈ X, we consider the equation

(4.2) ω′ = −γ(t)ω(t)− a(t)w(t)

b(t) + w(t)
+ γ(t)w(t) + p(t)w(t− τ(t))e−β(t)w(t−τ(t)).

Since M [γ] > 0, then from Lemma 2.5 we know that the linear equation x′ =
−γ(t)x(t) admits exponential dichotomy on R.

Hence, by Lemma 1, we know that equation (4.2) has exactly one almost
periodic solution:

xw(t) =

∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)w(s)

b(s) + w(s)
+ γ(s)w(s)

+ p(s)w(s− τ(s))e−β(s)w(s−τ(s))]ds.

We define the operator A : X → X,

(Aw)(t) =

∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)w(s)

b(s) + w(s)

+ γ(s)w(s) + p(s)w(s− τ(s))e−β(s)w(s−τ(s))]ds, w ∈ X.

Obviously, w(t) ∈ C(R,R) is the almost periodic solution of equation (4.1) if
and only if w is the fixed point of operator A.

Theorem 4.1. Let (C3) hold. Then, equation (1.3) has at least one almost
periodic positive solution.

Proof. Define a closed convex subset Ω of X as follows

Ω = {w|w ∈ X,L1 ≤ w(t) ≤ L2, t ∈ R}.

Firstly, we prove that AΩ ⊂ Ω. For all w ∈ Ω, we have

(Aw)(t) =

∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)w(s)

b(s) + w(s)
+ γ(s)w(s)

+ p(s)w(s− τ(s))e−β(s)w(s−τ(s))]ds
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≤
∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)L1

b(s) + L1
+ g(s)L2

+
p(s)

β(s)
β(s)w(s− τ(s))e−β(s)w(s−τ(s))]ds

≤
∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)L1

b(s) + L1
+ γ(s)L2 +

p(s)

β(s)

1

e
]ds(4.3)

sup
t∈R

{− a(t)L1

b(t) + L1
+ γ(t)L2 +

p(t)

β(t)

1

e
}
∫ t

−∞
e−γ(t−s)ds

= sup
t∈R

{− a(t)L1

b(t) + L1
+ γ(t)L2 +

p(t)

β(t)

1

e
}1
γ
≤ L2.

On the other hand, we have

(Aw)(t) =

∫ t

−∞
e−

∫ t
s γ(u)du[

a(s)w(s)

b(s) + w(s)
+ γ(s)w(s)

+ p(s)w(s− τ(s))e−β(s)w(s−τ(s))]ds

≥
∫ t

−∞
e−

∫ t
s γ(u)du[

a(s)L2

b(s) + L2
+ g(s)L1

+
p(s)

β(s)
β(s)w(s− τ(s))e−β(s)w(s−τ(s))]ds

≥
∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)L2

b(s) + L2
+ γ(s)L1

+ p(s)w(s− τ(s))e−βw(s−τ(s))]ds(4.4)

≥ inf
t∈R,v∈[L1,L2]

{− a(t)L2

b(t) + L2
+ γ(t)L1 + p(t)ve−βv}

∫ t

−∞
e−

∫ t
s γduds

=

∫
t∈R,v∈[L1,L2]

{− a(t)L2

b(t) + L2
+ γ(t)L1 + p(t)ve−βv}1

γ
≥ L1.

Hence, (4.3) and (4.4) imply

(4.5) L1 ≤ (Aw)(t) ≤ L2.

In addition, for all w ∈ Ω, then w(t) is almost periodic. By Lemma 1, we know
that equation (4.2) has exactly one almost periodic solution:

xw(t)=

∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)w(s)

b(s) + w(s)
+γ(s)w(s)+p(s)w(s−τ(s))e−β(s)w(s−τ(s))]ds.

Since xw(t) is almost periodic, then (Aw)(t) is almost periodic. This, together
with (4.5), imply that Aw ∈ Ω. So we have AΩ ⊂ Ω.
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Next, we prove that the operator A : Ω → Ω is continuous. Let xn = xn(t) ∈
Ω be such that xn → x ∈ Ω as n→ +∞. Then, we have

∥Axn −Ax∥ = sup
t∈R

|(Axn)(t)− (Ax)(t)|

= sup
t∈R

∣∣∣∣ ∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)xn(s)

b(s) + xn(s)
+ γ(s)xn(s)

+ p(s)xn(s− τ(s))e−β(s)xn(s−τ(s))]ds

−
∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)x(s)

b(s) + x(s)
+ γ(s)x(s)

+ p(s)x(s− τ(s))e−β(s)x(s−τ(s))]ds

∣∣∣∣
= sup

t∈R

∣∣∣∣ ∫ t

−∞
e−

∫ t
s γ(u)du[(− a(s)xn(s)

b(s) + xn(s)

− a(s)x(s)

b(s) + x(s)
) + (γ(s)xn(s)− γ(s)x(s))(4.6)

+ (p(s)xn(s− τ(s))e−β(s)xn(s−τ(s)) − p(s)x(s− τ(s))e−β(s)x(s−τ(s)))]ds

∣∣∣∣
≤ sup

t∈R

∫ t

−∞
e−

∫ t
s γ(u)du[

∣∣∣∣ a(s)xn(s)

b(s) + xn(s)
− a(s)x(s)

b(s) + x(s)

∣∣∣∣
+ |γ(s)xn(s)− γ(s)x(s)|
+ |p(s)xn(s− τ(s))e−β(s)xn(s−τ(s)) − p(s)x(s− τ(s))e−β(s)x(s−τ(s))|]ds

≤ sup
t∈R

∫ t

−∞
e−

∫ t
s γ(u)du[a| xn(s)

b(s) + xn(s)
− x(s)

b(s) + x(s)
|+ γ|xn(s)− x(s)|

+ p|xn(s− τ(s))e−β(s)xn(s−τ(s)) − x(τ(s))e−β(s)x(s−τ(s))|]ds.

Define the function Φ(x) = x
x+1 , x ∈ (0,+∞), then Φ′(x) = 1

(x+1)2
. By the

mean value theorem, we then have

∣∣∣∣ xn(s)

b(s) + xn(s)
− x(s)

b(s) + x(s)

∣∣∣∣ = ∣∣∣∣ xn(s)
b(s)

1 + xn(s)
b(s)

−
x(s)
b(s)

1 + x(s)
b(s)

∣∣∣∣
=

∣∣∣∣Φ(
xn(s)

b(s)

)
− Φ

(
x(s)

b(s)

) ∣∣∣∣
≤

∣∣∣∣Φ′(ξ1)

(
xn(s)

b(s)
− x(s)

b(s)

) ∣∣∣∣ = 1

(1 + ξ1)2

∣∣∣∣xn(s)b(s)
− x(s)

b(s)

∣∣∣∣(4.7)

≤
∣∣∣∣xn(s)b(s)

− x(s)

b(s)

∣∣∣∣ = 1

b(s)
|xn(s)− x(s)| ≤ 1

b
|xn(s)− x(s)|,

in which ξ1 lies between xn(s)
b(s) and x(s)

b(s) .
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We define the function Ψ(x) = xe−x, then Ψ′(x) = (1−x)e−x. Again by the
mean value theorem, we get

|xn(s− τ(s))e−β(s)xn(s−τ(s)) − x(s− τ(s))e−β(s)x(s−τ(s))|

=
1

β(s)
|β(s)xn(s− τ(s))e−β(s)xn(s−τ(s)) − β(s)x(s− τ(s))e−β(s)x(s−τ(s))|

=
1

β(s)
|Ψ(β(s)xn(s− τ(s)))−Ψ(β(s)x(s− τ(s)))|(4.8)

≤ 1

β(s)
|Ψ′(ξ2)(β(s)xn(s− τ(s))− β(s)x(s− τ(s)))|

=
1

β(s)
|(1− ξ2)e

−ξ2 ||β(s)xn(s− τ(s))− β(s)x(s− τ(s))|

= |(1− ξ2)e
−ξ2 ||xn(s− τ(s))− x(s− τ(s))|,

in which ξ2 lies between β(s)xn(s− τ(s)) and β(s)x(s− τ(s)). Since xn, x ∈ Ω,
L1 ≤ xn(t) ≤ L2 and L1 ≤ x(t) ≤ L2 for t ∈ R, then we have

1 ≤ βL1 ≤ β(s)xn(s− τ(s)) ≤ βL2 and 1 ≤ βL1 ≤ β(s)x(s− τ(s)) ≤ βL2.

This implies
1 ≤ βL1 < ξ2 < βL2.

Note that the function h(x) = |(1− x)e−x|, x ∈ [1,+∞) has maximum hmax =
1
e2
. Thus we have h(ξ2) = |(1− ξ2)e

−ξ2 | ≤ 1
e2
. It follows from (4.8) that

|xn(s− τ(s))e−β(s)xn(s−τ(s)) − x(s− τ(s))e−β(s)x((s−τ(s)))|

≤ 1

e2
|xn(s− τ(s))− x(s− τ(s))|.(4.9)

From (4.6) , (4.7) and (4.9), we get

∥Axn −Ax∥ ≤ sup
t∈R

∫ t

−∞
e−

∫ t
s γ(u)du(

a

b
|xn(s)− x(s)|+ γ|xn(s)− xs|

+ p
1

e2
|xn(s− τ(s))− x(s− τ(s))|)ds

= sup
t∈R

∫ t

−∞
e−

∫ t
s γdu(

a

b
∥xn − x∥+ γ∥xn − x∥+ p

1

e2
∥xn − x∥)ds}

= sup
t∈R

{(a
b
∥xn − x∥+ g∥xn − x∥+ p

1

e2
∥xn − x∥) 1

γ
}(4.10)

=
1

γ
(
a

b
+ γ +

p

e2
)∥xn − x∥.

However, since ∥xn − x∥ → as n→ ∞, then it follows from (4.10) that

∥Axn −Ax∥ → 0 as n→ +∞.
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which means that the operator A is continuous. Finally, we show that AΩ is
relatively compact. For all w ∈ Ω, we have

|(Ax)(t)| = |
∫ t

−∞
e−

∫ t
s γ(u)du[− a(s)x(s)

b(s) + x(s)
+ γ(s)x(s)

+ p(s)x(s− τ(s))e−β(s)x(s−τ(s))]ds|

≤
∫ t

−∞
e−

∫ t
s γ(u)du[

a(s)x(s)

b(s) + x(s)
+ γ(s)x(s)

+ p(s)x(s− τ(s))e−β(s)x(s−τ(s))]ds

≤
∫ t

−∞
e−

∫ t
s γdu[

ax(s)

b+ x(s)
+ γL2 + px(s− τ(s))e−βx(s−τ(s))]ds

≤
∫ t

−∞
e−

∫ t
s γdu(

aL2

b+ L2
+ γL2 + p

1

βe
)ds(4.11)

= (
aL2

b+ L2
+ γL2 + p

1

βe
)

∫ t

−∞
e−γ(t−s)ds

=
1

γ
(
aL2

b+ L2
+ γL2 + p

1

βe
),

which implies that AΩ → Ω is uniformly bounded. By calculating the derivative
of operator A, we get

d

dt
(Ax)(t) = −γ(t)(Ax)(t)− a(t)x(t)

b(t) + x(t)
+γ(t)x(t)+p(t)x(t−τ(t))e−β(t)x(t−τ(t)).

Hence we have

| d
dt
(Ax)(t)| = | − γ(t)(Ax)(t)− a(t)x(t)

b(t) + x(t)
+ γ(t)x(t)

+ p(t)x(t− τ(t))e−β(t)x(t−τ(t))|

≤ γ(t)|(Ax)(t)|+ a(t)x(t)

b(t) + x(t)
+ γ(t)x(t) + p(t)x(t− τ(t))e−β(t)x(t−τ(t))

≤ γ|(Ax)(t)|+ ax(t)

b+ x(t)
+ γx(t) + px(t− τ(t))e−βx(t−τ(t))

≤ γ
1

γ
(
aL2

b+ L2
+ γL2 + p

1

βe
) +

aL2

b+ L2
+ γL2 + p

1

βe

= (1 +
γ

γ
)(

aL2

b+ L2
+ γL2 + p

1

βe
),

which implies that A : Ω → Ω is equicontinuous. Since A : Ω → Ω is uniformly
bounded and equicontinuous, by the Ascoli-Arzela theorem, we conclude that
AΩ is relatively compact.

Thus, by Shauder’s fixed point theorem, the operator A has at least one
fixed point in Ω. This means that equation (1.3) has at least one almost periodic
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positive solution w∗(t) satisfying L1 ≤ w∗(t) ≤ L2. The proof of Theorem 4 is
complete.

5. Exponential stability

To prove the main result of this section, we make the following assumptions:
(C4) L2 > H,
(C5) p <

ab

(b+L2)2
.

Let UL2 = {ϕ|ϕ ∈ BC([−τ , 0],R∗), < ϕ(t) < L2, t ∈ [−τ , 0]}.

Theorem 5.1. Assume that the conditions (C1), (C3), (C4) and (C5) hold. Then,
every solution x(t) of equation (1.3) with initial function ϕ ∈ UL2 converges ex-
ponentially to w∗(t) as t → +∞, where w∗(t) is the almost periodic positive
solution of equation (1.3) satisfying L1 ≤ w∗(t) ≤ L2.

Proof. By Theorem 4 we know equation (1.3) has an almost periodic positive
solution w∗(t), and L1 ≤ w∗(t) ≤ L2. Assume the initial function of the almost
periodic positive solution w∗(t) is w∗(t) = ψ(t) > 0 for −τ ≤ t ≤ 0. Suppose
x(t) is arbitrary solution of equation (1.3) with initial function phi ∈ UL2 , here
0 < ϕ(t) < L2 and x(t) = ϕ(t) for −τ ≤ t ≤ 0. By Theorem 3.2 we know
0 < x(t) < L2 for all t > 0.

Consider function G(x) = x− ab

(b+L2)2
+ peτx, x ∈ [0, 1].

Since G(0) = x− ab

(b+L2)2
+p < 0, then there exists a constant λ ∈ (0, 1) such

that G(λ) < 0. That is

(5.1) λ− ab

(b+ L2)2
+ peλτ < 0.

We define V (t) = |x(t)− w∗(t)|eλt, then it follows that

D∗V (t) ≤ [−a(t)| x(t)

b(t) + x(t)
− w∗(t)

b(t) + w∗(t)
|

+ |p(t)x(t− τ(t))e−β(t)x(t−τ(t)) − p(t)w∗(t− τ(t))e−β(t)w∗(t−τ(t))|]eeλt

+ λ|x(t)− w∗(t)|eλt(5.2)

= [−a(t)b(t) |x(t)− w∗(t)|
(b(t) + x(t))(b(t) + w∗(t))

+ p(t)|x(t− τ(t))e−β(t)x(t−τ(t)) − w∗(t− τ(t))e−β(t)w∗(t−τ(t))|]eλt

+ λ|x(t)− w∗(t)|eλt

≤ [−ab |x(t)− w∗(t)|
(b+ L2)2

] + p|x(t− τ(t))e−β(t)x(t−τ(t))

− w∗(t− τ(t))e−β(t)w∗(t−τ(t))|
+ λ|x(t)− w∗(t)|eλt.
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Using the inequality |xe−x − ye−y| ≤ |x− y|, for x > 0, y > 0, we get

|x(t− τ(t))|e−β(t)x(t−τ(t)) − w∗(t− τ(t))e−β(t)w∗(t−τ(t))|

=
1

β(t)
|β(t)x(t− τ(t))e−β(t)x(t−τ(t)) − β(t)|w∗(t− τ(t))e−β(t)w∗(t−τ(t))|(5.3)

≤ 1

β(t)
|β(t)x(t− τ(t))− β(t)w∗(t− τ(t))|

= |x(t− τ(t))− w∗(t− τ(t))|.

Hence, (5.2) and (5.3) imply that

D+V (t) ≤ [− ab

(b+ L2)2
|x(t)− w∗(t)|+ p|x(t− τ(t))

− w∗(t− τ(t))|]eλt + λ|x(t)− w∗(t)|eλt

= λV (t)− ab

(b+ L2)2
V (t) + p|x(t− τ(t))− w∗(t− τ(t))|eλt.(5.4)

Let h = L2 + sup−τ≤t≤0 |ϕ(t)− ψ(t)|. For all t ∈ [−τ , 0], we get

V (t) = |x(t)− w∗(t)|eλt ≤ |x(t)− w∗(t)| = |ϕ(t)− ψ(t)|
≤ sup

−τ≤t≤0
|ϕ(y)− ψ(y)| < L2 + sup

−τ≤t≤0
|ϕ(t)− ψ(t)| = h.

We claim that

(5.5) V (t) < h, for all t > 0.

Suppose the claim (5.5) is not true, then there must exist a t∗ > 0, such that
V (t∗) = h, D+V (t)|t=t∗ ≥ 0 and V (t) < h for t < t∗. It follows from (5.4) that

0 ≤ D+V (t)|t=t∗ ≤ λV (t∗)− ab

(b+ L2)2
V (t∗)

+ p|x(t∗ − τ(t∗))− w∗(t∗ − τ(t∗))|eλt∗

= λh− ab

(b+ L2)2
h+ p|x(t∗ − τ(t∗))− w∗(t∗ − τ(t∗))|eλ(t∗−τ(t∗))eλt(t

∗)

= λh− ab

(b+ L2)2
h+ pV (t∗ − τ(t∗))eλτ(t

∗)(5.6)

< λh− ab

(b+ L2)2
h+ pheλτ(t

∗)

≤ λh− ab

(b+ L2)2
h+ pheλτ

= (λ− ab

(b+ L2)2
+ peλτ ).
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Thus, from (5.6) we have λ− ab

(b+L2)2
+ peλτ > 0, which contradicts (5.1).

Therefore, the claim (5.5) is true. Hence V (t) = |x(t) − w∗(t)|eλt < h, for
all t > 0.

That is |x(t)−w∗(t)|, for all t > 0, which means x(t) converges exponentially
to w∗(t) as t→ +∞. The proof of Theorem 5 is complete.
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