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1. Introduction

In [4], Bordbar et al. introduced a weak closure operation, which is more general
form than closure operation, on ideals of BCK-algebras. Bordbar and Zahedi
[2], [3] studied a finite type closure operations and semi-prime closure operations
on BCK-algebras. Regarding weak closure operation “cl”, they defined another
weak closure operation “clt” in [1].

In this paper, we introduce the notions of (strong) quasi prime mapping
on the set of all ideals, t-type weak closure operation, and tender (resp., naive,
sheer, feeble tender) weak closure operation, and investigates their relations and
properties. We provide conditions for a weak closure operation to be of t-type.

We consider conditions for “clt” to be a t-type weak closure operation.
We discuss conditions for “clt” to be a naive (sheer, feeble tender) weak

closure operation.
We show that “clt” is the smallest tender weak closure operation containing

the weak closure operation “cl”.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K.
Iséki and was extensively investigated by several researchers.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the
following conditions

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra.
A BCK-algebra X is called a lower BCK-semilattice (see [8]) if X is a lower

semilattice with respect to the BCK-order.
A subset A of a BCK/BCI-algebra X is called an ideal of X (see [8]) if it

satisfies

0 ∈ A,(2.1)

(∀x ∈ X) (∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A) .(2.2)

Note that every ideal A of a BCK/BCI-algebra X satisfies the following impli-
cation (see [8]).

(2.3) (∀x, y ∈ X) (x ≤ y, y ∈ A ⇒ x ∈ A) .
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For any subset A of X, the ideal generated by A is defined to be the intersec-
tion of all ideals of X containing A, and it is denoted by ⟨A⟩. If A is finite, then
we say that ⟨A⟩ is finitely generated ideal of X (see [8]).

Let I(X) and If (X) be the set of all ideals of X and the set of all finitely
generated ideals of X, respectively.

We refer the reader to the books [7], [8] for further information regarding
BCK/BCI-algebras.

3. t-type weak closure operations

In what follows, let X be a lower BCK-semilattice unless otherwise specified.

Definition 3.1. [4] An element x of X is called a zeromeet element of X if the
condition

(∃ y ∈ X \ {0}) (x ∧ y = 0)

is valid. Otherwise, x is called a non-zeromeet element of X.

Denote by Z(X) the set of all zeromeet elements of X, that is,

Z(X) = {x ∈ X | x ∧ y = 0 for some nonzero element y ∈ X}.

Obviously, 0 ∈ Z(X) and if X has the greatest element 1, then 1 ∈ X \ Z(X).

Lemma 3.2. [4] For any x, y ∈ X, if x, y /∈ Z(X), then x ∧ y /∈ Z(X), that is,
the set X \ Z(X) is closed under the operation ∧.

Definition 3.3. [6] For any nonempty subsets A and B of X, we denote

A ∧B := ⟨{a ∧ b | a ∈ A, b ∈ B}⟩

which is called the meet ideal of X generated by A and B. In this case, we say
that the operation “∧” is a meet operation. If A = {a}, then {a} ∧ B is denoted
by a ∧B. Also, if B = {b}, then A ∧ {b} is denoted by A ∧ b.

Definition 3.4. [5] For any nonempty subsets A and B of X, we define a set

(A :∧ B) := {x ∈ X | x ∧B ⊆ A}

which is called the relative annihilator of B with respect to A.

For a nonempty subset B of X, consider the following condition:

(3.1) (∀x, y ∈ X)(∀b ∈ B) ((x ∧ b) ∗ (y ∧ b) ≤ (x ∗ y) ∧ b) .

Lemma 3.5. [5] If A and B are ideals of X, then the relative annihilator (A :∧ B)
of B with respect to A is an ideal of X.

Lemma 3.6. [5] If A is an ideal of X, then (A :∧ X) = A and (A :∧ A) = X.
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Definition 3.7. [4] A mapping cl : I(X) → I(X) is called a weak closure opera-
tion on I(X) if the following conditions are valid.

(∀A ∈ I(X)) (A ⊆ cl(A)) ,(3.2)

(∀A,B ∈ I(X)) (A ⊆ B ⇒ cl(A) ⊆ cl(B)) .(3.3)

If a weak closure operation cl : I(X) → I(X) satisfies the condition

(3.4) (∀A ∈ I(X)) (cl(cl(A)) = cl(A)) ,

then we say that “cl” is a closure operation on I(X) (see [2]). In what follows,
we use Acl instead of cl(A).

For any mapping cl : I(X) → I(X) and every ideal A of X, let

(3.5) K := ∪{((a ∧ A)cl :∧ ⟨b⟩) | a, b ∈ X \ Z(X)}.

Then the mapping

(3.6) cl∗ : I(X) → I(X), A 7→ ⟨K⟩

is not a weak closure operation on I(X) as seen in the following example.

Example 3.8. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 4 0

There are six ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2}, A4 =
{0, 1, 2, 3} and A5 = X.

Define a mapping cl : I(X) → I(X) by Acl
0 = A1, A

cl
1 = A0, A

cl
2 = A1,

Acl
3 = A1, A

cl
4 = A2 and Acl

5 = A3. Then “cl” is not a weak closure operation on
I(X) because A3 * A1 = Acl

3 .
Note that Z(X) = {0, 1, 2}. For non-zeromeet elements 3, 4 of X, we have
((3 ∧ A2)

cl :∧ ⟨3⟩) = (Acl
2 :∧ A4) = (A1 :∧ A4) = A1,

((3 ∧ A2)
cl :∧ ⟨4⟩) = (Acl

2 :∧ A5) = (A1 :∧ A5) = A1,
((4 ∧ A2)

cl :∧ ⟨3⟩) = (Acl
2 :∧ A4) = (A1 :∧ A4) = A1,

((4 ∧ A2)
cl :∧ ⟨4⟩) = (Acl

2 :∧ A5) = (A1 :∧ A5) = A1.
It follows that

Acl∗

2 = ⟨∪{((a ∧ A2)
cl :∧ ⟨b⟩) | a, b ∈ X \ Z(X)}⟩ = ⟨A1⟩ = A1 + A2

which shows that “cl∗” is not a weak closure operation on I(X).
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If “cl” is a weak closure operation on I(X), then K in (3.5) is an ideal of X
containing Acl (see [1, Theorem 3.28]).

Assume that X has the greatest element 1. For a weak closure operation “cl”
on I(X), we define a new function

(3.7) clt : I(X) → I(X), A 7→ ∪{((a ∧ A)cl :∧ ⟨b⟩) | a, b ∈ X \ Z(X)}.

Then “clt” is also a weak closure operation on I(X) (see [1, Theorem 3.29]).
We investigate relations between “cl” and “clt”. The following example shows

that they are not equal, that is, there exists A ∈ I(X) such that Acl ̸= Aclt .

Example 3.9. Consider the lower BCK-semilattice X = {0, 1, 2, 3, 4} which is
given in Example 3.8. Note that the element 4 is the greatest element of X and we
have 6 ideals, A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2}, A4 = {0, 1, 2, 3}
and A5 = X.

Define a mapping cl : I(X) → I(X) by Acl
0 = A1, A

cl
1 = A3, A

cl
2 = A3,

Acl
3 = A4, A

cl
4 = A4 and Acl

5 = A5. Then “cl” is a weak closure operation on I(X).
Note that Z(X) = {0, 1, 2}. For non-zeromeet element 3 of X, we have

((3 ∧ A3)
cl :∧ ⟨3⟩) = (Acl

3 :∧ {0, 1, 2, 3}) = (A4 :∧ A4) = X.

Thus Aclt
3 = ∪{((a ∧ A3)

cl :∧ ⟨b⟩) | a, b ∈ X \ Z(X)} = X. Therefore

Acl
3 = A4 ̸= X = Aclt

3 .

Proposition 3.10. Assume that X has the greatest element 1. If “cl” is a weak
closure operation on I(X), then “cl” is contained in “clt”, that is, A

cl ⊆ Aclt for
all A ∈ I(X).

Proof. Suppose that x ∈ Acl. Since 1 ∧ A = A and ⟨1⟩ = X, we have

Acl = ((1 ∧ A)cl :∧ ⟨1⟩) ⊆ Aclt .

by Lemma 3.6. Therefore, x ∈ Aclt and Acl ⊆ Aclt for all A ∈ I(X).

Definition 3.11. Assume that X has the greatest element 1. A weak closure
operation “cl” on I(X) is said to be of t-type if the following assertion is valid.

(3.8) (∀A ∈ I(X))
(
Acl = Aclt

)
.

Example 3.12. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 2 1 0 3
4 4 4 4 4 0
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The element 4 is the greatest element of X and we have 5 ideals: A0 = {0},
A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2, 3} and A4 = X.

Define a mapping cl : I(X) → I(X) by Acl
0 = A0, A

cl
1 = A1, A

cl
2 = A2,

Acl
3 = A4 and Acl

4 = A4. Then “cl” is a weak closure operation on I(X).

Note that Z(X) = {0, 1, 2}. For non-zeromeet elements 3 and 4 of X, we
have ⟨3⟩ = A3 and ⟨4⟩ = A4. Also,

((3 ∧ A0)
cl :∧ ⟨3⟩) = (Acl

0 :∧ A3) = (A0 :∧ A3) = A0.

((3 ∧ A0)
cl :∧ ⟨4⟩) = (Acl

0 :∧ A4) = (A0 :∧ A4) = A0.

((4 ∧ A0)
cl :∧ ⟨3⟩) = (Acl

0 :∧ A3) = (A0 :∧ A3) = A0.

((4 ∧ A0)
cl :∧ ⟨4⟩) = (Acl

0 :∧ A4) = (A0 :∧ A4) = A0.

Hence Aclt
0 = Acl

0 . Similarly

((3 ∧ A1)
cl :∧ ⟨3⟩) = (Acl

1 :∧ A3) = (A1 :∧ A3) = A1.

((3 ∧ A1)
cl :∧ ⟨4⟩) = (Acl

1 :∧ A4) = (A1 :∧ A4) = A1.

((4 ∧ A1)
cl :∧ ⟨3⟩) = (Acl

1 :∧ A3) = (A1 :∧ A3) = A1.

((4 ∧ A1)
cl :∧ ⟨4⟩) = (Acl

1 :∧ A4) = (A1 :∧ A4) = A1.

Thus Aclt
1 = Acl

1 . By the similar way, we have

Aclt
i = Acl

i , i = {2, 3, 4}.

Therefore “cl” is a t-type weak closure operation on I(X).

Given a weak closure operation “cl” on I(X), we discuss conditions for “cl”
to be of t-type.

Theorem 3.13. Assume that X has the greatest element 1. If the greatest element
1 is the only non-zeromeet element of X, then every weak closure operation on
I(X) is of t-type.

Proof. Let “cl” be a weak closure operation on I(X). For any A ∈ I(X), we
have 1 ∧ A = A and ⟨1⟩ = X. It follows from Lemma 3.6 that

Aclt = ∪{((a ∧ A)cl :∧ ⟨b⟩) | a, b ∈ X \ Z(X)}
= ((1 ∧ A)cl :∧ ⟨1⟩) = (Acl :∧ X) = Acl.

Therefore “cl” is a t-type weak closure operation on I(X).

Definition 3.14. A mapping cl : I(X) → I(X) is said to be

• quasi-prime if it satisfies:

(3.9) (∀a ∈ X \ Z(X)) (∀A ∈ I(X))
(
a ∧ Acl ⊆ (a ∧ A)cl

)
.

• strong quasi-prime if it satisfies:

(3.10) (∀a ∈ X \ Z(X)) (∀A ∈ I(X))
(
a ∧ Acl = (a ∧ A)cl

)
.
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Example 3.15. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4}(B5−1−2)
with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
3 3 3 3 0 3
4 4 4 4 4 0

There are five ideals: A0 = {0}, A1 = {0, 1, 2}, A2 = {0, 1, 2, 3}, A3 = {0, 1, 2, 4}
and A4 = X.

Define a mapping cl : I(X) → I(X) by Acl
0 = A0, A

cl
1 = A2, A

cl
2 = A3,

Acl
3 = A4 and Acl

4 = A4. It is routine to verify that “cl” is a quasi-prime mapping.
But it is not a weak closure operation on I(X) since A2 * A3 = Acl

2 .

Lemma 3.16. Every ideal A of X satisfies the following assertion.

(3.11) (∀a, b, z ∈ X) (a ∧ b ∈ A ⇒ a ∧ ⟨b ∧ z⟩ ⊆ A) .

Proof. Let p ∈ ⟨b∧ z⟩. Then p ∗ (b∧ z)n = 0 for some n ∈ N. Since b∧ z ≤ b, we
have (b ∧ z)n ≤ b, which implies that

p ∗ b ≤ p ∗ (b ∧ z)n = 0.

Hence p ∗ b = 0, that is, p ≤ b. It follows that

a ∧ p ≤ a ∧ b ∈ A

and so that a ∧ p ∈ A. Therefore a ∧ ⟨b ∧ z⟩ ⊆ A.

Theorem 3.17. Assume that X has the greatest element 1. If “cl” is a quasi-
prime weak closure operation on I(X), then “clt” is a t-type weak closure operation
on I(X).

Proof. Note that “clt” is a weak closure operation on I(X). Let x ∈ Aclt . Then
x ∈ ((a∧A)cl :∧ ⟨b⟩), and so x∧⟨b⟩ ⊆ (a∧A)cl for some a, b ∈ X \Z(X) by (3.7).
It follows from the quasi-primeness of “cl” that

x ∧ c ∧ z ∈ (a ∧ A)cl ∧ z = z ∧ (a ∧ A)cl ⊆ (z ∧ a ∧ A)cl = (z ∧ (a ∧ A))cl

for all c, z ∈ X \ Z(X). Thus x ∧ z ∈ ((z ∧ (a ∧ A))cl :∧ c), and so

(3.12) x ∧ z ∈ ((z ∧ (a ∧ A))cl :∧ ⟨b⟩) ⊆ (a ∧ A)clt .

Now suppose that w ∈ X \Z(X). Then z ∧w ∈ X \Z(X) by Lemma 3.2. Using
Lemma 3.16 and (3.12) induces x ∧ ⟨z ∧ w⟩ ⊆ (a ∧ A)clt , and thus

x ∈ ((a ∧ A)clt :∧ ⟨z ∧ w⟩) ⊆ ∪{((a ∧ A)clt :∧ ⟨b⟩) | a, b ∈ X \ Z(X)}.
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Conversely, suppose that x ∈ A(clt)t . Then x ∈ ((a ∧ A)clt :∧ ⟨b⟩) for some
a, b ∈ X \Z(X). Then x∧ z ∈ (a∧A)clt for all z ∈ ⟨b⟩. It follows from (3.7) that
there exist p, q ∈ X \ Z(X) such that

x ∧ ⟨b⟩ ⊆ ((p ∧ (a ∧ A))cl :∧ ⟨q⟩).

Thus x ∧ ⟨b ∧ q⟩ ⊆ x ∧ ⟨b⟩ ∧ ⟨q⟩ ⊆ (p ∧ (a ∧ A))cl, which implies that

x ∈ ((p ∧ a ∧ A)cl :∧ ⟨b ∧ q⟩)

Since p ∧ a and b ∧ q are elements of X \ Z(X) by Lemma 3.2, we conclude that
x ∈ Aclt . Consequently, “clt” is a t-type weak closure operation on I(X).

Corollary 3.18. Assume that X has the greatest element 1. If “cl” is a strong
quasi-prime weak closure operation on I(X), then “clt” is a t-type weak closure
operation on I(X).

Definition 3.19. A weak closure operation “cl” on I(X) is said to be

• tender if for any A ∈ I(X) and any non-zeromeet elements a and b of X, the
equality

(3.13) ((a ∧ A)cl :∧ ⟨b⟩) = Acl

is valid,

• feeble tender if for any A ∈ I(X) and any non-zeromeet element a of X, the
equality

(3.14) ((a ∧ A)cl :∧ ⟨a⟩) = Acl

is valid,

• naive if for any A ∈ I(X) there exist non-zeromeet elements a and b of X such
that the equality (3.13) is valid.

• sheer if for any A ∈ I(X) there exists non-zeromeet element a of X such that
the equality (3.14) is valid.

Example 3.20. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 4 0

X has 6 ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2}, A4 =
{0, 1, 2, 3} and A5 = X.
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Define a mapping cl : I(X) → I(X) by Acl
0 = A0, A

cl
1 = A3, A

cl
2 = A3,

Acl
3 = A3, A

cl
4 = X and Acl

5 = X. Then “cl” is a weak closure operation on I(X).
Note that Z(X) = {0, 1, 2}. For non-zeromeet elements 3 and 4 of X, we

have ⟨3⟩ = A4 and ⟨4⟩ = X. Also,
((3 ∧ A0)

cl :∧ ⟨3⟩) = (Acl
0 :∧ A4) = (A0 :∧ A4) = A0 = Acl

0 .
((4 ∧ A0)

cl :∧ ⟨4⟩) = (Acl
0 :∧ A5) = (A0 :∧ A5) = A0 = Acl

0 .
((3 ∧ A1)

cl :∧ ⟨3⟩) = (Acl
1 :∧ A4) = (A3 :∧ A4) = A3 = Acl

1 .
((4 ∧ A1)

cl :∧ ⟨4⟩) = (Acl
1 :∧ A5) = (A3 :∧ A5) = A3 = Acl

1 .
((3 ∧ A2)

cl :∧ ⟨3⟩) = (Acl
2 :∧ A4) = (A3 :∧ A4) = A3 = Acl

2 .
((4 ∧ A2)

cl :∧ ⟨4⟩) = (Acl
2 :∧ A5) = (A3 :∧ A5) = A3 = Acl

2 .
((3 ∧ A3)

cl :∧ ⟨3⟩) = (Acl
3 :∧ A4) = (A3 :∧ A4) = A3 = Acl

3 .
((4 ∧ A3)

cl :∧ ⟨4⟩) = (Acl
3 :∧ A5) = (A3 :∧ A5) = A3 = Acl

3 .
((3 ∧ A4)

cl :∧ ⟨3⟩) = (Acl
4 :∧ A4) = (A5 :∧ A4) = A5 = Acl

4 .
((4 ∧ A4)

cl :∧ ⟨4⟩) = (Acl
4 :∧ A5) = (A5 :∧ A5) = A5 = Acl

4 .
((3 ∧ A5)

cl :∧ ⟨3⟩) = (Acl
4 :∧ A4) = (A5 :∧ A4) = A5 = Acl

5 .
((4 ∧ A5)

cl :∧ ⟨4⟩) = (Acl
5 :∧ A5) = (A5 :∧ A5) = A5 = Acl

5 .
Thus “cl” is a (feeble) tender weak closure operation on I(X).

Obviously, every tender weak closure operation is a naive weak closure ope-
ration, but the converse is not true in general as seen in the following example.

Example 3.21. Consider a lower BCK-semilattice X = {0, 1, 2, 3} with the
following Cayley table.

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 1
3 3 3 3 0

We have 3 ideals of X, and they are A0 = {0}, A1 = {0, 1, 2} and A2 = X.
Define a mapping cl : I(X) → I(X) by Acl

0 = Acl
1 = A1 and Acl

2 = A2.
We can easily check that “cl” is a naive weak closure operation on I(X). But,

it is not a tender weak closure operation on I(X). In fact, we know that there
are two non-zeromeet elements 2 and 3. Thus

((3 ∧ A1)
cl :∧ ⟨2⟩) = (Acl

1 :∧ ⟨2⟩) = (A1 :∧ A1) = X ̸= A1 = Acl
1 .

Obviously, every feeble tender weak closure operation is a sheer weak closure
operation, but the converse is not true in general as seen in the following example.

Example 3.22. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 0
3 3 3 3 0 3
4 4 4 4 4 0
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There are six ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 2, 3},
A4 = {0, 1, 2, 4} and A5 = X. Define a mapping cl : I(X) → I(X) by Acl

0 = A0,
Acl

1 = A4, A
cl
2 = A4, A

cl
3 = X, Acl

4 = X and Acl
5 = X. Then “cl” is a weak closure

operation on I(X).
Note that Z(X) = {0}. For non-zeromeet elements 3 and 4 of X, we have

⟨3⟩ = A3 and ⟨4⟩ = A4. Also,
((3 ∧ A0)

cl :∧ ⟨3⟩) = (Acl
0 :∧ A3) = (A0 :∧ A3) = A0 = Acl

0 .
((3 ∧ A1)

cl :∧ ⟨3⟩) = (Acl
1 :∧ A3) = (A4 :∧ A3) = A4 = Acl

1 .
((3 ∧ A2)

cl :∧ ⟨3⟩) = (Acl
2 :∧ A3) = (A4 :∧ A3) = A4 = Acl

2 .
((4 ∧ A3)

cl :∧ ⟨4⟩) = (Acl
2 :∧ A4) = (A4 :∧ A4) = X = Acl

3 .
((4 ∧ A4)

cl :∧ ⟨4⟩) = (Acl
4 :∧ A4) = (X :∧ A4) = X = Acl

4 .
((4 ∧ A5)

cl :∧ ⟨4⟩) = (Acl
4 :∧ A4) = (X :∧ A4) = X = Acl

5 .
Thus “cl” is a sheer weak closure operation. But it is not feeble tender since

((3 ∧ A4)
cl :∧ ⟨3⟩) = (Acl

2 :∧ A3) = (A4 :∧ A3) = A4 ̸= X = Acl
4 .

Theorem 3.23. Assume that X has the greatest element 1. If “cl” is a quasi-
prime weak closure operation on I(X), then “clt” is a naive weak closure operation
on I(X).

Proof. Note that “clt” is a weak closure operation on I(X). Suppose that A
is an ideal of X and x ∈ Aclt . Then there exist p, q ∈ X \ Z(X) such that
x ∈ ((p ∧ A)cl :∧ ⟨q⟩). So x ∧ ⟨q⟩ ⊆ (p ∧ A)cl. Let a ∈ X \ Z(X). Then

a ∧ x ∧ ⟨q⟩ ⊆ a ∧ (p ∧ A)cl ⊆ (a ∧ p ∧ A)cl

by the quasi-primeness of “cl”, and thus

x ∧ a ∈ ((p ∧ (a ∧ A))cl :∧ ⟨q⟩) ⊆ (a ∧ A)clt .

It follows from Lemma 3.16 that

x ∧ ⟨a ∧ b⟩ ⊆ (a ∧ A)clt

for b ∈ X \ Z(X). Therefore x ∈ ((a ∧ A)clt :∧ ⟨a ∧ b⟩) which means that there
exist non-zeromeet elements s, t such that x ∈ ((s ∧ A)clt :∧ ⟨t⟩).

Conversely, let x ∈ ((a ∧ A)clt :∧ ⟨b⟩) for some a, b ∈ X \ Z(X). Then
x ∧ ⟨b⟩ ⊆ (a ∧ A)clt , and so there exist p, q ∈ X \ Z(X) such that

x ∧ ⟨b⟩ ⊆ ((p ∧ (a ∧ A))cl :∧ ⟨q⟩).

Thus x ∧ ⟨q ∧ b⟩ ⊆ x ∧ ⟨q⟩ ∧ ⟨b⟩ ⊆ (p ∧ (a ∧ A))cl, which means that

x ∈ (((p ∧ a) ∧ A)cl :∧ ⟨q ∧ b⟩) ⊆ Aclt .

Consequently, “clt” is a naive weak closure operation on I(X).

Corollary 3.24. Assume that X has the greatest element 1. If “cl” is a strong
quasi-prime weak closure operation on I(X), then “clt” is a naive weak closure
operation on I(X).
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Lemma 3.25. [4] Assume that X has the greatest element 1. If “cl” is a tender
weak closure operation on I(X), then so is the function “clt” in (3.7).

Theorem 3.26. Assume that X has the greatest element 1. If “cl” is a tender
weak closure operation on I(X), then “clt” is the smallest tender weak closure
operation on I(X) such that “cl” is contained in “clt”, that is, A

cl ⊆ Aclt for all
A ∈ I(X).

Proof. By using Proposition 3.10 and Lemma 3.25, “clt” is a tender weak closure
operation which contains “cl”. Now suppose that “cl1” is a tender weak closure
operation which contains “cl”. For any A ∈ I(X), if x ∈ Aclt , then x ∈ ((p∧A)cl :∧
⟨q⟩) for some p, q ∈ X \Z(X). Since Acl ⊆ Acl1 and “cl1” is a tender weak closure
operation, we have

x ∈ ((p ∧ A)cl1 :∧ ⟨q⟩) = Acl1 ,

which shows that Aclt ⊆ Acl1 .

Theorem 3.27. Assume that X has the greatest element 1. If “cl” is a quasi-
prime weak closure operation on I(X), then “clt” is a feeble tender weak closure
operation on I(X).

Proof. Note that “clt” is a weak closure operation on I(X). Suppose that A
is an ideal of X and x ∈ Aclt . Then there exist p, q ∈ X \ Z(X) such that
x ∈ ((p ∧ A)cl :∧ ⟨q⟩). So x ∧ ⟨q⟩ ⊆ (p ∧ A)cl. Let a ∈ X \ Z(X) be an arbitrary
element. Using the quasi-primeness of “cl” implies

a ∧ x ∧ ⟨q⟩ ⊆ a ∧ (p ∧ A)cl ⊆ (a ∧ p ∧ A)cl.

Thus x∧ a ∈ ((p∧ (a∧A))cl :∧ ⟨q⟩) ⊆ (a∧A)clt . It follows from Lemma 3.16 that

x ∧ ⟨a⟩ = x ∧ ⟨a ∧ a⟩ ⊆ (a ∧ A)clt

and so that x ∈ ((a ∧ A)clt :∧ ⟨a⟩) for all a ∈ X \ Z(X)
Conversely, let x ∈ ((a∧A)clt :∧ ⟨a⟩) for a ∈ X \Z(X). Then x∧z ∈ (a∧A)clt

for every element z ∈ ⟨a⟩. So there exist p, q ∈ X \ Z(X) such that

x ∧ z ∈ ((p ∧ (a ∧ A))cl :∧ ⟨q⟩).

Hence x ∧ ⟨a⟩ ⊆ ((p ∧ (a ∧ A))cl :∧ ⟨q⟩), and so x ∧ ⟨q ∧ a⟩ ⊆ x ∧ ⟨q⟩ ∧ ⟨a⟩ ⊆
(p ∧ (a ∧ A))cl. Therefore

x ∈ (((p ∧ a) ∧ A)cl :∧ ⟨q ∧ a⟩) ⊆ Aclt .

Consequently, “clt” is a feeble tender weak closure operation on I(X).

Corollary 3.28. Assume that X has the greatest element 1. If “cl” is a quasi-
prime weak closure operation on I(X), then “clt” is a sheer weak closure operation
on I(X).

Corollary 3.29. Assume that X has the greatest element 1. If “cl” is a strong
quasi-prime weak closure operation on I(X), then “clt” is a feeble tender weak
closure operation on I(X) and so a sheer weak closure operation on I(X).
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