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Abstract. Let G denote the complement of a simple graph G. The complementary

prism of G, denoted by GG, is obtained by taking a copy of G and a copy of G and

then adding a perfect matching that joins corresponding vertices. A connected graph

G of order at least 2k + 2 is k-extendable if for every matching M of size k in G, there

is a perfect matching in G containing all edges of M . In this paper, we establish some

sufficient conditions for the complementary prism of regular graphs to be 2-extendable.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G
be a graph with vertex set V (G) and edge set E(G). The complement of G is
denoted by G. For S ⊆ V (G), G[S] denotes the induced subgraph of G by S.
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A neighbor set of a vertex v in G is denoted by NG(v) = {u ∈ V (G)|uv ∈ E(G)}.
For v ∈ V (G) and T ⊆ V (G), a neighbor set of a vertex v in T is denoted by
NT (v) = {u ∈ T |uv ∈ E(G)} and if X ⊆ V (G), NG(X) denotes

∪
v∈X NG(v). The

number of components of G, the number of odd components of G and the number
of even components of G are denoted by c(G), co(G) and ce(G), respectively. A
complete graph of order r is denoted by Kr. For graphs H and G, G is called
H-free if G does not contain H as an induced subgraph. A subgraph H is called
a clique if H ∼= Kr, for some r. A set M ⊆ E(G) is called a matching if no two
edges of M have a common end vertex. A vertex u is saturated by M if there
is an edge in M incident with u. For simplicity, the set of all vertices saturated
by M is denoted by V (M). M is called a maximum matching in G if there is no
matching N in G of size greater than M . A perfect matching in G is a matching
that saturates all vertices of G. A connected graph G of order at least 2k + 2 is
k-extendable if for every matching M of size k in G, there is a perfect matching
in G containing all edges of M . A graph G is k-factor-critical if, for every set
S ⊆ V (G) with |S| = k, the graph G− S contains a perfect matching. For k = 1
and k = 2, a k-factor-critical graph is also called factor-critical and bicritical,
respectively.

The concept of k-extendable graphs was introduced, in 1980, by Plummer
[9]. He gave a sufficient condition for a graph to be k-extendable in terms of
minimum degree. A fundamental theorem (see Theorem 2.2) that is mainly used
in studying matching extension was established. He also proved that 2-extendable
non-bipartite graphs are bicritical. Some sufficient conditions for special classes
of graphs to be k-extendable have been established (see [8], [10], [14]). For a
comprehensive survey of this topic, the reader is referred to Plummer [11]–[13].

The concept of k-factor-critical graphs was introduced, in 1996, by Favaron
[6]. She gave a necessary and sufficient condition for a graph to be k-factor-critical
and also provided a relationship between n-extendable graphs and k-factor- critical
graphs.

A complementary prism of G, denoted by GG, is the graph obtained by
taking a copy of G and a copy of its complement G and then joining corresponding
vertices by an edge. A complementary prism is a specific case of complementary
product of graphs introduced by Haynes et al.[3] in 2007. Haynes et al. ([3], [4],
[5]) studied some parameters of complementary prism of graphs such as the vertex
independence number, the chromatic number and the domination number.

According to the definition of the complementary prism of G, it is easy to see
thatGG contains a perfect matching. A problem that arises is that of investigating
properties of G so that GG is k-extendable for some k. In [7], Janseana et al.
established that if G is a 2-regular, H-free graph where H ∈ {C3, C4, C5}, then
GG is 2-extendable. In this paper, we concentrate on connected r-regular graphs
for r ≥ 3. Let F = K2,3 with the addition of an edge shown in Figure 1. We prove
that for a connected graph G of order p, if G is either 3-regular, F -free where
p ≥ 8 or r0-regular where p ≥ 2r0 + 1 ≥ 9, then GG is 2-extendable. We further
extend this result to disconnected graphs. We show that if each component Gi of
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G is 3-regular, F -free of order at least 8 or r0-regular of order at least 2r0+1 ≥ 9,
then GG is 2-extendable. These results are presented in Section 3. Section 2
contains some preliminary results that we make use of in our work.

Figure 1: The graph F

2. Preliminary results

In this section, we state some results which are used in establishing our results in
Section 3. Our first result is a well known theorem for studying the existence of
a perfect matching in graphs established by Tutte.

Theorem 2.1. [2] (Tutte’s Theorem) A graph G has a perfect matching if and
only if for any S ⊆ V (G), co(G− S) ≤ |S|.

In 1980, Plummer [9] established the following fundamental theorem on k-
extendable graphs.

Theorem 2.2. [9] Let G be a graph of order p ≥ 2k + 2 and k ≥ 1. If G is
k-extendable, then

(a) G is (k − 1)-extendable, and
(b) G is (k + 1)-connected.

Ananchuen and Caccetta [1] gave a necessary condition for a neighbor set of
a vertex having minimum degree in extendable graphs. They showed that:

Theorem 2.3. [1] Let G be a k-extendable graph on p ≥ 2k + 2 vertices with
δ(G) = k + t, 1 ≤ t ≤ k ≤ p. If dG(u) = δ(G), then the induced subgraph
G[NG(u)] has at most t− 1 independent edges.

A neccessary and sufficient condition for a graph to be k-extendable and to
be k-factor-critical was provided by Yu [15] and Favaron [6], respectively.

Theorem 2.4. [15] A graph G is k-extendable (k ≥ 1) if and only if for any
S ⊆ V (G),

(a) co(G− S) ≤ |S| and
(b) co(G− S) = |S| − 2t, (0 ≤ t ≤ k − 1) implies that F (S) ≤ t, where F (S)

is the size of a maximum matching in G[S].
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Theorem 2.5. [6] A graph G is k-factor-critical if and only if |V (G)| ≡ k(mod 2)
and for any S ⊆ V (G) with |S| ≥ k, co(G− S) ≤ |S| − k.

We now turn our attention to some results concerning complementary prism
of graphs.

Theorem 2.6. [7] For positive integers l and i where 1 ≤ i ≤ l, let G1, . . . , Gl be
components of G. If for each i, GiGi is a k-extendable graph of order pi ≥ 2k+2
for some positive integer k, then GG is k-extendable.

Theorem 2.7. [7] Let G be a 2-regular, H-free graph where H ∈ {C3, C4, C5},
then GG is 2-extendable.

3. Main results

We begin this section by establishing some lemmas concerning complementary
prism of graphs and of regular graphs. These results are essential for establi-
shing Theorem 3.10, the main result of our paper. To simplify our discussion of
complementary prisms, G and G are referred to as subgraph copies of G and G,
respectively, in GG. For a vertex v of G, there is exactly one vertex of G which
is adjacent to v in GG. This vertex is denoted by v. That is {v} = NG(v).
Conversely, v is the only vertex of G which is adjacent to v. Similarly, for ϕ ̸=
X = {x1, x2, . . . , xk} ⊆ V (G), {x̄1, x̄2, . . . , x̄k} ⊆ V (G) is denoted by X and vice
versa. Clearly, |X| = |X|.

Lemma 3.1. Let G be a graph. Then GG is even and connected.

Proof. Clearly, GG is even. Let u, v ∈ V (GG). It is easy to see that if
u, v ∈ V (G)(V (G)), then either uv ∈ E(G) or uūv̄v is a u− v path. We may now
assume that u ∈ V (G) and v ∈ V (G). Clearly, uv ∈ E(GG) if v = ū. So suppose
that v = w̄ for some w ∈ V (G)− {u}. Then either uūw̄ or uww̄ is a u− v path.
This proves that GG is connected and completes the proof of our lemma.

For a graph G, it is easy to see that GG has a perfect matching. It then
follows by Theorem 2.1 that for a cutset S ⊆ V (GG), co(GG − S) ≤ |S|. The
next lemma provides a relationship of a cutset and the number of odd components
in a complementary prism.

Lemma 3.2. Let GG be a complementary prism and let S = A ∪ B be a cutset
of GG, where A ⊆ V (G) and B ⊆ V (G). Then

(a) co(GG− S) = |S| − 2t = |A|+ |B| − 2t, for some t ≥ 0.
(b) co(GG − S) ≤ co(G[B − A]) + co(G[A − B]) ≤ |A| + |B| − 2|A ∩ B|.

Consequently, |A ∩B| ≤ t.
(c) If co(G[B−A])+co(G[A−B]) = |A|+ |B|−2|A∩B|, then each component

of G[B − A] ∪G[A−B] is singleton. Consequently, G[A−B] is a clique.
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Proof. (a) Since GG contains a perfect matching and is of even order, it follows
by Theorem 2.1 that there is a non-negative integer t such that co(GG − S) =
|S| − 2t, for any cutset S ⊆ V (GG). Clearly, |S| = |A|+ |B|. Thus c(GG− S) =
|S| − 2t = |A|+ |B| − 2t as required.

We first observe that |B−A|+|A−B| = |B−A|+|A−B| = |A|+|B|−2|A∩B|
since |A| = |A−B|+ |A ∩B| and |B| = |B − A|+ |A ∩B|.

(b) Let C = V (G)−(A∪B). It is easy to see that if C = ϕ, then co(GG−S) =
co(G[B−A])+ co(G[A−B]) ≤ |B−A|+ |A−B| = |A|+ |B|− 2|A∩B|. We now
suppose that C ̸= ϕ. Then, by Lemma 3.1, GG[C ∪ C] is even and connected.
Thus co(GG − S) ≤ co(GG − (S ∪ C ∪ C)) = co(G[B − A]) + co(G[A − B]) ≤
|B − A|+ |A−B| = |A|+ |B| − 2|A ∩B| as required.

(c) follows by the fact that |B − A|+ |A−B| = |A|+ |B| − 2|A ∩B|.

For an induced subgraph H of G, ComH denotes the set of all components
in H. If X ⊆ V (G), then we use ComX for ComG[X]. For a cutset S of GG, put
A = S∩V (G), B = S∩V (G) and C = V (G)−(A∪B). Thus S = A∪B. Further,
let TB−A = {F | F is an odd component of G[B − A] and NG(u)− V (F ) ⊆ A
for all u ∈ V (F )}. TA−B = {F | F is an odd component of G[A − B] and

NG(ū) − V (F ) ⊆ B for all ū ∈ V (F )}. Finally, let L = LG ∪ LG, where LG =
{F | F is an odd component in G[B − A] and NGG(V (F )) ∩ C ̸= ϕ} and LG =
{F | F is an odd component in G[A − B] and NGG(V (F )) ∩ C ̸= ϕ}. Note that
if C = ϕ, then L = ϕ. Clearly, TB−A ∩ LG = ϕ and TA−B ∩ LG = ϕ. It is
easy to see that, if G is connected and G[B − A] contains only odd components,
then ComB−A = TB−A ∪ LG. Similarly, if G is connected and G[A− B] contains
only odd components, then ComA−B = TA−B ∪ LG. In what follows, the symbols

ComH , S, A, B, C, TB−A, TA−B, L, LG and LG are referred to these set up.

The next lemma follows from our set up.

Lemma 3.3. Let G be an r-regular connected graph of order p ≥ 2r + 1 and GG
a complementary prism. If |A| < r, then TB−A contains no singleton components.
Similarly, if |B| < p− r − 1, then TA−B contains no singleton components.

Lemma 3.4. For r ≥ 3, let G be a connected r-regular graph of order p ≥ 2r+1.
Let A,B, TB−A, TA−B be defined as above. Then

(a) If G[A] = Kr, then each component of TB−A is of order at least 3.
(b) If |A ∩B| = 1 and G[A−B] ∼= Kr, then the number of singleton compo-

nents in TB−A is at most 1.
(c) If |A ∩ B| = 1 and G[A − B] ∼= Kr−1, then the number of singleton

components in TB−A is at most 2.

Proof. (a) It follows by the fact that G is connected r-regular of order p ≥ 2r+1.
(b) Suppose to the contrary that TB−A contains two singleton components,

say F1 and F2 where V (F1) = {y1} and V (F2) = {y2}. Because |A ∩ B| = 1, y1
and y2 are adjacent to at least r − 1 vertices of A − B. Since G[A − B] = Kr

and r ≥ 3, it follows that there exists a vertex of A − B, say y3, such that
{y1, y2} ∪ (A−B) ⊆ NG(y3). Thus dG(y3) ≥ r + 1, a contradiction

(c) By applying similar arguments as in the proof of (b), (c) follows.
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Let x be a real number, ⌊x⌋e denotes the greatest even integer less than or
equal to x, that is, ⌊x⌋e = 2⌊x/2⌋. Note that if x is an integer and ⌊x⌋e = k then
x = k or x = k + 1.

Lemma 3.5. Let GG be a complementary prism and L = LG ∪ LG be defined as
above. Then co(GG− S) = co(G[B −A]) + co(G[A−B])− ⌊|L|⌋e. Consequently,
co(G[B−A])+ co(G[A−B])− co(GG−S) ≤ |L| ≤ co(G[B−A])+ co(G[A−B])−
co(GG− S) + 1.

Proof. If C=ϕ, then |L|=0 and thus co(GG− S)=co(G[B −A]) + co(G[A−B])
as required. We now suppose that C ̸=ϕ. By Lemmas 3.2(a) and (b), co(GG−S)
≤ co(G[B−A])+co(G[A−B]). By Lemma 3.1, GG[C∪C] is even and connected.
So it must be contained in some component of GG − S, say F . If x ∈ V (F ) −
(C ∪ C), then x is in some component of G[B − A] ∪ G[A − B], say M . So
V (M) ⊆ V (F ). If M is odd, then M ∈ L. Note that each odd component of L is
a subgraph of F . Hence, |V (F )| has the same parity with |L| and co(GG− S) =
co(G[B − A] ∪ G[A − B]) − |L| + ϵ, where ϵ = 1 if |L| is odd and ϵ = 0 if |L|
is even. So co(GG − S) = co(G[B − A] ∪ G[A − B]) − ⌊|L|⌋e. Thus ⌊|L|⌋e =
co(G[B −A]∪G[A−B])− co(GG− S). By properties of ⌊x⌋e, our result follows.
This proves our lemma.

Lemma 3.6. If G is an r-regular graph of order p ≥ 2r+1, then G is connected.

Proof. Note that G is (p − r − 1)-regular graph of order p. Suppose G is
disconnected. Then each component must have order at least p−r. So p ≥ 2(p−r)
and thus p ≤ 2r, a contradiction. This proves our lemma.

Lemma 3.7. Let G be a connected r-regular graph of order p ≥ 2r + 1. Let S be
a cutset of GG. Then S ∩ V (G) ̸= ϕ and S ∩ V (G) ̸= ϕ.

Proof. By Lemma 3.6, G is connected. Hence, G and G are connected. Suppose
without loss of generality that S∩V (G) = ϕ. So S ⊆ V (G). Since G = GG−V (G)
is connected and each vertex u of V (G)−S is adjacent to a vertex u in G, it follows
that GG − S is connected, a contradiction. Hence, S ∩ V (G) ̸= ϕ. By a similar
argument, S ∩ V (G) ̸= ϕ. This proves our lemma.

Theorem 3.8. Let G be a connected r-regular graph of order p ≥ 2r+1, for some
r ≥ 2. Then GG is bicritical. Consequently, GG is 1-extendable.

Proof. Suppose GG is not bicritical. By Theorem 2.5, there is a cutset S ⊆
V (GG), where |S| ≥ 2 such that co(GG − S) > |S| − 2. It follows by Lemmas
3.2(a) that co(GG−S) = |S| for |S| ≥ 2. Note that, by Lemma 3.7, A = S∩V (G)
and B = S ∩ V (G) are not empty. Thus A and B are not empty. By Lemma 3.2
(b), A ∩ B = ϕ and thus co(G[B − A]) + co(G[A− B]) = co(G[B]) + co(G[A])) =
co(GG − S) = |S| = |B| + |A|. By Lemma 3.2(c), each component of G[B] and
G[A] is singleton. Hence, G[A] ∼= K|A|. Since G is r-regular of order p ≥ 2r + 1,
|A| ≤ r + 1. If |A| = r + 1, then G[A] ∼= Kr+1 is a disconnected component in
G, a contradiction. So 1 ≤ |A| ≤ r. By Lemmas 3.3 and 3.4(a), no singleton
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component in G[B] belongs to TB−A. Since each component of G[B] is singleton,
TB−A = ϕ. Because co(GG− S) = co(G[A]) + co(G[B]), it follows by Lemma 3.5
that 0 ≤ |L| ≤ 1. Since B ̸= ϕ and G[B] contains only singleton components, it
follows that 1 ≤ |B| = |TB−A| + |LG| ≤ 1. Hence, |B| = |LG| = 1. Therefore,
|B| = 1 < r ≤ p− r− 1. By Lemma 3.3, TA−B contains no singleton components.

Hence, TA−B = ϕ. Since each component of G[A] is singleton, it is contained in

LG. So |LG| = |A| = |A| ≥ 1. Therefore, |L| = |LG| + |LG| ≥ 2, a contradiction.
Hence, GG is bicritical. It then follows that GG is 1-extendable. This proves our
theorem.

The next lemma follows by Theorem 2.3.

Lemma 3.9. Let G be a connected r-regular graph of order p ≥ 2r + 1, for some
r ≥ 2. If G contains a triangle, then GG is not r-extendable.

By Lemma 3.9, if G is a 3-regular graph of order p ≥ 8 containing a triangle,
then GG is not 3-extendable. The next theorem provides a sufficient condition for
a connected r-regular graph so that GG is 2-extendable, for r ≥ 4. In case r = 3, if
G contains the graph F in Figure 1 as an induced subgraph, then {yz, w̄x̄} cannot
be extended to a perfect matching in GG. Hence, GG is not 2-extendable. We
next show that the complementary prism of connected 3-regular, F -free graphs
and connected r-regular graphs for r ≥ 4 are 2-extendable.

Theorem 3.10. Suppose G is a connected graph of order p. If G is either 3-
regular, F -free where p ≥ 8 and F is the graph in Figure 1 or r0-regular where
p ≥ 2r0 + 1 ≥ 9, then GG is 2-extendable.

Proof. Observe that G is (p − r − 1)-regular where r ∈ {3, r0} and p − r −
1 ≥ 4. By Theorem 3.8, GG is bicritical. Suppose to the contrary that GG is
not 2-extendable. Then there is a matching M ⊆ E(GG) of size two such that
GG − V (M) contains no perfect matching. By Theorem 2.1, there is a cutset
T ⊆ V (GG)− V (M) such that co(GG− (V (M)∪ T )) > |T |. Let S = T ∪ V (M).
Clearly, |S| ≥ 4. Thus co(GG−S) > |S|−4. Because GG is bicritical, by Theorem
2.5, co(GG−S) ≤ |S|−2. It follows by parity that co(GG−S) = |S|−2 and GG[S]
contains a matching of size at least two. Let A = S ∩ V (G) and B = S ∩ V (G).
By Lemma 3.2 (b), |A ∩ B| ≤ 1. Further, by Lemma 3.7, A ̸= ϕ and B ̸= ϕ. So
A ̸= ϕ and B ̸= ϕ. We distinguish 2 cases according to |A ∩B|.

Case 1. |A ∩ B| = 1. Put {u} = A ∩ B. By Lemma 3.2(b) co(GG − S) =
co(G[B − A]) + co(G[A − B]) = |S| − 2. By Lemma 3.5, |L| ≤ 1. Further, by
Lemma 3.2(c), each component of G[A−B]∪G[B−A] is singleton. Thus, G[A−B]
is a clique, |ComA−B| = |A−B| and |ComB−A| = |B −A|. Since G is connected,
it is easy to see that if |A − B| ≥ r + 1, then G[A − B] ∼= K|A−B| contains a
vertex of degree greater than r or G ∼= Kr+1 is a graph of order less than p, a
contradiction. Hence, |A−B| ≤ r.

We first show that |TB−A| ≥ 2. Suppose to the contrary that |TB−A| ≤ 1.
Since G[B−A] contains only singleton components and |LG| ≤ |L| ≤ 1, it follows
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that |B − A| = |ComB−A| = |TB−A| + |LG| ≤ 2. Thus |B| = |B| = |B − A| +
|B ∩ A| ≤ 3 < 4 ≤ p − r − 1. By Lemma 3.3, TA−B contains no singleton
components. Thus TA−B = ϕ. Consequently, ComA−B = TA−B ∪ LG = LG.

Therefore, |A−B| = |LG| ≤ 1 since G[A−B] contains only singleton components.
So |A| = |A| = |A − B| + |A ∩ B| ≤ 2 < r. By Lemma 3.3, TB−A contains no
singleton components. So TB−A = ϕ. Since TA−B = ϕ and TB−A = ϕ, it follows

that every odd component of G[A − B] ∪ G[B − A] is in L. Because |L| ≤ 1
and G[A − B] ∪ G[B − A] contains only singleton components, it follows that
|A − B| + |B − A| ≤ 1. Hence, |S| = |A − B| + |A ∩ B| + |A ∩ B| + |B − A| =
|A − B| + 2|A ∩ B| + |B − A| ≤ 3 < 4, contradicting the fact that |S| ≥ 4.
Therefore, |TB−A| ≥ 2.

Let D1, D2 ∈ TB−A. Since G[B − A] contains only singleton components,
Di

∼= K1, for 1 ≤ i ≤ 2. Put {vi} = V (Di). By Lemma 3.3, |A| ≥ r. Conse-
quently, |A−B| ≥ r−1. Because |A−B| ≤ r, r−1 ≤ |A−B| ≤ r. Since G[A−B]
is clique, |A ∩ B| = 1 and |TB−A| ≥ 2, it follows by Lemmas 3.4 (b) and (c) that
|A − B| = r − 1 and |TB−A| = 2. Thus |A| = |A − B| + |A ∩ B| = r. Because
r − 1 = |A− B| = |A− B| = |ComA−B| = |TA−B|+ |LG| ≤ |TA−B|+ 1, it follows
that |TA−B| ≥ r− 2 ≥ 1. Thus TA−B contains a singleton component. By Lemma

3.3, |B| ≥ p−r−1 ≥ 4. Therefore, |B−A| = |B|−|B∩A| ≥ p−r−2 ≥ 3. On the
other hand, |B−A| = |ComB−A| = |TB−A|+|LG| ≤ 3. Then |B−A| = |B−A| = 3.
Thus 3 = |TB−A| + |LG| = 2 + |LG|. It follows that L = LG = {K1} and conse-
quently LG = ϕ. Since |A| = r, degGv1 = degGv2 = r and NG(v1) = NG(v2) ⊆ A,
it follows that NG(v1) = NG(v2) = A.

We now put {w̄} = V (K1) where K1 ∈ TA−B. Clearly, NG(w̄) ⊆ B −{v̄1, v̄2}
since v1 and v2 are adjacent to every vertex in A. Because |B| = |B−A|+|A∩B| =
3 + 1 = 4, |NG(w̄)| ≤ |B| − |{v̄1, v̄2}| = 2 thus G is t-regular where t ≤ 2. This
contradicts the fact that G is (p− r − 1)-regular where p− r − 1 ≥ 4. Therefore,
Case 1 cannot occur.

Case 2. |A ∩ B| = 0. By Lemmas 3.2(a) and (b), |S| − 2 = co(GG − S) ≤
co(G[A]) + co(G[B]) ≤ |A| + |B| = |S|. By parity, co(G[A]) + co(G[B]) = |S| or
co(G[A]) + co(G[B]) = |S| − 2. We distinguish 2 cases.

Case 2.1. co(G[A]) + co(G[B]) = |S| = |A| + |B|. Clearly, each component of
G[A] ∪ G[B] is a singleton. So G[A] ∼= K|A|. It is easy to see that if |A| ≥ r + 1,
then G[A] contains a vertex of degree greater than r or G[A] is a disconnected
component in G, a contradiction. Hence, |A| ≤ r. By Lemmas 3.3 and 3.4(a),
TB−A contains no singleton components. Therefore, TB−A = ϕ. Thus |LG| = |B|.
Because co(G[B]) + co(G[A])− co(GG− S) = |S| − (|S| − 2) = 2, by Lemma 3.5,
2 ≤ |L| ≤ 3. Since B ̸= ϕ and |B| = |LG| ≤ |L|, it follows that 1 ≤ |B| ≤ 3.
Because |B| = |B| ≤ 3 < 4 ≤ p − r − 1, by Lemma 3.3, TA−B contains no

singleton components. Thus TA−B = ϕ. Hence, |LG| = |A| = |A|. Therefore,

|L| = |LG| + |LG| = |B| + |A| = |S| and thus 2 ≤ |S| ≤ 3 since 2 ≤ |L| ≤ 3,
contradicting the fact that |S| ≥ 4. Hence, Case 2.1 cannot occur.
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Case 2.2. co(G[A]) + co(G[B]) = |S| − 2 = |A|+ |B| − 2. Put s = |S|. It is easy
to see that G[A]∪G[B] contains all singleton components except exactly one non-
singleton component which is of order 2 or 3. Hence, G[A] ∪ G[B] is isomorphic
to a graph in {(s− 2)K1∪K2, (s− 3)K1∪P3, (s− 3)K1∪K3}. If |A| ≥ r+2 ≥ 5,
then G[A] must contain a singleton component, say F , where V (F ) = {u}. It
follows that degGu ≥ r + 1, a contradiction. Hence, |A| = |A| ≤ r + 1. Since
co(G[A]) + co(G[B]) − co(GG − S) = (|S| − 2) − (|S| − 2) = 0, by Lemma 3.5,
|L| ≤ 1. We distinguish 2 subcases according to the non-singleton component.

Subcase 2.2.1. The only non-singleton component in G[A]∪G[B] is contained in
G[B]. So G[A] ∼= |A|K1 and G[A] ∼= K|A|

∼= K|A|. Clearly, |A| ≤ r otherwise G[A]
is a disconnected component in G. By Lemmas 3.3 and 3.4(a), TB−A contains no
singleton components. So every singleton component in G[B] is contained in LG.
Since |LG| ≤ |L| ≤ 1, G[B] contains at most 1 singleton component. We first show
that TA−B = ϕ. Suppose this is not the case. Then there is K1 ∈ TA−B since G[A]

contains only singleton components. By Lemma 3.3, |B| = |B| ≥ p − r − 1 ≥ 4.
Because G[B] contains a non-singleton component of order either 2 or 3 and at
most 1 singleton component, it follows that G[B] is isomorphic to a graph in
{K1 ∪ P3, K1 ∪K3}. Thus |B| = 4 and either TB−A = {P3} or TB−A = {K3}, and
LG = {K1}. Thus LG = ϕ. So ComA = TA−B ∪ LG = TA−B. Therefore, each

vertex of A is adjacent to every vertex of B since G is (p − r − 1)-regular and
p − r − 1 ≥ 4. It follows that there is no edge joining vertices of A and B. But
this contradicts the fact that TB−A ̸= ϕ. Hence, TA−B = ϕ as required.

Therefore, ComA = LG. Since |LG| ≤ |L| ≤ 1 and |A| = |A| ̸= 0, it follows
that |ComA| = |LG| = 1. Further, LG = ϕ and G[A] = K1. Thus ComB = TB−A.
Because |A| = |A| = 1 < r ≤ 3, by Lemma 3.3, TB−A contains no singleton
components. So G[B] contains no singleton components and G[B] is isomorphic to
a graph in {P3, K3} since |B| = |S|−|A| ≥ 3. Then GG[S] = G[A]∪G[B] contains
a matching of size less than two, contradicting the fact that GG[S] contains a
matching of size at least two. Hence, Subcase 2.2.1 cannot occur.

Subcase 2.2.2. The only non-singleton component in G[A] ∪ G[B] is contained
in G[A]. So G[B] ∼= |B|K1. We first show that TB−A ̸= ϕ. Suppose this is not
the case. Then TB−A = ϕ and thus ComB = TB−A ∪ LG = LG. Since B ̸= ϕ
and |LG| + |LG| = |L| ≤ 1, it follows that |LG| = 1 and |LG| = 0. Consequently,
|B| = 1 since G[B] ∼= |B|K1. Because |B| = |B| = 1 < r, TA−B contains no

singleton components by Lemma 3.3. Hence, G[A] contains exactly one non-
singleton component of order 2 or 3. Thus |A| = |A| ≤ 3. It is easy to see that
GG[S] = G[A]∪G[B] contains a matching of size at most one since |B| = 1. This
contradicts the fact that GG[S] contains a matching of size at least two. Hence,
TB−A ̸= ϕ. Further, |TB−A| ≥ |B|−1 since |LG| ≤ |L| ≤ 1 and |TB−A|+|LG| = |B|.

Because G[B] ∼= |B|K1, there exists K1 ∈ TB−A. By Lemma 3.3, |A| ≥ r.
So r ≤ |A| ≤ r + 1. We first suppose that |A| = r + 1. Let Ft be the non-
singleton component of order t in G[A] and let A1 = V (Ft). Then 2 ≤ t ≤ 3 and
G[A] ∼= (r + 1− t)K1 ∪ Ft. It is easy to see that G[A] contains r + 1− t vertices

of degree r and each vertex of A1 = A1 has degree, in G[A], at least r + 1 − t
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and at most r − 1. Let {w} = V (K1) where K1 ∈ TB−A, then NG(w) ⊆ A1 and
thus 3 ≤ r = degG(w) ≤ t ≤ 3. It then follows that NG(w) = A1 and t = r = 3.
Thus w̄ is not adjacent to any vertex of A1 and G[A] ∼= K1 ∪ F3. Further, each
vertex of A1 has degree at least |TB−A|+1 = |B| − |LG|+1 ≥ |B| since |LG| ≤ 1.
Thus |B| ≤ 3 since G is now 3-regular. Because G is (p − r − 1)-regular where
p−r−1 ≥ 4 and each vertex of V (F3) = A1 has degree at most 3 in G[A∪B] since
it must be adjacent to at most one vertex in B, it follows that F3 ∈ LG. Since
|LG| ≤ |L| ≤ 1, the only singleton component, K1, of G[A] must be in TA−B. By

Lemma 3.3, |B| ≥ p− r− 1 ≥ 4. But this contradicts the fact that |B| = |B| ≤ 3.
Therefore, |A| = r.

Consequently, for each w ∈ V (K1) where K1 ∈ TB−A, NG(w) = A. Now
let v̄ ∈ A. Then degB(v̄) ≤ |B| − |TB−A| = |B| − |TB−A| = |LG| ≤ 1. Further,
degA(v̄) ≤ 2 since each component of G[A] has order at most 3. Because G
is (p − r − 1)-regular where p − r − 1 ≥ 4, v̄ is adjacent to some vertex of
C. Consequently, each odd component of G[A] is contained in LG. Because
|A| = |A| = r ≥ 3, G[A] contains a non-singleton component of order either
2 or 3 and |LG| ≤ |L| ≤ 1, it follows that co(G[A]) = 1. Therefore, G[A] is
isomorphic to a graph in {K1 ∪K2, P3, K3}. Hence, r = |A| = 3, |L| = |LG| = 1,
ComB = TB−A = {|B|K1}. Further, for x ∈ B, y ∈ A,NG(x) = A and degG(y) =
r = 3 ≥ |B| = |B|.

We first suppose that G[A] ∼= K3. Then G[A] is independent and thus G[B]
must contain a matching of size at least two since GG[S] contains a matching
of size at least two. So |B| = |B| ≥ 4. But this contradicts the fact that
|B| = |B| ≤ 3. Hence, G[A] ̸= K3. Therefore, G[A] is isomorphic to a graph in
{P3, K1 ∪ K2}. In either case, G[A] contains a maximum matching of size one.
Then 2 ≤ |B| ≤ 3 since GG[A ∪B] contains a matching of size at least two.

We now suppose that G[A] ∼= K1 ∪K2. Then G[A] ∼= P3 and then the vertex
of degree two in P3 has degree, in G, greater than r = 3, again a contradiction.
Hence, G[A] ̸= K1 ∪ K2. Consequently, G[A] ∼= P3 and then G[A] ∼= K1 ∪ K2.
Clearly, |B| ̸= 3 otherwise G[A] contains a vertex of degree greater than r = 3.
So |B| = 2 and thus G[A ∪ B] contains the graph F in Figure 1 as an induced
subgraph. But this contradicts our hypothesis that G is 3-regular, F -free graph.
This completes the proof of our theorem.

It is clear that a connected 3-regular graph containing F , in Figure 1, as an
induced subgraph contains v as a cut vertex. So 2-connected 3-regular graphs are
F -free. The next corollary follows by this fact and Theorem 3.10.

Corollary 3.11. If G is a 2-connected r-regular graph of order p ≥ 2r + 1, for
r ≥ 3, then GG is 2-extendable.

According to Theorems 2.6 and 3.10, we have the following theorem.

Theorem 3.12. If each component Gi of G is 3-regular, F -free of order at least
8 where F is the graph in Figure 1 or r0-regular of order at least 2r0+1 ≥ 9, then
GG is 2-extendable.
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We conclude our paper by posing following problem.

Problem. Establish sufficient condition for a complementary prism of r-regular
graphs to be k-extendable for r ≥ k ≥ 3.
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