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Abstract. A well-known generalization of a semigroup S is called the Γ–semigroup. We

generalize the notion of biacts over semigroups to Γ–biacts over Γ-semigroups. Green’s

relations on semigroups and biacts play an important role in these theories. In this

paper, we study Green’s relations on Γ–biacts.
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1. Introduction and preliminaries

The concept of Γ−semigroup, as a generalization of the notion of semigroup,
was introduced by Sen [10]. Certain algebraic properties of Γ–semigroups have
been studied by some authors, for example, one may see [2], [3]. Actions over a
semigroup S, S–acts, play an important role in a variety of areas such as theore-
tical computer science (see [7]). We extended some classical notions of S–acts to
Γ − S–acts in [12]. Green [5] introduced the Green’s relations on semigroups in
1951. Green’s relations for Γ–semigroups were studied by Chinram and Siammai
[2]. Also, Green’s relations on biacts have been studied in [8]. A generalization
of acts over semigroups to Γ–acts over Γ–semigroups can be found in [11]. In
this paper, we generalize the notion of biacts to Γ–biacts and consider Green’s
relations on Γ–biacts, which are in fact a generalization of Green’s relations on
biacts. Other classical algebraic structures such as modules can also be generalized
to Γ–modules. For more information, see for example [1, 6]. As an application of
(ordered) Γ–semigroups in connection with fuzzy sets, we refer to [4, 9].

In the following, we recall certain preliminaries on Γ–semigroups and Γ− S–
acts needed in the sequel.

1Corresponding author.
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Let X be a non-empty set, B (X) denote the set of relations and ε (X) the set
of equivalence relations on X. Also, the set {(x, x) | x ∈ X}, the diagonal relation
on X, is denoted by ∆X , and the universal relation X ×X is denoted by ∇X . If

ρ ∈ B (X), the transitive closure of ρ is the relation ρ∞ =
∞∪
i=1

ρi ∈ B (X) which is

the smallest transitive relation in the poset (B (X) ,⊆) containing ρ. Moreover,
ρe = (ρ

∪
ρ−1

∪
∆X)

∞
is the equivalence closure of ρ, that is, an equivalence

relation on X generated by ρ (see [8, Theorem I.1.6]). A lattice is a poset L for
which the meet a∧b (the greatest lower bound) and the join a∨b (the least upper
bound) exist for every a, b ∈ L.

Corollary 1.1. [8] For a non-empty set X, if ρ ∈ B(X), then (x, y) ∈ ρe if and
only if x=y or for some n ∈ N there exists a sequence of elements x=z1, z2, ..., zn=y
in X such that for every i ∈ {1, 2, ..., n− 1}, (zi, zi+1) ∈ ρ

∪
ρ−1. In particular, if

ρ and σ are equivalence relations on a set X, then in ε (X) their join ρ∨ σ is the
relation defined by x (ρ ∨ σ) y if and only if there exist z1, z2, ..., zn ∈ X such that
x = z1, zn = y and (zi, zi+1) ∈ τi, τi ∈ {ρ, σ} , i ∈ {1, 2, ..., n− 1}.

Definition 1.2. [10] Let S and Γ be non-empty sets. Then S is said to be a
Γ–semigroup if there exists a mapping S × Γ× S → S written as (s, γ, t) 7→ sγt,
satisfying (sγt) βu = sγ (tβu) for all s, t, u ∈ S and γ, β ∈ Γ. An element e in a
Γ–semigroup S is called a left (right) Γ–identity if eγs = s (sγe = s) for all s ∈ S
and γ ∈ Γ. By a Γ–identity we mean an element of S which is both a left and a
right Γ–identity. A Γ–semigroup with a Γ–identity 1 is called a Γ–monoid.

Definition 1.3. [12] Let S be a Γ–semigroup with a left Γ–identity e and A be a
non-empty set. A mapping λ : S×Γ×A → A where (s, γ, a) 7→ sγa := λ (s, γ, a)
such that (sγt) βa = sγ (tβa) and eγa = a for all a ∈ A, s, t ∈ S and γ, β ∈ Γ, is
called a left Γ−S–action and A is said to be a left Γ−S–act which is denoted by
Γ− SA. Also, for a Γ–semigroup S with a right Γ–identity e, by a right Γ−S–act
we mean a non-empty set A together with a mapping λ : A× Γ× S → A where
(a, γ, s) 7→ aγs := λ (a, γ, s) satisfying the properties aγ (sβt) = (aγs) βt and
aγe = a for all a ∈ A, s, t ∈ S and γ, β ∈ Γ. We denote a right Γ − S– act by
Γ− AS.

Remark 1.4. If S is a Γ–monoid with Γ–identity 1 and Γ−SA is a left Γ−S–act,
then for every s, t ∈ S, a ∈ A, γ, β ∈ Γ, we have sγt = sβt and sγa = sβa. Indeed,
sγt = (sβ1)γt = sβ(1γt) = sβt; and sγa = (sβ1)γa = sβ(1γa) = sβa. Therefore,
it is more interesting to consider left Γ− S–acts for a Γ–semigroup S with a left
Γ–identity (not a Γ–identity) and, likewise, right Γ−S–acts for a Γ–semigroup S
with a right Γ–identity (not a Γ–identity).

2. Γ–biacts and some basic properties

The purpose of this section is to introduce the structure of Γ–biacts and investigate
some of their properties.
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Definition 2.1. [8] Let T and S be monoids. A T−S–biact TAS is a non-empty set
A equipped with a left T -action T×A → A, (t, a) 7→ ta, satisfying (t1t2)a = t1(t2a)
for all t1, t2 ∈ T, a ∈ A, and a right S-action A × S → A, (a, s) 7→ as, satisfying
a(s1s2) = (as1)s2 for all s1, s2 ∈ S, a ∈ A, for which (ta)s = t(as) holds for all
t ∈ T, s ∈ S, a ∈ A. For a T −S–biact TAS, a relation ρ ∈ B (A), i.e. ρ ⊆ A×A, is
called T−S–compatible if (a, b) ∈ ρ implies that (tas, tbs) ∈ ρ for all t ∈ T, a, b ∈ A
and s ∈ S. Moreover, an equivalence relation ρ ∈ ε (A) which is T −S–compatible
is called a T − S–congruence on TAS. The set of all T − S–congruences on TAS

is denoted by Con(TAS) .

Definition 2.2. Let Γ− TA be a left Γ−T–act and Γ−AS be a right Γ−S–act.
We call A a Γ − T − S–biact, or simply a Γ–biact, and write Γ − TAS, if for all
t ∈ T,s ∈ S, a ∈ A and γ, β ∈ Γ,(tγa) βs = tγ (aβs).

From now on, Γ − TAS stands for a Γ − T − S–biact where T and S are
Γ–semigroups with a left and a right Γ–identity, respectively (see Remark 1.4),
unless otherwise stated. If no confusion arises, we may use the same symbol 1 for
a left Γ–identity and a right Γ–identity.

Remark 2.3. Every T−S–biact TAS over semigroups T and S with a left identity
and a right identity, respectively, can be made into a Γ − T − S–biact over the
induced left Γ–semigroup T with a left Γ–identity by setting tγt′ := tt′, t, t′ ∈ T,
and right Γ–semigroup S with a right Γ–identity by defining sγs′ := ss′, s, s′ ∈ S.
Define mappings T × Γ × A → A by tγa = ta and A × Γ × S → A by aβs = as
for all t ∈ T, a ∈ A, s ∈ S and γ, β ∈ Γ. It is easily seen that TAS is a Γ− T − S–
biact. Conversely, let A be a Γ − T − S–biact where T is a Γ–semigroup with a
left Γ–identity and S is a Γ–semigroup with a right Γ–identity. Fix an element γ
in Γ. First note that T and S are semigroups with the operations tt′ := tγt′ and
ss′ := sγs′ for all t, t′ ∈ T and s, s′ ∈ S respectively. We define T × A → A by
ta := tγa and A× S → A by as := aγs for all t ∈ T, a ∈ A, s ∈ S. Then one can
show that A is a T − S–biact.

Example 2.4. Let S = T = {4n+ 3 | n ∈ N} , Γ = {4n+ 1 | n ∈ N} and
A = {4n | n ∈ N}. Under the usual addition of natural numbers, S and T are
Γ–semigroups and A is a Γ− T − S–biact, but not a T − S–biact.

Definition 2.5. Let Γ−TAS be a Γ−T −S–biact. A relation ρ ∈ B (A) , i.e. ρ ⊆
A×A, is called Γ−T −S– compatible if (a, b) ∈ ρ implies that (tγaβs, tγbβs) ∈ ρ
for all t ∈ T , a, b ∈ A, s ∈ S and γ, β ∈ Γ. For a Γ − T − S–biact Γ − TAS,
an equivalence relation ρ ∈ ε (A) which is Γ − T − S–compatible is called a
Γ − T − S–congruence, or simply a Γ–congruence, on Γ − TAS. We denote the
set of all Γ–congruences on Γ− TAS by Con(Γ− TAS) . Clearly, under the usual
inclusion of relations, Con(Γ− TAS) is a poset.

Remark 2.6. If |S| = 1, we have a definition of a Γ−T–compatible relation and
a Γ−T–congruence on Γ−TA; and if |T | = 1, we have that of a Γ−S–compatible
relation and a Γ− S–congruence on Γ− AS.
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Lemma 2.7. For a Γ−T−S–biact Γ−TAS and a relation ρ ∈ B (A) (or ρ ∈ ε (A)),
ρ is Γ−T −S–compatible (or a Γ−T −S–congruence) on Γ−TAS if and only if ρ
is both Γ−T–compatible (or a Γ−T–congruence) on Γ−TA and Γ−S–compatible
(or a Γ− S–congruence) on Γ− AS.

Proof. We need only to show the assertion for the case ρ ∈ B (A) .

Necessity. Suppose that ρ ∈ B(A) is Γ−T−S–compatible on Γ−TAS and (a, b) ∈ ρ.
For every γ, β ∈ Γ and t ∈ T, s ∈ S we have (tγa, tγb) = (tγaβ1, tγbβ1) ∈ ρ and
(aβs, bβs) = (1γaβs, 1γbβs) ∈ ρ which means that ρ is both Γ−T–compatible
and Γ−S–compatible.

Sufficiency. Let ρ ∈ B (A) be both Γ − T–compatible and Γ − S–compatible
on Γ − TAS, (a, b) ∈ ρ, t ∈ T, s ∈ S and γ, β ∈ Γ. Then (tγa, tγb) ∈ ρ by
Γ−T–compatibility, and therefore ((tγa) βs, (tγb) βs) ∈ ρ by Γ−S–compatibility.
Hence, ρ is Γ− T − S–compatible on Γ− TAS.

Definition 2.8. Let Γ− TAS be a Γ–biact and ρ ∈ B (A). The relation

ρc := {(tγa1βs, tγa2βs) ∈ A× A | t ∈ T, (a1, a2) ∈ ρ, s ∈ S, γ, β ∈ Γ}

is called the Γ− T − S–compatible closure of ρ. The unique smallest Γ− T − S–
congruence on TAS containing ρ ∈ B (A) will be denoted by ρ# and called the
Γ–congruence closure of ρ.

Proposition 2.9. Let ρ, σ ∈ B (A) for a Γ–biact Γ− TAS. Then
(1) ρ ⊆ ρc.
(2) (ρc)−1 = (ρ−1)

c
.

(3) ρ ⊆ σ implies that ρc ⊆ σc.
(4) (ρc)c = ρc.
(5) (ρ

∪
σ)c = ρc

∪
σc.

(6) ρ = ρc if and only if ρ is Γ− T − S–compatible.

Proof. (1) Take (a1, a2) ∈ ρ. Then (a1, a2) = (1γa1β1, 1γa2β1) ∈ ρc for all
γ, β ∈ Γ. Hence, ρ ⊆ ρc.

(2) Take (a1
′′, a2

′′) ∈ (ρc)−1. So (a2
′′, a1

′′) ∈ ρc and then a2
′′ = t′γ′a2

′β′s′,
a1

′′ = t′γ′a1
′β′s′ for some t′ ∈ T, s ∈ S, γ′, β′ ∈ Γ and (a2

′, a1
′) ∈ ρ whence

(a1
′, a2

′) ∈ ρ−1 ⊆ (ρ−1)
c
. Therefore, a1

′ = tγa1βs, a2
′ = tγa2βs for some t ∈ T,

s ∈ S, γ, β ∈ Γ and (a1, a2) ∈ ρ−1. Hence, a1
′′ = (t′γ′t) γa1β (sβ′s′) and a2

′′ =
(t′γ′t) γa2β (sβ′s′) that t′γ′t ∈ T, sβ′s′ ∈ S, i.e. (a1

′′, a2
′′) ∈ (ρ−1)

c
. Hence,

(ρc)−1 ⊆ (ρ−1)
c
. Similarly, (ρ−1)

c ⊆ (ρc)−1. Therefore, (ρc)−1 = (ρ−1)
c
.

(3) Let ρ ⊆ σ. Take (a1
′′, a2

′′) ∈ ρc. Then (a1
′′, a2

′′) =(t′γ′a′1β
′s′, t′γ′a′2β

′s′)
for some t′ ∈ T, s′ ∈ S, γ′, β′ ∈ Γ and (a1

′, a2
′) ∈ ρ. Therefore, (a1

′, a2
′) ∈ σ which

implies that (a1
′′, a2

′′) ∈ σc. Hence, ρc ⊆ σc.

(4) By (1), ρc ⊆ (ρc)c. Conversely, let (a1
′′, a2

′′) ∈ (ρc)c. Then (a1
′′, a2

′′) =
(t′γ′a′1β

′s′, t′γ′a′2β
′s′) for some t′ ∈ T, s′ ∈ S, γ′, β′ ∈ Γ and (a1

′, a2
′) ∈ ρc. Then

(a1
′, a2

′) = (tγa1βs, tγa2βs) for some t ∈ T, s ∈ S, γ, β ∈ Γ,(a1, a2) ∈ ρ. Hence,
a′′1 = (t′γ′t)γa1β(sβ

′s′) and a′′2 = (t′γ′t)γa2β(sβ
′s′), i.e. (a1

′′, a2
′′) ∈ ρc. Hence,

(ρc)c ⊆ ρc. Therefore, (ρc)c = ρc.
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(5) Using (3), we have ρc ⊆ (ρ
∪

σ)c and σc ⊆ (ρ
∪
σ)c, and therefore

ρc
∪

σc ⊆ (ρ
∪

σ)c. Conversely, suppose that (a1
′, a2

′) ∈ (ρ
∪
σ)c. Then a1

′ =
tγa1βs,a2

′ = tγa2βs for some t ∈ T, s ∈ S, γ, β ∈ Γ and (a1, a2) ∈ ρ
∪

σ. Thus,
(a1, a2) ∈ ρ or (a1, a2) ∈ σ, and hence (a1

′, a2
′) ∈ ρc or (a1

′, a2
′) ∈ σc. Thus,

(a1
′, a2

′) ∈ ρc
∪
σc. Hence, (ρ

∪
σ)c ⊆ ρc

∪
σc. Therefore, (ρ

∪
σ)c = ρc

∪
σc.

(6) Let first ρ = ρc. Then (a1, a2) ∈ ρ implies that (tγa1βs, tγa2βs) ∈ ρc = ρ,
for all t ∈ T, s ∈ S and γ, β ∈ Γ. Thus, ρ is Γ − T − S–compatible. Conversely,
if ρ is a Γ − T − S–compatible relation and (a1

′, a2
′) ∈ ρc, then a1

′ = tγa1βs,
a2

′ = tγa2βs for some t ∈ T, s ∈ S, (a1, a2) ∈ ρ, γ, β ∈ Γ. Therefore, (a1
′, a2

′) =
(tγa1βs, tγa2βs) ∈ ρ by Γ − T − S–compatibility. Thus, ρc ⊆ ρ. But, by (1),
ρ ⊆ ρc. Therefore, ρ = ρc.

Lemma 2.10. Let Γ− TAS be a Γ–biact. If the relation ρ ∈ B (A) is Γ− T − S–
compatible, then ρn is also Γ− T − S–compatible for any n ∈ N.

Proof. Let (a1, a2) ∈ ρn. Then there exist b1, b2, . . . , bn−1 ∈ A such that
(a1, b1) , (b1, b2) , ..., (bn−1, a2) ∈ ρ. Since ρ is Γ−T−S–compatible, (tγa1βs, tγb1βs) ,
(tγb1βs, tγb2βs) , ..., (tγbn−1βs, tγa2βs) ∈ ρ for all t ∈ T, s ∈ S and γ, β ∈ Γ, and
so (tγa1βs, tγa2βs) ∈ ρn.

Definition 2.11. Let Γ–TAS be a Γ–biact and ρ ∈ B (A). If (a1
′, a2

′) ∈ (ρ
∪
ρ−1)

c
,

or equivalently, a1
′ = tγa1βs and a2

′ = tγa2βs for some t ∈ T, s ∈ S, γ, β ∈ Γ
and (a1, a2) ∈ ρ or (a2, a1) ∈ ρ, then we say that a1

′ is connected with a2
′ by an

elementary Γ− T − S − ρ–transition, and use the notation a1
′ → a2

′.

Theorem 2.12. Let Γ–TAS be a Γ–biact and ρ ∈ B (A). Then ρ# = (ρc)e.

Proof. Obviously, ρ ⊆ ρc ⊆ (ρc)e. We show that (ρc)e ∈ Con(Γ− TAS) . In view
of [8, Theorem I.1.6], (ρc)e = θ∞ where θ = ρc

∪
(ρc)−1∪∆A. Let (a1, a2) ∈ (ρc)e.

Then (a1, a2) ∈ θn for some n ∈ N. Using Proposition 2.9(2) and (5), and the
clear fact ∆c

A = ∆A, we get

θ = ρc
∪

(ρ−1)
c
∪

∆c
A = (ρ

∪
ρ−1

∪
∆A)

c
= θc.

Therefore, by Proposition 2.9(6), θ is Γ − T − S–compatible and then so is θn

by Lemma 2.10. Thus, (tγa1βs, tγa2βs) ∈ θn ⊆ (ρc)e for every t ∈ T, s ∈ S,
γ, β ∈ Γ. Hence, (ρc)e is a Γ– congruence on Γ–TAS containing ρ. Let σ be a
Γ–congruence on Γ–TAS containing ρ. Then, by using Proposition 2.9(3) and (6),
we get ρc ⊆ σc = σ and so (ρc)e ⊆ σe = σ. Hence, ρ# = (ρc)e.

Corollary 2.13. Let ρ ∈B(A) for a Γ–biact Γ−TAS, a1, a2 ∈A. Then (a1, a2) ∈ ρ#

if and only if a1 = a2 or for some n ∈ N there is a sequence a1 = z1 → z2 →
· · · → zn = a2 of elementary Γ− T − S − ρ–transitions connecting a1 to a2.

Proof. Using Theorem 2.12, (a1, a2) ∈ ρ# if and only if (a1, a2) ∈ (ρc)e, and by
Corollary 1.1, if and only if a1 = a2 or for some n ∈ N there exists a sequence
of elements a1 = z1, z2, ..., zn = a2 in A such that for every i ∈ {1, 2, ..., n−1},
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(zi, zi+1) ∈ ρc
∪

(ρc)−1=(ρ
∪

ρ−1)
c
by Proposition 2.9(2) and (5) so that zi→zi+1,

which gives the required sequence a1 = z1 → z2 → · · · → zn = a2 of elementary
Γ− T − S − ρ–transitions.

In what follows we shall often use a more explicit version of Corollary 2.13 in
the case of |T | = 1, i.e. in the case of right Γ− S–acts.

Lemma 2.14. Let Γ − AS be a right Γ − S–act and ρ ∈ B (A). Then for any
a, b ∈ A, (a, b) ∈ ρ# if and only if a = b or there exist p1, ..., pn, q1, ..., qn ∈ A,
w1, ..., wn ∈ S, γ1, γ2, ..., γn ∈ Γ, where for i = 1, ..., n, (pi, qi) ∈ ρ or (qi, pi) ∈ ρ,
such that

a = p1γ1w1, q2γ2w2 = p3γ3w3, ..., qnγnwn = b.
q1γ1w1 = p2γ2w2, q3γ3w3 = p4γ4w4, ...

Proof. Using Corollary 2.13, we have (a, b) ∈ ρ# if and only if a = b or for some
n ∈ N there is a sequence a = z1 → z2 → · · · → zn = b of elementary Γ− S − ρ–
transitions connecting a to b. If a = b, it is clear. If a = z1 → z2 → · · · → zn = b,
then a = z1 = p1γ1w1, z2 = q1γ1w1, such that (p1, q1) ∈ ρ or (q1, p1) ∈ ρ and z2 =
p2γ2w2 = q1γ1w1,z3 = q2γ2w2 such that (p2, q2) ∈ ρ or (q2, p2) ∈ ρ. Continuing
the same way, we get qn−1γn−1wn−1 = pnγnwn and qnγnwn = zn = b, for some
p1, ..., pn, q1, ..., qn ∈ A,w1, ..., wn ∈ S, γ1, γ2, ..., γn ∈ Γ.

Proposition 2.15. Let ε ∈ ε (A) for a Γ–biact Γ–TAS. Then

εb := {(a1, a2) ∈ A× A | (tγa1βs, tγa2βs) ∈ ε for all t ∈ T, s ∈ S, γ, β ∈ Γ}

is the largest Γ–congruence on Γ–TAS contained in ε.

Proof. Taking t = 1 and s = 1 we see that εb ⊆ ε. Clearly, εb is an equivalence
relation. If (a1, a2) ∈ εb and t′ ∈ T, s′ ∈ S, γ′, β′ ∈ Γ, then we have

(tγ (t′γ′a1β
′s′) βs, tγ (t′γ′a2β

′s′) βs)= ((tγt′) γ′a1β
′ (s′βs) , (tγt′) γ′a2β

′ (s′βs)) ∈ ε

for all t ∈ T, s ∈ S, γ, β ∈ Γ and so (t′γ′a1β
′s′, t′γ′a2β

′s′) ∈ εb. This means that
εb ∈ Con(Γ− TAS). If σ ∈ Con(Γ− TAS) and σ ⊆ ε, then for all a1, a2 ∈ A, let
(a1, a2) ∈ σ so that for all t ∈ T, s ∈ S, γ, β ∈ Γ we have (tγa1βs, tγa2βs) ∈ σ ⊆ ε.
Thus, (a1, a2) ∈ εb and then σ ⊆ εb, i.e. εb is the largest Γ–congruence on Γ–TAS

contained in ε.

Remark 2.16. [8] For a T − S–biact TAS, the poset Con(TAS) is a lattice and
for any ρ, σ ∈ Con(TAS), ρ ∧ σ is ρ

∩
σ and ρ ∨ σ is (ρ

∪
σ)# = (ρ

∪
σ)e where

(ρ
∪

σ)# denotes the T −S–congruence closure of ρ
∪
σ. Similarly, the poset ε(A)

of all equivalence relations on the set A as a subposet of B(A) is also a lattice and
for any ρ, σ ∈ ε(A), ρ ∧ σ is ρ

∩
σ and ρ ∨ σ is (ρ

∪
σ)e.

Proposition 2.17. Let Γ−TAS be a Γ−T−S–biact. Then the poset Con(Γ− TAS)
is a lattice and for any ρ, σ ∈ Con(Γ− TAS), ρ∧σ = ρ

∩
σ and ρ∨σ = (ρ

∪
σ)# =

(ρ
∪

σ)e.
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Proof. Let ρ, σ ∈ Con(Γ− TAS). It is easily seen that ρ
∩
σ and (ρ

∪
σ)# are

the meet and the join of ρ, σ in Con(Γ− TAS) , respectively. Then Con(Γ− TAS)
is a lattice. It remains to show that (ρ

∪
σ)# = (ρ

∪
σ)e. Applying Theorem 2.12,

we have (ρ
∪

σ)# = ((ρ
∪

σ)c)
e
= (ρc

∪
σc)e = (ρ

∪
σ)e in which the last two

identities follow from Proposition 2.9(5) and (6).

Theorem 2.18. Let ρ, σ ∈ Con(Γ− TAS) for a Γ− T − S–biact Γ− TAS. Then
ρ ∨ σ = (ρ

∪
σ)∞ = (ρ ◦ σ)∞. This means that if a1, a2 ∈ A, then (a1, a2) ∈ ρ ∨ σ

if and only if for some n ∈ N there exist elements b1, b2, ..., bn−1 ∈ A such that
(a1, b1) ∈ τ1, (b1, b2) ∈ τ2, ..., (bn−1, a2) ∈ τn, where τi ∈ {ρ, σ}, i = 1, ..., n.

Proof. Consider any ρ, σ ∈ Con(Γ− TAS) . By using Proposition 2.17, we
have ρ ∨ σ = (ρ

∪
σ)e = [(ρ

∪
σ)

∪
(ρ

∪
σ)−1∪∆A]

∞
= (ρ

∪
σ)∞ of which last

equality follows from the symmetry and reflexivity properties of ρ
∪

σ. We claim
that (ρ

∪
σ)∞ = (ρ ◦ σ)∞. To this end, first note that since ρ, σ are reflexive,

ρ, σ ⊆ ρ ◦ σ ⊆ (ρ ◦ σ)∞ and so ρ
∪

σ ⊆ (ρ ◦ σ)∞. This implies that (ρ
∪
σ)∞ ⊆

(ρ ◦ σ)∞. For the reverse inclusion, we have ρ, σ ⊆ ρ
∪
σ ⊆ (ρ

∪
σ)∞ so that

ρ ◦ σ ⊆ (ρ
∪

σ)∞ ◦ (ρ
∪

σ)∞ ⊆ (ρ
∪
σ)∞ which the last inclusion follows from the

transitivity property of (ρ
∪
σ)∞. Then (ρ ◦ σ)∞ ⊆ (ρ

∪
σ)∞, as claimed. The

second assertion is an easy consequence of the identity ρ ∨ σ = (ρ
∪
σ)∞ in the

first one.

Corollary 2.19. For a Γ − T − S–biact Γ − TAS, if ρ, σ ∈ Con(Γ− TAS) are
such that ρ ◦ σ = σ ◦ ρ, then ρ ∨ σ = ρ ◦ σ.

Proof. By the assumption, (ρ ◦ σ)i = ρi◦σi for all i ∈ N. On the other hand, since
ρ, σ are reflexive and transitive, ρi = ρ, σi = σ for all i ∈ N. Then (ρ ◦ σ)i = ρ ◦σ.
Hence, using Theorem 2.18, we get ρ ∨ σ = (ρ ◦ σ)∞ =

∞∪
i=1

(ρ ◦ σ)i = ρ ◦ σ.

3. Green’s relations on Γ–biacts

This section is devoted to study Green’s relations on Γ–biacts.

Definition 3.1. [8] Let TAS be a biact. The Green’s equivalences on TAS are
defined by the following rules:

(a1, a2) ∈ TL if and only if Ta1 = Ta2,
(a1, a2) ∈ RS if and only if a1S = a2S,
(a1, a2) ∈ TJS if and only if Ta1S = Ta2S,

for all a1, a2 ∈ A. Further,

THS := TL ∧RS = TL
∩
RS,

TDS := TL ∨RS = (TL
∪

RS)
e.

Definition 3.2. Let Γ−TAS be a Γ–biact. We define Green’s relations on Γ−TAS

as follows:
(a1, a2) ∈ TL if and only if TΓa1 = TΓa2,
(a1, a2) ∈ RS if and only if a1ΓS = a2ΓS,
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(a1, a2) ∈ TJS if and only if TΓa1ΓS = TΓa2ΓS,
for all a1, a2 ∈ A. Note that it is clear that TL,RS and TJS are equivalence
relations on the set A. Thus, in view of Remark 2.16, we also define

THS := TL ∧RS = TL
∩
RS ∈ ε(A),

TDS := TL ∨RS = (TL
∪

RS)
e ∈ ε(A).

Lemma 3.3. In terms of the previous definition we have TL ∈ Con(Γ− AS) and
RS ∈ Con(Γ− TA).

Proof. Let a1, a2 ∈ A, (a1, a2) ∈ TL. Take s ∈ S and γ ∈ Γ. Then TΓa1 = TΓa2
and so TΓ (a1γs) = (TΓa1) γs = (TΓa2) γs = TΓ (a2γs), i.e. (a1γs, a2γs) ∈ TL.
This means that TL is a Γ−S– congruence on AS. The proof for RS is similar.

Theorem 3.4. Let Γ − TAS be a Γ–biact. If ρ ∈ Con(Γ− TA) and ρ ⊆ RS,
λ ∈ Con(Γ−AS) and λ ⊆ TL, then λ◦ρ=ρ◦λ. In particular, TL◦RS=RS ◦ TL.

Proof. Let (a1, a2) ∈ λ ◦ ρ. So there exists a3 ∈ A with a1λa3ρa2. Since λ ⊆ TL
and ρ ⊆ RS, we get TΓa1=TΓa3, a3ΓS=a2ΓS. Then a3=t1γ1a1, a2=a3β3s3,
a1 = t3γ3a3 and a3 = a2β2s2 for some t1, t3 ∈ T , s2, s3 ∈ S and γ1, γ3, β2, β3 ∈ Γ.
Let d = a1β3s3. Then d = t3γ3a3β3s3 = t3γ3a2. Now a3ρa2 implies that
(t3γ3a3) ρ (t3γ3a2). Thus, a1ρd. Also, a1λa3 gives that (a1β3s3)λ (a3β3s3) and
then dλa2. Hence, a1 (ρ ◦ λ) a2 which follows that λ ◦ ρ ⊆ ρ ◦ λ. Analogously, the
reverse inclusion also holds. Since ρ and λ are arbitrary in TL andRS respectively,
using Lemma 3.3, TL ◦ RS = RS ◦ TL.

Remark 3.5. Since TL and RS commute by Theorem 3.4, it follows from Corol-
lary 2.19 that TDS = TL ∨ RS = TL ◦ RS = RS ◦ TL. It is clear that |T | = 1
implies that TJS = RS and |S| = 1 implies that TJS = TL. Moreover, we have

TDS ⊆ TJS. Indeed, first note that TL ⊆ TJS and RS ⊆ TJS whence TL
∪
RS ⊆

TJS. Since TJS ∈ ε(A), TDS = TL ∨RS = (TL
∪
RS)

e ⊆ (TJS)
e = TJS.

Here we generalize the notion of periodic semigroup to the Γ–semigroups
which is needed in the sequel.

Definition 3.6. [8] A monogenic (cyclic) semigroup is a semigroup generated by
a singleton. A semigroup is called periodic if all of its monogenic subsemigroups
are finite.

Definition 3.7. Let S be a Γ–semigroup and γ ∈ Γ. An element e ∈ S is called
a γ–idempotent if e2γ = e where e2γ means eγe. A subset T of a S is called a γ–
subsemigroup of S if for every x, y ∈ T, xγy ∈ T. A Γ–semigroup S is said to be
periodic if all of its monogenic γ–subsemigroups are finite for every γ ∈ Γ. Here,
a monogenic γ–subsemigroup of S generated by s ∈ S is denoted by ⟨s⟩γ, and
⟨s⟩γ =

{
snγ | n ∈ N

}
where s1γ = s, s2γ = sγs , ..., snγ = sn−1

γ γs.

Lemma 3.8. [8] Every finite semigroup includes an idempotent element.

Lemma 3.9. Among the powers snγ of elements of a periodic Γ–semigroup S for
γ ∈ Γ, there is a γ–idempotent.
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Proof. Let s ∈ S and γ ∈ Γ. Consider the monogenic γ–subsemigroup ⟨s⟩γ. For
every x, y ∈ ⟨s⟩γ, define xy := xγy ∈ ⟨s⟩γ. Then ⟨s⟩γ is made into a semigroup
by this operation. Since S is periodic, ⟨s⟩γ is a finite Γ–semigroup and then a
finite semigroup. Then, using Lemma 3.8, there is an idempotent element e in
the semigroup ⟨s⟩γ. Thus, there exists k ∈ N, e = skγ. Using the operation,

e = e2 = eγe = e2γ. Then e = skγ is a γ–idempotent element of S.

Notation 3.10. Let S be a Γ–semigroup, s1, s2 ∈ S, γ, β ∈ Γ. Then we put
(s1γs2)

2
β := (s1γs2)β(s1γs2).

Theorem 3.11. Let Γ − TAS be a Γ–biact over periodic Γ–semigroups Tand S.
Then on Γ− TAS we have TDS = TJS.

Proof. In view of Remark 3.5, it suffices to prove that TJS ⊆ TDS. Assume that
a1, a2 ∈ A and (a1, a2) ∈ TJS, i.e. TΓa1ΓS = TΓa2ΓS. Thus, a1 = t2αa2λs2 and
a2 = t1γa1βs1 for some s1, s2 ∈ S, t1, t2 ∈ T and α, λ, γ, β ∈ Γ. Then

a1 = t2α (t1γa1βs1)λs2 = (t2αt1) γa1β (s1λs2) = (t2αt1) γt2αa2λs2β (s1λs2)

= (t2αt1) γt2αt1γa1βs1λs2β (s1λs2) = (t2αt1)
2
γ γa1β (s1λs2)

2
β = · · ·

Analogously, we obtain

a2 = (t1γt2)αa2λ (s2βs1) = (t1γt2)
2
α αa2λ (s1βs2)

2
λ = · · ·

Since T and S are periodic Γ–semigroups, we can find m ∈ N such that (t2αt1)
m
γ

is a γ– idempotent by Lemma 3.9. Let now c = t1γa1 ∈ A. Then

a1 = (t2αt1)
m
γ γa1β (s1λs2)

m
β = (t2αt1)

m
γ γ (t2αt1)

m
γ γa1β (s1λs2)

m
β

= (t2αt1)
m
γ γa1 =

(
(t2αt1)

m−1
γ γt2

)
α (t1γa1) =

(
(t2αt1)

m−1
γ γt2

)
αc.

Therefore, (a1, c) ∈ TL. Moreover, we have cβs1 = t1γa1βs1 = a2, and, using
Lemma 3.9, if we choose n ∈ N such that (s2βs1)

n
λ is a λ–idempotent, then we get

c = t1γa1=t1γ(t2αt1)
n+1
γ γa1β(s1λs2)

n+1
β =(t1γt2)

n+1
α α(t1γa1βs1)λ(s2βs1)

n
λλs2

= (t1γt2)
n+1
α αa2λ(s2βs1)

2n
λ λs2=((t1γt2)

n+1
α αa2λ(s2βs1)

n+1
λ )λ(s2βs1)

n−1
β λs2

= a2λ(s2βs1)
n−1
β λs2.

Hence, (c, a2) ∈ RS and so, using Remark 3.5, (a1, a2) ∈ TL ◦ RS = TDS.

Definition 3.12. Let ρ ∈ Con(Γ− TAS) for a Γ–biact Γ−TAS. The set
Γ−TAS

ρ
=

{[a]ρ | a ∈ A} with the left Γ−T–action tγ[a]ρ := [tγa]ρ and the right Γ−S–action
[a]ργs := [aγs]ρ for every t ∈ T, s ∈ S and γ ∈ Γ is clearly a Γ–biact which is
called the factor Γ–biact of Γ− TAS by ρ.

Proposition 3.13. Let Γ− TAS be a Γ–biact and ρ ∈ Con(Γ− TAS). Then

(i) If ρ ⊆ TL, then for all a, b ∈ A, a TL b if and only if [a]ρ TL [b]ρ in Γ−TAS

ρ
.



418 a.r. shabani, h. rasouli

(ii) If ρ ⊆ RS, then for all a, b ∈ A, a RS b if and only if [a]ρ RS [b]ρ in Γ−TAS

ρ
.

(iii) If ρ ⊆ THS, then for all a, b ∈ A, a THS b if and only if [a]ρ THS [b]ρ in
Γ−TAS

ρ
.

Proof. (i) Let a, b ∈ A. If a TL b, then there exist t, u ∈ T and γ, β ∈ Γ such
that a = tγb and b = uβa. Then [a]ρ = [tγb]ρ = tγ[b]ρ and [b]ρ = [uβa]ρ = uβ[a]ρ.

Therefore, TΓ[a]ρ = TΓ[b]ρ which means that [a]ρ TL [b]ρ in Γ−TAS

ρ
. Conversely,

assume that [a]ρ TL [b]ρ in Γ−TAS

ρ
. Then TΓ[a]ρ = TΓ[b]ρ so that there exist

t, u ∈ T and γ, β ∈ Γ such that [a]ρ = tγ[b]ρ = [tγb]ρ and [b]ρ = uβ[a]ρ = [uβa]ρ,
i.e. aρ (tγb) and bρ (uβa). Since ρ ⊆ TL, a TL tγb and b TL uβa. Then TΓa =
TΓ (tγb) and TΓb = TΓ (uβa). This implies that a ∈ TΓ (tγb) = (TΓt)γb ⊆ TΓb
and b ∈ TΓ (uβa) = (TΓu)βb ⊆ TΓa. Therefore, TΓa = TΓb, i.e. a TL b.

(ii) It is similar to (i).
(iii) Let a, b ∈ A. Assume that ρ ⊆ THS. Since THS = TL

∩
RS, ρ ⊆ TL and

ρ ⊆ RS. Using (i) and (ii), a THS b if and only if a TL b and a RS b if and only
if [a]ρ TL [b]ρ and [a]ρ RS [b]ρ if and only if [a]ρ THS [b]ρ in Γ−TAS

ρ
.
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