ON Γ-BIACTS AND THEIR GREEN'S RELATIONS

Ali Reza Shabani
Hamid Rasouli ${ }^{1}$
Department of Mathematics
Science and Research Branch
Islamic Azad University
Tehran
Iran
e-mails:ashabani@srbiau.ac.ir hrasouli@srbiau.ac.ir

Abstract

A well-known generalization of a semigroup S is called the Γ-semigroup. We generalize the notion of biacts over semigroups to Γ-biacts over Γ-semigroups. Green's relations on semigroups and biacts play an important role in these theories. In this paper, we study Green's relations on Γ-biacts.

Keywords and phrases: Green's relations, biact, Γ-semigroup, Γ-biact, Γ-congruence. 2010 Mathematics Subject Classiffication: 20N99, 20M30, 20M05, 08A30.

1. Introduction and preliminaries

The concept of Γ-semigroup, as a generalization of the notion of semigroup, was introduced by Sen [10]. Certain algebraic properties of Γ-semigroups have been studied by some authors, for example, one may see [2], [3]. Actions over a semigroup S, S-acts, play an important role in a variety of areas such as theoretical computer science (see [7]). We extended some classical notions of S-acts to $\Gamma-S$-acts in [12]. Green [5] introduced the Green's relations on semigroups in 1951. Green's relations for Γ-semigroups were studied by Chinram and Siammai [2]. Also, Green's relations on biacts have been studied in [8]. A generalization of acts over semigroups to Γ-acts over Γ-semigroups can be found in [11]. In this paper, we generalize the notion of biacts to Γ-biacts and consider Green's relations on Γ-biacts, which are in fact a generalization of Green's relations on biacts. Other classical algebraic structures such as modules can also be generalized to Γ-modules. For more information, see for example $[1,6]$. As an application of (ordered) Γ-semigroups in connection with fuzzy sets, we refer to $[4,9]$.

In the following, we recall certain preliminaries on Γ-semigroups and $\Gamma-S$ acts needed in the sequel.

[^0]Let X be a non-empty set, $B(X)$ denote the set of relations and $\varepsilon(X)$ the set of equivalence relations on X. Also, the set $\{(x, x) \mid x \in X\}$, the diagonal relation on X, is denoted by Δ_{X}, and the universal relation $X \times X$ is denoted by ∇_{X}. If $\rho \in B(X)$, the transitive closure of ρ is the relation $\rho^{\infty}=\bigcup_{i=1}^{\infty} \rho^{i} \in B(X)$ which is the smallest transitive relation in the poset $(B(X), \subseteq)$ containing ρ. Moreover, $\rho^{e}=\left(\rho \bigcup \rho^{-1} \bigcup \Delta_{X}\right)^{\infty}$ is the equivalence closure of ρ, that is, an equivalence relation on X generated by ρ (see [8, Theorem I.1.6]). A lattice is a poset L for which the meet $a \wedge b$ (the greatest lower bound) and the join $a \vee b$ (the least upper bound) exist for every $a, b \in L$.

Corollary 1.1. [8] For a non-empty set X, if $\rho \in B(X)$, then $(x, y) \in \rho^{e}$ if and only if $x=y$ or for some $n \in \mathbb{N}$ there exists a sequence of elements $x=z_{1}, z_{2}, \ldots, z_{n}=y$ in X such that for every $i \in\{1,2, \ldots, n-1\},\left(z_{i}, z_{i+1}\right) \in \rho \bigcup \rho^{-1}$. In particular, if ρ and σ are equivalence relations on a set X, then in $\varepsilon(X)$ their join $\rho \vee \sigma$ is the relation defined by $x(\rho \vee \sigma) y$ if and only if there exist $z_{1}, z_{2}, \ldots, z_{n} \in X$ such that $x=z_{1}, z_{n}=y$ and $\left(z_{i}, z_{i+1}\right) \in \tau_{i}, \tau_{i} \in\{\rho, \sigma\}, i \in\{1,2, \ldots, n-1\}$.

Definition 1.2. [10] Let S and Γ be non-empty sets. Then S is said to be a Γ-semigroup if there exists a mapping $S \times \Gamma \times S \rightarrow S$ written as $(s, \gamma, t) \mapsto s \gamma t$, satisfying $(s \gamma t) \beta u=s \gamma(t \beta u)$ for all $s, t, u \in S$ and $\gamma, \beta \in \Gamma$. An element e in a Γ-semigroup S is called a left (right) Γ-identity if $e \gamma s=s(s \gamma e=s)$ for all $s \in S$ and $\gamma \in \Gamma$. By a Γ-identity we mean an element of S which is both a left and a right Γ-identity. A Γ-semigroup with a Γ-identity 1 is called a Γ-monoid.

Definition 1.3. [12] Let S be a Γ-semigroup with a left Γ-identity e and A be a non-empty set. A mapping $\lambda: S \times \Gamma \times A \rightarrow A$ where $(s, \gamma, a) \mapsto s \gamma a:=\lambda(s, \gamma, a)$ such that $(s \gamma t) \beta a=s \gamma(t \beta a)$ and $e \gamma a=a$ for all $a \in A, s, t \in S$ and $\gamma, \beta \in \Gamma$, is called a left $\Gamma-S$-action and A is said to be a left $\Gamma-S$-act which is denoted by $\Gamma-{ }_{S} A$. Also, for a Γ-semigroup S with a right Γ-identity e, by a right $\Gamma-S$-act we mean a non-empty set A together with a mapping $\lambda: A \times \Gamma \times S \rightarrow A$ where $(a, \gamma, s) \mapsto a \gamma s:=\lambda(a, \gamma, s)$ satisfying the properties $a \gamma(s \beta t)=(a \gamma s) \beta t$ and are $=a$ for all $a \in A, s, t \in S$ and $\gamma, \beta \in \Gamma$. We denote a right $\Gamma-S$ - act by $\Gamma-A_{S}$.

Remark 1.4. If S is a Γ-monoid with Γ-identity 1 and $\Gamma-{ }_{S} A$ is a left $\Gamma-S$-act, then for every $s, t \in S, a \in A, \gamma, \beta \in \Gamma$, we have $s \gamma t=s \beta t$ and $s \gamma a=s \beta a$. Indeed, $s \gamma t=(s \beta 1) \gamma t=s \beta(1 \gamma t)=s \beta t$; and $s \gamma a=(s \beta 1) \gamma a=s \beta(1 \gamma a)=s \beta a$. Therefore, it is more interesting to consider left $\Gamma-S$-acts for a Γ-semigroup S with a left Γ-identity (not a Γ-identity) and, likewise, right $\Gamma-S$-acts for a Γ-semigroup S with a right Γ-identity (not a Γ-identity).

2. Γ-biacts and some basic properties

The purpose of this section is to introduce the structure of Γ-biacts and investigate some of their properties.

Definition 2.1. [8] Let T and S be monoids. A $T-S$-biact ${ }_{T} A_{S}$ is a non-empty set A equipped with a left T-action $T \times A \rightarrow A,(t, a) \mapsto t a$, satisfying $\left(t_{1} t_{2}\right) a=t_{1}\left(t_{2} a\right)$ for all $t_{1}, t_{2} \in T, a \in A$, and a right S-action $A \times S \rightarrow A,(a, s) \mapsto a s$, satisfying $a\left(s_{1} s_{2}\right)=\left(a s_{1}\right) s_{2}$ for all $s_{1}, s_{2} \in S, a \in A$, for which ($\left.t a\right) s=t(a s)$ holds for all $t \in T, s \in S, a \in A$. For a $T-S$-biact ${ }_{T} A_{S}$, a relation $\rho \in B(A)$, i.e. $\rho \subseteq A \times A$, is called $T-S$-compatible if $(a, b) \in \rho$ implies that $(t a s, t b s) \in \rho$ for all $t \in T, a, b \in A$ and $s \in S$. Moreover, an equivalence relation $\rho \in \varepsilon(A)$ which is $T-S$-compatible is called a $T-S$-congruence on ${ }_{T} A_{S}$. The set of all $T-S$-congruences on ${ }_{T} A_{S}$ is denoted by $\operatorname{Con}\left({ }_{T} A_{S}\right)$.

Definition 2.2. Let $\Gamma-{ }_{T} A$ be a left $\Gamma-T$-act and $\Gamma-A_{S}$ be a right $\Gamma-S$-act. We call A a $\Gamma-T-S$-biact, or simply a Γ-biact, and write $\Gamma-{ }_{T} A_{S}$, if for all $t \in T, s \in S, a \in A$ and $\gamma, \beta \in \Gamma,(t \gamma a) \beta s=t \gamma(a \beta s)$.

From now on, $\Gamma-{ }_{T} A_{S}$ stands for a $\Gamma-T-S$-biact where T and S are Γ-semigroups with a left and a right Γ-identity, respectively (see Remark 1.4), unless otherwise stated. If no confusion arises, we may use the same symbol 1 for a left Γ-identity and a right Γ-identity.

Remark 2.3. Every T-S-biact ${ }_{T} A_{S}$ over semigroups T and S with a left identity and a right identity, respectively, can be made into a $\Gamma-T-S$-biact over the induced left Γ-semigroup T with a left Γ-identity by setting $t \gamma t^{\prime}:=t t^{\prime}, t, t^{\prime} \in T$, and right Γ-semigroup S with a right Γ-identity by defining $s \gamma s^{\prime}:=s s^{\prime}, s, s^{\prime} \in S$. Define mappings $T \times \Gamma \times A \rightarrow A$ by $t \gamma a=t a$ and $A \times \Gamma \times S \rightarrow A$ by $a \beta s=a s$ for all $t \in T, a \in A, s \in S$ and $\gamma, \beta \in \Gamma$. It is easily seen that ${ }_{T} A_{S}$ is a $\Gamma-T-S-$ biact. Conversely, let A be a $\Gamma-T-S$-biact where T is a Γ-semigroup with a left Γ-identity and S is a Γ-semigroup with a right Γ-identity. Fix an element γ in Γ. First note that T and S are semigroups with the operations $t t^{\prime}:=t \gamma t^{\prime}$ and $s s^{\prime}:=s \gamma s^{\prime}$ for all $t, t^{\prime} \in T$ and $s, s^{\prime} \in S$ respectively. We define $T \times A \rightarrow A$ by $t a:=t \gamma a$ and $A \times S \rightarrow A$ by as $:=a \gamma s$ for all $t \in T, a \in A, s \in S$. Then one can show that A is a $T-S$-biact.

Example 2.4. Let $S=T=\{4 n+3 \mid n \in \mathbb{N}\}, \Gamma=\{4 n+1 \mid n \in \mathbb{N}\}$ and $A=\{4 n \mid n \in \mathbb{N}\}$. Under the usual addition of natural numbers, S and T are Γ-semigroups and A is a $\Gamma-T-S$-biact, but not a $T-S$-biact.

Definition 2.5. Let $\Gamma-{ }_{T} A_{S}$ be a $\Gamma-T-S$-biact. A relation $\rho \in B(A)$, i.e. $\rho \subseteq$ $A \times A$, is called $\Gamma-T-S$-compatible if $(a, b) \in \rho$ implies that $(t \gamma a \beta s, t \gamma b \beta s) \in \rho$ for all $t \in T, a, b \in A, s \in S$ and $\gamma, \beta \in \Gamma$. For a $\Gamma-T-S$-biact $\Gamma-{ }_{T} A_{S}$, an equivalence relation $\rho \in \varepsilon(A)$ which is $\Gamma-T-S$-compatible is called a $\Gamma-T-S$-congruence, or simply a Γ-congruence, on $\Gamma-{ }_{T} A_{S}$. We denote the set of all Γ-congruences on $\Gamma-{ }_{T} A_{S}$ by $\operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$. Clearly, under the usual inclusion of relations, $\operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$ is a poset.

Remark 2.6. If $|S|=1$, we have a definition of a $\Gamma-T$-compatible relation and a $\Gamma-T$-congruence on $\Gamma-{ }_{T} A$; and if $|T|=1$, we have that of a $\Gamma-S$-compatible relation and a $\Gamma-S$-congruence on $\Gamma-A_{S}$.

Lemma 2.7. For a $\Gamma-T-S-$ biact $\Gamma-_{T} A_{S}$ and a relation $\rho \in B(A)($ or $\rho \in \varepsilon(A))$, ρ is $\Gamma-T-S$-compatible (or a $\Gamma-T-S$-congruence) on $\Gamma-{ }_{T} A_{S}$ if and only if ρ is both Γ-T-compatible (or a Γ-T-congruence) on $\Gamma-{ }_{T} A$ and $\Gamma-S$-compatible (or a $\Gamma-S$-congruence) on $\Gamma-A_{S}$.

Proof. We need only to show the assertion for the case $\rho \in B(A)$.
Necessity. Suppose that $\rho \in B(A)$ is $\Gamma-T-S$-compatible on $\Gamma-{ }_{T} A_{S}$ and $(a, b) \in \rho$. For every $\gamma, \beta \in \Gamma$ and $t \in T, s \in S$ we have $(t \gamma a, t \gamma b)=(t \gamma a \beta 1, t \gamma b \beta 1) \in \rho$ and $(a \beta s, b \beta s)=(1 \gamma a \beta s, 1 \gamma b \beta s) \in \rho$ which means that ρ is both $\Gamma-T$-compatible and Γ - S-compatible.
Sufficiency. Let $\rho \in B(A)$ be both $\Gamma-T$-compatible and $\Gamma-S$-compatible on $\Gamma-{ }_{T} A_{S},(a, b) \in \rho, t \in T, s \in S$ and $\gamma, \beta \in \Gamma$. Then $(t \gamma a, t \gamma b) \in \rho$ by $\Gamma-T$-compatibility, and therefore $((t \gamma a) \beta s,(t \gamma b) \beta s) \in \rho$ by $\Gamma-S$-compatibility. Hence, ρ is $\Gamma-T-S$-compatible on $\Gamma-{ }_{T} A_{S}$.

Definition 2.8. Let $\Gamma-{ }_{T} A_{S}$ be a Γ-biact and $\rho \in B(A)$. The relation

$$
\rho^{c}:=\left\{\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right) \in A \times A \mid t \in T,\left(a_{1}, a_{2}\right) \in \rho, s \in S, \gamma, \beta \in \Gamma\right\}
$$

is called the $\Gamma-T-S$-compatible closure of ρ. The unique smallest $\Gamma-T-S-$ congruence on ${ }_{T} A_{S}$ containing $\rho \in B(A)$ will be denoted by $\rho^{\#}$ and called the Γ-congruence closure of ρ.

Proposition 2.9. Let $\rho, \sigma \in B(A)$ for $a \Gamma$-biact $\Gamma-{ }_{T} A_{S}$. Then
(1) $\rho \subseteq \rho^{c}$.
(2) $\left(\rho^{c}\right)^{-1}=\left(\rho^{-1}\right)^{c}$.
(3) $\rho \subseteq \sigma$ implies that $\rho^{c} \subseteq \sigma^{c}$.
(4) $\left(\rho^{c}\right)^{c}=\rho^{c}$.
(5) $(\rho \bigcup \sigma)^{c}=\rho^{c} \bigcup \sigma^{c}$.
(6) $\rho=\rho^{c}$ if and only if ρ is $\Gamma-T-S$-compatible.

Proof. (1) Take $\left(a_{1}, a_{2}\right) \in \rho$. Then $\left(a_{1}, a_{2}\right)=\left(1 \gamma a_{1} \beta 1,1 \gamma a_{2} \beta 1\right) \in \rho^{c}$ for all $\gamma, \beta \in \Gamma$. Hence, $\rho \subseteq \rho^{c}$.
(2) Take $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right) \in\left(\rho^{c}\right)^{-1}$. So $\left(a_{2}{ }^{\prime \prime}, a_{1}{ }^{\prime \prime}\right) \in \rho^{c}$ and then $a_{2}{ }^{\prime \prime}=t^{\prime} \gamma^{\prime} a_{2}{ }^{\prime} \beta^{\prime} s^{\prime}$, $a_{1}{ }^{\prime \prime}=t^{\prime} \gamma^{\prime} a_{1}{ }^{\prime} \beta^{\prime} s^{\prime}$ for some $t^{\prime} \in T, s \in S, \gamma^{\prime}, \beta^{\prime} \in \Gamma$ and $\left(a_{2}{ }^{\prime}, a_{1}{ }^{\prime}\right) \in \rho$ whence $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \rho^{-1} \subseteq\left(\rho^{-1}\right)^{c}$. Therefore, $a_{1}{ }^{\prime}=t \gamma a_{1} \beta s, a_{2}{ }^{\prime}=t \gamma a_{2} \beta s$ for some $t \in T$, $s \in S, \gamma, \beta \in \Gamma$ and $\left(a_{1}, a_{2}\right) \in \rho^{-1}$. Hence, $a_{1}{ }^{\prime \prime}=\left(t^{\prime} \gamma^{\prime} t\right) \gamma a_{1} \beta\left(s \beta^{\prime} s^{\prime}\right)$ and $a_{2}{ }^{\prime \prime}=$ $\left(t^{\prime} \gamma^{\prime} t\right) \gamma a_{2} \beta\left(s \beta^{\prime} s^{\prime}\right)$ that $t^{\prime} \gamma^{\prime} t \in T, s \beta^{\prime} s^{\prime} \in S$, i.e. $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right) \in\left(\rho^{-1}\right)^{c}$. Hence, $\left(\rho^{c}\right)^{-1} \subseteq\left(\rho^{-1}\right)^{c}$. Similarly, $\left(\rho^{-1}\right)^{c} \subseteq\left(\rho^{c}\right)^{-1}$. Therefore, $\left(\rho^{c}\right)^{-1}=\left(\rho^{-1}\right)^{c}$.
(3) Let $\rho \subseteq \sigma$. Take $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right) \in \rho^{c}$. Then $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right)=\left(t^{\prime} \gamma^{\prime} a^{\prime}{ }_{1} \beta^{\prime} s^{\prime}, t^{\prime} \gamma^{\prime} a^{\prime}{ }_{2} \beta^{\prime} s^{\prime}\right)$ for some $t^{\prime} \in T, s^{\prime} \in S, \gamma^{\prime}, \beta^{\prime} \in \Gamma$ and $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \rho$. Therefore, $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \sigma$ which implies that $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right) \in \sigma^{c}$. Hence, $\rho^{c} \subseteq \sigma^{c}$.
(4) By (1), $\rho^{c} \subseteq\left(\rho^{c}\right)^{c}$. Conversely, let $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right) \in\left(\rho^{c}\right)^{c}$. Then $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right)=$ $\left(t^{\prime} \gamma^{\prime} a^{\prime}{ }_{1} \beta^{\prime} s^{\prime}, t^{\prime} \gamma^{\prime} a^{\prime}{ }_{2} \beta^{\prime} s^{\prime}\right)$ for some $t^{\prime} \in T, s^{\prime} \in S, \gamma^{\prime}, \beta^{\prime} \in \Gamma$ and $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \rho^{c}$. Then $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right)=\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right)$ for some $t \in T, s \in S, \gamma, \beta \in \Gamma,\left(a_{1}, a_{2}\right) \in \rho$. Hence, $a^{\prime \prime}{ }_{1}=\left(t^{\prime} \gamma^{\prime} t\right) \gamma a_{1} \beta\left(s \beta^{\prime} s^{\prime}\right)$ and $a^{\prime \prime}{ }_{2}=\left(t^{\prime} \gamma^{\prime} t\right) \gamma a_{2} \beta\left(s \beta^{\prime} s^{\prime}\right)$, i.e. $\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}\right) \in \rho^{c}$. Hence, $\left(\rho^{c}\right)^{c} \subseteq \rho^{c}$. Therefore, $\left(\rho^{c}\right)^{c}=\rho^{c}$.
(5) Using (3), we have $\rho^{c} \subseteq(\rho \bigcup \sigma)^{c}$ and $\sigma^{c} \subseteq(\rho \bigcup \sigma)^{c}$, and therefore $\rho^{c} \bigcup \sigma^{c} \subseteq(\rho \bigcup \sigma)^{c}$. Conversely, suppose that $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in(\rho \bigcup \sigma)^{c}$. Then $a_{1}{ }^{\prime}=$ $t \gamma a_{1} \beta s, a_{2}{ }^{\prime}=t \gamma a_{2} \beta s$ for some $t \in T, s \in S, \gamma, \beta \in \Gamma$ and $\left(a_{1}, a_{2}\right) \in \rho \bigcup \sigma$. Thus, $\left(a_{1}, a_{2}\right) \in \rho$ or $\left(a_{1}, a_{2}\right) \in \sigma$, and hence $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \rho^{c}$ or $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \sigma^{c}$. Thus, $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \rho^{c} \bigcup \sigma^{c}$. Hence, $(\rho \bigcup \sigma)^{c} \subseteq \rho^{c} \bigcup \sigma^{c}$. Therefore, $(\rho \bigcup \sigma)^{c}=\rho^{c} \bigcup \sigma^{c}$.
(6) Let first $\rho=\rho^{c}$. Then $\left(a_{1}, a_{2}\right) \in \rho$ implies that $\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right) \in \rho^{c}=\rho$, for all $t \in T, s \in S$ and $\gamma, \beta \in \Gamma$. Thus, ρ is $\Gamma-T-S$-compatible. Conversely, if ρ is a $\Gamma-T-S$-compatible relation and $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in \rho^{c}$, then $a_{1}{ }^{\prime}=t \gamma a_{1} \beta s$, $a_{2}{ }^{\prime}=t \gamma a_{2} \beta s$ for some $t \in T, s \in S,\left(a_{1}, a_{2}\right) \in \rho, \gamma, \beta \in \Gamma$. Therefore, $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right)=$ $\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right) \in \rho$ by $\Gamma-T-S$-compatibility. Thus, $\rho^{c} \subseteq \rho$. But, by (1), $\rho \subseteq \rho^{c}$. Therefore, $\rho=\rho^{c}$.

Lemma 2.10. Let $\Gamma-{ }_{T} A_{S}$ be a Γ-biact. If the relation $\rho \in B(A)$ is $\Gamma-T-S$ compatible, then ρ^{n} is also $\Gamma-T-S$-compatible for any $n \in \mathbb{N}$.

Proof. Let $\left(a_{1}, a_{2}\right) \in \rho^{n}$. Then there exist $b_{1}, b_{2}, \ldots, b_{n-1} \in A$ such that $\left(a_{1}, b_{1}\right),\left(b_{1}, b_{2}\right), \ldots,\left(b_{n-1}, a_{2}\right) \in \rho$. Since ρ is $\Gamma-T-S$-compatible, $\left(t \gamma a_{1} \beta s, t \gamma b_{1} \beta s\right)$, $\left(t \gamma b_{1} \beta s, t \gamma b_{2} \beta s\right), \ldots,\left(t \gamma b_{n-1} \beta s, t \gamma a_{2} \beta s\right) \in \rho$ for all $t \in T, s \in S$ and $\gamma, \beta \in \Gamma$, and so $\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right) \in \rho^{n}$.

Definition 2.11. Let $\Gamma-_{T} A_{S}$ be a Γ-biact and $\rho \in B(A)$. If $\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}\right) \in\left(\rho \bigcup \rho^{-1}\right)^{c}$, or equivalently, $a_{1}{ }^{\prime}=t \gamma a_{1} \beta s$ and $a_{2}{ }^{\prime}=t \gamma a_{2} \beta s$ for some $t \in T, s \in S, \gamma, \beta \in \Gamma$ and $\left(a_{1}, a_{2}\right) \in \rho$ or $\left(a_{2}, a_{1}\right) \in \rho$, then we say that $a_{1}{ }^{\prime}$ is connected with $a_{2}{ }^{\prime}$ by an elementary $\Gamma-T-S-\rho$-transition, and use the notation $a_{1}{ }^{\prime} \rightarrow a_{2}{ }^{\prime}$.

Theorem 2.12. Let $\Gamma{ }_{T} A_{S}$ be a Γ-biact and $\rho \in B(A)$. Then $\rho^{\#}=\left(\rho^{c}\right)^{e}$.
Proof. Obviously, $\rho \subseteq \rho^{c} \subseteq\left(\rho^{c}\right)^{e}$. We show that $\left(\rho^{c}\right)^{e} \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$. In view of [8, Theorem I.1.6], $\left(\rho^{c}\right)^{e}=\theta^{\infty}$ where $\theta=\rho^{c} \bigcup\left(\rho^{c}\right)^{-1} \bigcup \Delta_{A}$. Let $\left(a_{1}, a_{2}\right) \in\left(\rho^{c}\right)^{e}$. Then $\left(a_{1}, a_{2}\right) \in \theta^{n}$ for some $n \in \mathbb{N}$. Using Proposition 2.9(2) and (5), and the clear fact $\Delta_{A}^{c}=\Delta_{A}$, we get

$$
\theta=\rho^{c} \bigcup\left(\rho^{-1}\right)^{c} \bigcup \Delta_{A}^{c}=\left(\rho \bigcup \rho^{-1} \bigcup \Delta_{A}\right)^{c}=\theta^{c}
$$

Therefore, by Proposition 2.9(6), θ is $\Gamma-T-S$-compatible and then so is θ^{n} by Lemma 2.10. Thus, $\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right) \in \theta^{n} \subseteq\left(\rho^{c}\right)^{e}$ for every $t \in T, s \in S$, $\gamma, \beta \in \Gamma$. Hence, $\left(\rho^{c}\right)^{e}$ is a Γ - congruence on $\Gamma{ }_{T} A_{S}$ containing ρ. Let σ be a Γ-congruence on $\Gamma-_{T} A_{S}$ containing ρ. Then, by using Proposition 2.9(3) and (6), we get $\rho^{c} \subseteq \sigma^{c}=\sigma$ and so $\left(\rho^{c}\right)^{e} \subseteq \sigma^{e}=\sigma$. Hence, $\rho^{\#}=\left(\rho^{c}\right)^{e}$.

Corollary 2.13. Let $\rho \in B(A)$ for $a \Gamma$ biact $\Gamma-{ }_{T} A_{S}, a_{1}, a_{2} \in A$. Then $\left(a_{1}, a_{2}\right) \in \rho^{\#}$ if and only if $a_{1}=a_{2}$ or for some $n \in \mathbb{N}$ there is a sequence $a_{1}=z_{1} \rightarrow z_{2} \rightarrow$ $\cdots \rightarrow z_{n}=a_{2}$ of elementary $\Gamma-T-S-\rho$-transitions connecting a_{1} to a_{2}.

Proof. Using Theorem 2.12, $\left(a_{1}, a_{2}\right) \in \rho^{\#}$ if and only if $\left(a_{1}, a_{2}\right) \in\left(\rho^{c}\right)^{e}$, and by Corollary 1.1, if and only if $a_{1}=a_{2}$ or for some $n \in \mathbb{N}$ there exists a sequence of elements $a_{1}=z_{1}, z_{2}, \ldots, z_{n}=a_{2}$ in A such that for every $i \in\{1,2, \ldots, n-1\}$,
$\left(z_{i}, z_{i+1}\right) \in \rho^{c} \bigcup\left(\rho^{c}\right)^{-1}=\left(\rho \bigcup \rho^{-1}\right)^{c}$ by Proposition 2.9(2) and (5) so that $z_{i} \rightarrow z_{i+1}$, which gives the required sequence $a_{1}=z_{1} \rightarrow z_{2} \rightarrow \cdots \rightarrow z_{n}=a_{2}$ of elementary $\Gamma-T-S-\rho$-transitions.

In what follows we shall often use a more explicit version of Corollary 2.13 in the case of $|T|=1$, i.e. in the case of right $\Gamma-S$-acts.

Lemma 2.14. Let $\Gamma-A_{S}$ be a right $\Gamma-S$-act and $\rho \in B(A)$. Then for any $a, b \in A,(a, b) \in \rho^{\#}$ if and only if $a=b$ or there exist $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n} \in A$, $w_{1}, \ldots, w_{n} \in S, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \Gamma$, where for $i=1, \ldots, n,\left(p_{i}, q_{i}\right) \in \rho$ or $\left(q_{i}, p_{i}\right) \in \rho$, such that

$$
\begin{gathered}
a=p_{1} \gamma_{1} w_{1}, q_{2} \gamma_{2} w_{2}=p_{3} \gamma_{3} w_{3}, \ldots, q_{n} \gamma_{n} w_{n}=b . \\
q_{1} \gamma_{1} w_{1}=p_{2} \gamma_{2} w_{2}, q_{3} \gamma_{3} w_{3}=p_{4} \gamma_{4} w_{4}, \ldots
\end{gathered}
$$

Proof. Using Corollary 2.13, we have $(a, b) \in \rho^{\#}$ if and only if $a=b$ or for some $n \in \mathbb{N}$ there is a sequence $a=z_{1} \rightarrow z_{2} \rightarrow \cdots \rightarrow z_{n}=b$ of elementary $\Gamma-S-\rho-$ transitions connecting a to b. If $a=b$, it is clear. If $a=z_{1} \rightarrow z_{2} \rightarrow \cdots \rightarrow z_{n}=b$, then $a=z_{1}=p_{1} \gamma_{1} w_{1}, z_{2}=q_{1} \gamma_{1} w_{1}$, such that $\left(p_{1}, q_{1}\right) \in \rho$ or $\left(q_{1}, p_{1}\right) \in \rho$ and $z_{2}=$ $p_{2} \gamma_{2} w_{2}=q_{1} \gamma_{1} w_{1}, z_{3}=q_{2} \gamma_{2} w_{2}$ such that $\left(p_{2}, q_{2}\right) \in \rho$ or $\left(q_{2}, p_{2}\right) \in \rho$. Continuing the same way, we get $q_{n-1} \gamma_{n-1} w_{n-1}=p_{n} \gamma_{n} w_{n}$ and $q_{n} \gamma_{n} w_{n}=z_{n}=b$, for some $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n} \in A, w_{1}, \ldots, w_{n} \in S, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \Gamma$.

Proposition 2.15. Let $\varepsilon \in \varepsilon(A)$ for $a \Gamma$-biact $\Gamma{ }_{T} A_{S}$. Then

$$
\varepsilon^{b}:=\left\{\left(a_{1}, a_{2}\right) \in A \times A \mid\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right) \in \varepsilon \text { for all } t \in T, s \in S, \gamma, \beta \in \Gamma\right\}
$$

is the largest Γ-congruence on $\Gamma{ }_{T} A_{S}$ contained in ε.
Proof. Taking $t=1$ and $s=1$ we see that $\varepsilon^{b} \subseteq \varepsilon$. Clearly, ε^{b} is an equivalence relation. If $\left(a_{1}, a_{2}\right) \in \varepsilon^{b}$ and $t^{\prime} \in T, s^{\prime} \in S, \gamma^{\prime}, \beta^{\prime} \in \Gamma$, then we have
$\left(t \gamma\left(t^{\prime} \gamma^{\prime} a_{1} \beta^{\prime} s^{\prime}\right) \beta s, t \gamma\left(t^{\prime} \gamma^{\prime} a_{2} \beta^{\prime} s^{\prime}\right) \beta s\right)=\left(\left(t \gamma t^{\prime}\right) \gamma^{\prime} a_{1} \beta^{\prime}\left(s^{\prime} \beta s\right),\left(t \gamma t^{\prime}\right) \gamma^{\prime} a_{2} \beta^{\prime}\left(s^{\prime} \beta s\right)\right) \in \varepsilon$
for all $t \in T, s \in S, \gamma, \beta \in \Gamma$ and so $\left(t^{\prime} \gamma^{\prime} a_{1} \beta^{\prime} s^{\prime}, t^{\prime} \gamma^{\prime} a_{2} \beta^{\prime} s^{\prime}\right) \in \varepsilon^{b}$. This means that $\varepsilon^{b} \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$. If $\sigma \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$ and $\sigma \subseteq \varepsilon$, then for all $a_{1}, a_{2} \in A$, let $\left(a_{1}, a_{2}\right) \in \sigma$ so that for all $t \in T, s \in S, \gamma, \beta \in \Gamma$ we have $\left(t \gamma a_{1} \beta s, t \gamma a_{2} \beta s\right) \in \sigma \subseteq \varepsilon$. Thus, $\left(a_{1}, a_{2}\right) \in \varepsilon^{b}$ and then $\sigma \subseteq \varepsilon^{b}$, i.e. ε^{b} is the largest Γ-congruence on $\Gamma{ }_{T} A_{S}$ contained in ε.

Remark 2.16. [8] For a $T-S$-biact ${ }_{T} A_{S}$, the poset $\operatorname{Con}\left({ }_{T} A_{S}\right)$ is a lattice and for any $\rho, \sigma \in \operatorname{Con}\left({ }_{T} A_{S}\right), \rho \wedge \sigma$ is $\rho \bigcap \sigma$ and $\rho \vee \sigma$ is $(\rho \bigcup \sigma)^{\#}=(\rho \bigcup \sigma)^{e}$ where $(\rho \bigcup \sigma)^{\#}$ denotes the $T-S$-congruence closure of $\rho \bigcup \sigma$. Similarly, the poset $\varepsilon(A)$ of all equivalence relations on the set A as a subposet of $B(A)$ is also a lattice and for any $\rho, \sigma \in \varepsilon(A), \rho \wedge \sigma$ is $\rho \bigcap \sigma$ and $\rho \vee \sigma$ is $(\rho \bigcup \sigma)^{e}$.

Proposition 2.17. Let $\Gamma-{ }_{T} A_{S}$ be a $\Gamma-T-S$-biact. Then the poset $\operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$ is a lattice and for any $\rho, \sigma \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right), \rho \wedge \sigma=\rho \bigcap \sigma$ and $\rho \vee \sigma=(\rho \bigcup \sigma)^{\#}=$ $(\rho \bigcup \sigma)^{e}$.

Proof. Let $\rho, \sigma \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$. It is easily seen that $\rho \bigcap \sigma$ and $(\rho \bigcup \sigma)^{\#}$ are the meet and the join of ρ, σ in $\operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$, respectively. Then $\operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$ is a lattice. It remains to show that $(\rho \bigcup \sigma)^{\#}=(\rho \bigcup \sigma)^{e}$. Applying Theorem 2.12, we have $(\rho \bigcup \sigma)^{\#}=\left((\rho \bigcup \sigma)^{c}\right)^{e}=\left(\rho^{c} \bigcup \sigma^{c}\right)^{e}=(\rho \bigcup \sigma)^{e}$ in which the last two identities follow from Proposition 2.9(5) and (6).

Theorem 2.18. Let $\rho, \sigma \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$ for $a \Gamma-T-S$-biact $\Gamma-{ }_{T} A_{S}$. Then $\rho \vee \sigma=(\rho \bigcup \sigma)^{\infty}=(\rho \circ \sigma)^{\infty}$. This means that if $a_{1}, a_{2} \in A$, then $\left(a_{1}, a_{2}\right) \in \rho \vee \sigma$ if and only if for some $n \in \mathbb{N}$ there exist elements $b_{1}, b_{2}, \ldots, b_{n-1} \in A$ such that $\left(a_{1}, b_{1}\right) \in \tau_{1},\left(b_{1}, b_{2}\right) \in \tau_{2}, \ldots,\left(b_{n-1}, a_{2}\right) \in \tau_{n}$, where $\tau_{i} \in\{\rho, \sigma\}, i=1, \ldots, n$.
Proof. Consider any $\rho, \sigma \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$. By using Proposition 2.17, we have $\rho \vee \sigma=(\rho \bigcup \sigma)^{e}=\left[(\rho \bigcup \sigma) \bigcup(\rho \bigcup \sigma)^{-1} \bigcup \Delta_{A}\right]^{\infty}=(\rho \bigcup \sigma)^{\infty}$ of which last equality follows from the symmetry and reflexivity properties of $\rho \bigcup \sigma$. We claim that $(\rho \bigcup \sigma)^{\infty}=(\rho \circ \sigma)^{\infty}$. To this end, first note that since ρ, σ are reflexive, $\rho, \sigma \subseteq \rho \circ \sigma \subseteq(\rho \circ \sigma)^{\infty}$ and so $\rho \bigcup \sigma \subseteq(\rho \circ \sigma)^{\infty}$. This implies that $(\rho \bigcup \sigma)^{\infty} \subseteq$ $(\rho \circ \sigma)^{\infty}$. For the reverse inclusion, we have $\rho, \sigma \subseteq \rho \bigcup \sigma \subseteq(\rho \bigcup \sigma)^{\infty}$ so that $\rho \circ \sigma \subseteq(\rho \bigcup \sigma)^{\infty} \circ(\rho \bigcup \sigma)^{\infty} \subseteq(\rho \bigcup \sigma)^{\infty}$ which the last inclusion follows from the transitivity property of $(\rho \bigcup \sigma)^{\infty}$. Then $(\rho \circ \sigma)^{\infty} \subseteq(\rho \bigcup \sigma)^{\infty}$, as claimed. The second assertion is an easy consequence of the identity $\rho \vee \sigma=(\rho \bigcup \sigma)^{\infty}$ in the first one.

Corollary 2.19. For $a \Gamma-T-S$-biact $\Gamma-{ }_{T} A_{S}$, if $\rho, \sigma \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$ are such that $\rho \circ \sigma=\sigma \circ \rho$, then $\rho \vee \sigma=\rho \circ \sigma$.

Proof. By the assumption, $(\rho \circ \sigma)^{i}=\rho^{i} \circ \sigma^{i}$ for all $i \in \mathbb{N}$. On the other hand, since ρ, σ are reflexive and transitive, $\rho^{i}=\rho, \sigma^{i}=\sigma$ for all $i \in \mathbb{N}$. Then $(\rho \circ \sigma)^{i}=\rho \circ \sigma$. Hence, using Theorem 2.18, we get $\rho \vee \sigma=(\rho \circ \sigma)^{\infty}=\bigcup_{i=1}^{\infty}(\rho \circ \sigma)^{i}=\rho \circ \sigma$.

3. Green's relations on Γ-biacts

This section is devoted to study Green's relations on Γ-biacts.
Definition 3.1. [8] Let ${ }_{T} A_{S}$ be a biact. The Green's equivalences on ${ }_{T} A_{S}$ are defined by the following rules:
$\left(a_{1}, a_{2}\right) \in{ }_{T \mathcal{L}}$ if and only if $T a_{1}=T a_{2}$,
$\left(a_{1}, a_{2}\right) \in \mathcal{R}_{S}$ if and only if $a_{1} S=a_{2} S$,
$\left(a_{1}, a_{2}\right) \in{ }_{T} \mathcal{J}_{S}$ if and only if $T a_{1} S=T a_{2} S$,
for all $a_{1}, a_{2} \in A$. Further,
${ }_{T} \mathcal{H}_{S}:={ }_{T} \mathcal{L} \wedge \mathcal{R}_{S}={ }_{T} \mathcal{L} \bigcap \mathcal{R}_{S}$, ${ }_{T} \mathcal{D}_{S}:={ }_{T} \mathcal{L} \vee \mathcal{R}_{S}=\left({ }_{T} \mathcal{L} \bigcup \mathcal{R}_{S}\right)^{e}$.

Definition 3.2. Let $\Gamma-{ }_{T} A_{S}$ be a Γ-biact. We define Green's relations on $\Gamma-{ }_{T} A_{S}$ as follows:
$\left(a_{1}, a_{2}\right) \in{ }_{T \mathcal{L}} \mathcal{L}$ if and only if $T \Gamma a_{1}=T \Gamma a_{2}$, $\left(a_{1}, a_{2}\right) \in \mathcal{R}_{S}$ if and only if $a_{1} \Gamma S=a_{2} \Gamma S$,
$\left(a_{1}, a_{2}\right) \in_{T} \mathcal{J}_{S}$ if and only if $T \Gamma a_{1} \Gamma S=T \Gamma a_{2} \Gamma S$,
for all $a_{1}, a_{2} \in A$. Note that it is clear that ${ }_{T} \mathcal{L}, \mathcal{R}_{S}$ and ${ }_{T} \mathcal{J}_{S}$ are equivalence relations on the set A. Thus, in view of Remark 2.16, we also define

$$
\begin{aligned}
& { }_{T} \mathcal{H}_{S}:={ }_{T} \mathcal{L} \wedge \mathcal{R}_{S}={ }_{T} \mathcal{L} \bigcap \mathcal{R}_{S} \in \varepsilon(A), \\
& { }_{T} \mathcal{D}_{S}:={ }_{T} \mathcal{L} \vee \mathcal{R}_{S}=\left({ }_{T} \mathcal{L} \bigcup \mathcal{R}_{S}\right)^{e} \in \varepsilon(A) .
\end{aligned}
$$

Lemma 3.3. In terms of the previous definition we have ${ }_{T} \mathcal{L} \in \operatorname{Con}\left(\Gamma-A_{S}\right)$ and $\mathcal{R}_{S} \in \operatorname{Con}\left(\Gamma-{ }_{T} A\right)$.

Proof. Let $a_{1}, a_{2} \in A,\left(a_{1}, a_{2}\right) \in{ }_{T} \mathcal{L}$. Take $s \in S$ and $\gamma \in \Gamma$. Then $T \Gamma a_{1}=T \Gamma a_{2}$ and so $T \Gamma\left(a_{1} \gamma s\right)=\left(T \Gamma a_{1}\right) \gamma s=\left(T \Gamma a_{2}\right) \gamma s=T \Gamma\left(a_{2} \gamma s\right)$, i.e. $\left(a_{1} \gamma s, a_{2} \gamma s\right) \in{ }_{T} \mathcal{L}$. This means that ${ }_{T} \mathcal{L}$ is a $\Gamma-S$ - congruence on A_{S}. The proof for \mathcal{R}_{S} is similar.

Theorem 3.4. Let $\Gamma-{ }_{T} A_{S}$ be a Γ-biact. If $\rho \in \operatorname{Con}\left(\Gamma-{ }_{T} A\right)$ and $\rho \subseteq \mathcal{R}_{S}$, $\lambda \in \operatorname{Con}\left(\Gamma-A_{S}\right)$ and $\lambda \subseteq{ }_{T} \mathcal{L}$, then $\lambda \circ \rho=\rho \circ \lambda$. In particular, ${ }_{T} \mathcal{L} \circ \mathcal{R}_{S}=\mathcal{R}_{S} \circ{ }_{T} \mathcal{L}$.

Proof. Let $\left(a_{1}, a_{2}\right) \in \lambda \circ \rho$. So there exists $a_{3} \in A$ with $a_{1} \lambda a_{3} \rho a_{2}$. Since $\lambda \subseteq{ }_{T} \mathcal{L}$ and $\rho \subseteq \mathcal{R}_{S}$, we get $T \Gamma a_{1}=T \Gamma a_{3}, a_{3} \Gamma S=a_{2} \Gamma S$. Then $a_{3}=t_{1} \gamma_{1} a_{1}, a_{2}=a_{3} \beta_{3} s_{3}$, $a_{1}=t_{3} \gamma_{3} a_{3}$ and $a_{3}=a_{2} \beta_{2} s_{2}$ for some $t_{1}, t_{3} \in T, s_{2}, s_{3} \in S$ and $\gamma_{1}, \gamma_{3}, \beta_{2}, \beta_{3} \in \Gamma$. Let $d=a_{1} \beta_{3} s_{3}$. Then $d=t_{3} \gamma_{3} a_{3} \beta_{3} s_{3}=t_{3} \gamma_{3} a_{2}$. Now $a_{3} \rho a_{2}$ implies that $\left(t_{3} \gamma_{3} a_{3}\right) \rho\left(t_{3} \gamma_{3} a_{2}\right)$. Thus, $a_{1} \rho d$. Also, $a_{1} \lambda a_{3}$ gives that $\left(a_{1} \beta_{3} s_{3}\right) \lambda\left(a_{3} \beta_{3} s_{3}\right)$ and then $d \lambda a_{2}$. Hence, $a_{1}(\rho \circ \lambda) a_{2}$ which follows that $\lambda \circ \rho \subseteq \rho \circ \lambda$. Analogously, the reverse inclusion also holds. Since ρ and λ are arbitrary in ${ }_{T} \mathcal{L}$ and \mathcal{R}_{S} respectively, using Lemma 3.3, ${ }_{T} \mathcal{L} \circ \mathcal{R}_{S}=\mathcal{R}_{S} \circ{ }_{T} \mathcal{L}$.

Remark 3.5. Since ${ }_{T} \mathcal{L}$ and \mathcal{R}_{S} commute by Theorem 3.4, it follows from Corollary 2.19 that ${ }_{T} \mathcal{D}_{S}={ }_{T} \mathcal{L} \vee \mathcal{R}_{S}={ }_{T} \mathcal{L} \circ \mathcal{R}_{S}=\mathcal{R}_{S} \circ{ }_{T} \mathcal{L}$. It is clear that $|T|=1$ implies that ${ }_{T} \mathcal{J}_{S}=\mathcal{R}_{S}$ and $|S|=1$ implies that ${ }_{T} \mathcal{J}_{S}={ }_{T} \mathcal{L}$. Moreover, we have ${ }_{T} \mathcal{D}_{S} \subseteq{ }_{T} \mathcal{J}_{S}$. Indeed, first note that ${ }_{T} \mathcal{L} \subseteq{ }_{T} \mathcal{J}_{S}$ and $\mathcal{R}_{S} \subseteq{ }_{T} \mathcal{J}_{S}$ whence ${ }_{T} \mathcal{L} \cup \mathcal{R}_{S} \subseteq$ ${ }_{T} \mathcal{J}_{S}$. Since ${ }_{T} \mathcal{J}_{S} \in \varepsilon(A),{ }_{T} \mathcal{D}_{S}={ }_{T} \mathcal{L} \vee \mathcal{R}_{S}=\left({ }_{T} \mathcal{L} \bigcup \mathcal{R}_{S}\right)^{e} \subseteq\left({ }_{T} \mathcal{J}_{S}\right)^{e}={ }_{T} \mathcal{J}_{S}$.

Here we generalize the notion of periodic semigroup to the Γ-semigroups which is needed in the sequel.

Definition 3.6. [8] A monogenic (cyclic) semigroup is a semigroup generated by a singleton. A semigroup is called periodic if all of its monogenic subsemigroups are finite.

Definition 3.7. Let S be a Γ-semigroup and $\gamma \in \Gamma$. An element $e \in S$ is called a γ-idempotent if $e_{\gamma}^{2}=e$ where e_{γ}^{2} means $e \gamma e$. A subset T of a S is called a $\gamma-$ subsemigroup of S if for every $x, y \in T, x \gamma y \in T$. A Γ-semigroup S is said to be periodic if all of its monogenic γ-subsemigroups are finite for every $\gamma \in \Gamma$. Here, a monogenic γ-subsemigroup of S generated by $s \in S$ is denoted by $\langle s\rangle_{\gamma}$, and $\langle s\rangle_{\gamma}=\left\{s_{\gamma}^{n} \mid n \in \mathbb{N}\right\}$ where $s_{\gamma}^{1}=s, s_{\gamma}^{2}=s \gamma s, \ldots, s_{\gamma}^{n}=s_{\gamma}^{n-1} \gamma s$.

Lemma 3.8. [8] Every finite semigroup includes an idempotent element.
Lemma 3.9. Among the powers s_{γ}^{n} of elements of a periodic Γ-semigroup S for $\gamma \in \Gamma$, there is a γ-idempotent.

Proof. Let $s \in S$ and $\gamma \in \Gamma$. Consider the monogenic γ-subsemigroup $\langle s\rangle_{\gamma}$. For every $x, y \in\langle s\rangle_{\gamma}$, define $x y:=x \gamma y \in\langle s\rangle_{\gamma}$. Then $\langle s\rangle_{\gamma}$ is made into a semigroup by this operation. Since S is periodic, $\langle s\rangle_{\gamma}$ is a finite Γ-semigroup and then a finite semigroup. Then, using Lemma 3.8, there is an idempotent element e in the semigroup $\langle s\rangle_{\gamma}$. Thus, there exists $k \in \mathbb{N}, e=s_{\gamma}^{k}$. Using the operation, $e=e^{2}=e \gamma e=e_{\gamma}^{2}$. Then $e=s_{\gamma}^{k}$ is a γ-idempotent element of S.

Notation 3.10. Let S be a Γ-semigroup, $s_{1}, s_{2} \in S, \gamma, \beta \in \Gamma$. Then we put $\left(s_{1} \gamma s_{2}\right)_{\beta}^{2}:=\left(s_{1} \gamma s_{2}\right) \beta\left(s_{1} \gamma s_{2}\right)$.

Theorem 3.11. Let $\Gamma-{ }_{T} A_{S}$ be a Γ-biact over periodic Γ-semigroups T and S. Then on $\Gamma-{ }_{T} A_{S}$ we have $T_{T} \mathcal{D}_{S}={ }_{T} \mathcal{J}_{S}$.

Proof. In view of Remark 3.5, it suffices to prove that ${ }_{T} \mathcal{J}_{S} \subseteq{ }_{T} \mathcal{D}_{S}$. Assume that $a_{1}, a_{2} \in A$ and $\left(a_{1}, a_{2}\right) \in{ }_{T} \mathcal{J}_{S}$, i.e. $T \Gamma a_{1} \Gamma S=T \Gamma a_{2} \Gamma S$. Thus, $a_{1}=t_{2} \alpha a_{2} \lambda s_{2}$ and $a_{2}=t_{1} \gamma a_{1} \beta s_{1}$ for some $s_{1}, s_{2} \in S, t_{1}, t_{2} \in T$ and $\alpha, \lambda, \gamma, \beta \in \Gamma$. Then

$$
\begin{aligned}
a_{1} & =t_{2} \alpha\left(t_{1} \gamma a_{1} \beta s_{1}\right) \lambda s_{2}=\left(t_{2} \alpha t_{1}\right) \gamma a_{1} \beta\left(s_{1} \lambda s_{2}\right)=\left(t_{2} \alpha t_{1}\right) \gamma t_{2} \alpha a_{2} \lambda s_{2} \beta\left(s_{1} \lambda s_{2}\right) \\
& =\left(t_{2} \alpha t_{1}\right) \gamma t_{2} \alpha t_{1} \gamma a_{1} \beta s_{1} \lambda s_{2} \beta\left(s_{1} \lambda s_{2}\right)=\left(t_{2} \alpha t_{1}\right)_{\gamma}^{2} \gamma a_{1} \beta\left(s_{1} \lambda s_{2}\right)_{\beta}^{2}=\cdots
\end{aligned}
$$

Analogously, we obtain

$$
a_{2}=\left(t_{1} \gamma t_{2}\right) \alpha a_{2} \lambda\left(s_{2} \beta s_{1}\right)=\left(t_{1} \gamma t_{2}\right)_{\alpha}^{2} \alpha a_{2} \lambda\left(s_{1} \beta s_{2}\right)_{\lambda}^{2}=\cdots
$$

Since T and S are periodic Γ-semigroups, we can find $m \in \mathbb{N}$ such that $\left(t_{2} \alpha t_{1}\right)_{\gamma}^{m}$ is a γ - idempotent by Lemma 3.9. Let now $c=t_{1} \gamma a_{1} \in A$. Then

$$
\begin{aligned}
a_{1} & =\left(t_{2} \alpha t_{1}\right)_{\gamma}^{m} \gamma a_{1} \beta\left(s_{1} \lambda s_{2}\right)_{\beta}^{m}=\left(t_{2} \alpha t_{1}\right)_{\gamma}^{m} \gamma\left(t_{2} \alpha t_{1}\right)_{\gamma}^{m} \gamma a_{1} \beta\left(s_{1} \lambda s_{2}\right)_{\beta}^{m} \\
& =\left(t_{2} \alpha t_{1}\right)_{\gamma}^{m} \gamma a_{1}=\left(\left(t_{2} \alpha t_{1}\right)_{\gamma}^{m-1} \gamma t_{2}\right) \alpha\left(t_{1} \gamma a_{1}\right)=\left(\left(t_{2} \alpha t_{1}\right)_{\gamma}^{m-1} \gamma t_{2}\right) \alpha c .
\end{aligned}
$$

Therefore, $\left(a_{1}, c\right) \in{ }_{T} \mathcal{L}$. Moreover, we have $c \beta s_{1}=t_{1} \gamma a_{1} \beta s_{1}=a_{2}$, and, using Lemma 3.9, if we choose $n \in \mathbb{N}$ such that $\left(s_{2} \beta s_{1}\right)_{\lambda}^{n}$ is a λ-idempotent, then we get

$$
\begin{aligned}
c & =t_{1} \gamma a_{1}=t_{1} \gamma\left(t_{2} \alpha t_{1}\right)_{\gamma}^{n+1} \gamma a_{1} \beta\left(s_{1} \lambda s_{2}\right)_{\beta}^{n+1}=\left(t_{1} \gamma t_{2}\right)_{\alpha}^{n+1} \alpha\left(t_{1} \gamma a_{1} \beta s_{1}\right) \lambda\left(s_{2} \beta s_{1}\right)_{\lambda}^{n} \lambda s_{2} \\
& =\left(t_{1} \gamma t_{2}\right)_{\alpha}^{n+1} \alpha a_{2} \lambda\left(s_{2} \beta s_{1}\right)_{\lambda}^{2 n} \lambda s_{2}=\left(\left(t_{1} \gamma t_{2}\right)_{\alpha}^{n+1} \alpha a_{2} \lambda\left(s_{2} \beta s_{1}\right)_{\lambda}^{n+1}\right) \lambda\left(s_{2} \beta s_{1}\right)_{\beta}^{n-1} \lambda s_{2} \\
& =a_{2} \lambda\left(s_{2} \beta s_{1}\right)_{\beta}^{n-1} \lambda s_{2} .
\end{aligned}
$$

Hence, $\left(c, a_{2}\right) \in \mathcal{R}_{S}$ and so, using Remark 3.5, $\left(a_{1}, a_{2}\right) \in{ }_{T} \mathcal{L} \circ \mathcal{R}_{S}={ }_{T} \mathcal{D}_{S}$.
Definition 3.12. Let $\rho \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$ for a Γ-biact $\Gamma-{ }_{T} A_{S}$. The set $\frac{\Gamma-T A_{S}}{\rho}=$ $\left\{[a]_{\rho} \mid a \in A\right\}$ with the left $\Gamma-T$-action $t \gamma[a]_{\rho}:=[t \gamma a]_{\rho}$ and the right $\Gamma-S$-action $[a]_{\rho} \gamma s:=[a \gamma s]_{\rho}$ for every $t \in T, s \in S$ and $\gamma \in \Gamma$ is clearly a Γ-biact which is called the factor Γ-biact of $\Gamma-{ }_{T} A_{S}$ by ρ.

Proposition 3.13. Let $\Gamma-{ }_{T} A_{S}$ be $a \Gamma$-biact and $\rho \in \operatorname{Con}\left(\Gamma-{ }_{T} A_{S}\right)$. Then
(i) If $\rho \subseteq{ }_{T} \mathcal{L}$, then for all $a, b \in A, a_{T} \mathcal{L} b$ if and only if $[a]_{\rho}{ }_{T} \mathcal{L}[b]_{\rho}$ in $\frac{\Gamma-{ }_{T} A_{S}}{\rho}$.
(ii) If $\rho \subseteq \mathcal{R}_{S}$, then for all $a, b \in A, a \mathcal{R}_{S} b$ if and only if $[a]_{\rho} \mathcal{R}_{S}[b]_{\rho}$ in $\frac{\Gamma-T_{T} A_{S}}{\rho}$.
(iii) If $\rho \subseteq{ }_{T} \mathcal{H}_{S}$, then for all $a, b \in A, a_{T} \mathcal{H}_{S} b$ if and only if $[a]_{\rho} T_{T} \mathcal{H}_{S}[b]_{\rho}$ in $\frac{\Gamma-{ }_{T} A_{S}}{\rho}$.
Proof. (i) Let $a, b \in A$. If $a_{T} \mathcal{L} b$, then there exist $t, u \in T$ and $\gamma, \beta \in \Gamma$ such that $a=t \gamma b$ and $b=u \beta a$. Then $[a]_{\rho}=[t \gamma b]_{\rho}=t \gamma[b]_{\rho}$ and $[b]_{\rho}=[u \beta a]_{\rho}=u \beta[a]_{\rho}$. Therefore, $T \Gamma[a]_{\rho}=T \Gamma[b]_{\rho}$ which means that $[a]_{\rho} T \mathcal{L}[b]_{\rho}$ in $\frac{\Gamma-T_{T} A_{S}}{\rho}$. Conversely, assume that $[a]_{\rho}{ }_{T} \mathcal{L}[b]_{\rho}$ in $\frac{\Gamma-T_{T} A_{S}}{\rho}$. Then $T \Gamma[a]_{\rho}=T \Gamma[b]_{\rho}$ so that there exist $t, u \in T$ and $\gamma, \beta \in \Gamma$ such that $[a]_{\rho}=t \gamma[b]_{\rho}=[t \gamma b]_{\rho}$ and $[b]_{\rho}=u \beta[a]_{\rho}=[u \beta a]_{\rho}$, i.e. $a \rho(t \gamma b)$ and $b \rho(u \beta a)$. Since $\rho \subseteq{ }_{T} \mathcal{L}, a_{T} \mathcal{L} t \gamma b$ and $b_{T} \mathcal{L} u \beta a$. Then $T \Gamma a=$ $T \Gamma(t \gamma b)$ and $T \Gamma b=T \Gamma(u \beta a)$. This implies that $a \in T \Gamma(t \gamma b)=(T \Gamma t) \gamma b \subseteq T \Gamma b$ and $b \in T \Gamma(u \beta a)=(T \Gamma u) \beta b \subseteq T \Gamma a$. Therefore, $T \Gamma a=T \Gamma b$, i.e. $a_{T} \mathcal{L} b$.
(ii) It is similar to (i).
(iii) Let $a, b \in A$. Assume that $\rho \subseteq{ }_{T} \mathcal{H}_{S}$. Since ${ }_{T} \mathcal{H}_{S}={ }_{T} \mathcal{L} \bigcap \mathcal{R}_{S}, \rho \subseteq{ }_{T} \mathcal{L}$ and $\rho \subseteq \mathcal{R}_{S}$. Using (i) and (ii), $a_{T} \mathcal{H}_{S} b$ if and only if $a_{T} \mathcal{L} b$ and $a \mathcal{R}_{S} b$ if and only if $[a]_{\rho}{ }_{T} \mathcal{L}[b]_{\rho}$ and $[a]_{\rho} \mathcal{R}_{S}[b]_{\rho}$ if and only if $[a]_{\rho} T_{\mathcal{H}_{S}}[b]_{\rho}$ in $\frac{\Gamma-T_{T} A_{S}}{\rho}$.
Acknowledgments. The authors would like to thank the referees for the careful reading of the paper and for useful comments and suggestions.

References

[1] Ameri, A., Sadeghi, R., Gamma modules, Ratio Mathematica, 20 (2010), 127-147.
[2] Chinram, R., Siammai, P., On Green's relations for Γ-semigroups and reductive Γ - semigroups, Int. J. Algebra, 2(4) (2008), 187-195.
[3] Chinram, R., Tinpun, K., Isomorphism theorems for Γ-semigroup and ordered Γ-semigroup, J. Math., 7(2) (2009), 231-241.
[4] Feng, Y., Corsini, P., (λ, μ)-Fuzzy interior ideals of ordered Γ-semigroups, Algebra Discrete Math., 16(1) (2013), 61-70.
[5] Green, J.A., On the structure of semigroup, Ann.Math., 54(1951), 163-172.
[6] Hossain, Z., Gamma modules with gamma rings of gamma endomorphisms, Int. J. Sci. Tech., 6(3) (2013), 346-354.
[7] Howie, J.M., Automata and Languages, Oxford University Press, Oxford, 1991.
[8] Kilp, M., Knauer, U., Mikhalev, A.V., Monoids, Acts and Categories, de Gruyter, Berlin, 2000.
[9] Li, B., Feng, Y., Intuitionistic ($\lambda, \mu)$-fuzzy sets in Γ-semigroups, J. Inequal. Appl., (2013), 2013:107 doi:10.1186/1029-242X-2013-107.
[10] Sen, M.K., On Γ-semigroups, Proceedings of the International Conference on Algebra and its Application, Decker publication, New York, 1981, 301-308.
[11] Sen, M.K., Seth, A., Radical of Γ-semigroup, Bull. Calcutta Math. Soc. 80(3), (1988), 189-196.
[12] Shabani, A.R., Rasouli, H., On gamma S-acts, The 45th Annual Iranian Mathematics Conference, 2014.
Accepted: 11.07.2016

[^0]: ${ }^{1}$ Corresponding author.

