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1. Introduction and preliminaries

The concept of I'—semigroup, as a generalization of the notion of semigroup,
was introduced by Sen [10]. Certain algebraic properties of I'-semigroups have
been studied by some authors, for example, one may see [2], [3]. Actions over a
semigroup S, S—acts, play an important role in a variety of areas such as theore-
tical computer science (see [7]). We extended some classical notions of S—acts to
[' — S—acts in [12]. Green [5] introduced the Green’s relations on semigroups in
1951. Green’s relations for ['-semigroups were studied by Chinram and Siammai
[2]. Also, Green’s relations on biacts have been studied in [8]. A generalization
of acts over semigroups to ['-acts over ['-semigroups can be found in [11]. In
this paper, we generalize the notion of biacts to I'-biacts and consider Green’s
relations on I'-biacts, which are in fact a generalization of Green’s relations on
biacts. Other classical algebraic structures such as modules can also be generalized
to I'-modules. For more information, see for example [1, 6]. As an application of
(ordered) I'-semigroups in connection with fuzzy sets, we refer to [4, 9].

In the following, we recall certain preliminaries on ['-semigroups and I' — S—
acts needed in the sequel.

LCorresponding author.
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Let X be a non-empty set, B (X) denote the set of relations and e (X)) the set
of equivalence relations on X. Also, the set {(z,z) | € X}, the diagonal relation
on X, is denoted by Ay, and the universal relation X x X is denoted by Vx. If

p € B(X), the transitive closure of p is the relation p>® = |J p' € B (X) which is
i=1

the smallest transitive relation in the poset (B (X),C) containing p. Moreover,
¢ = (pUp tUAx)™ is the equivalence closure of p, that is, an equivalence
relation on X generated by p (see [8, Theorem 1.1.6]). A lattice is a poset L for
which the meet a Ab (the greatest lower bound) and the join a Vb (the least upper
bound) exist for every a,b € L.

Corollary 1.1. [8] For a non-empty set X, if p € B(X), then (z,y) € p¢ if and
only if t=y or for somen € N there exists a sequence of elements x=z1, 23, ..., 2,=Y
in X such that for every i € {1,2,...n — 1}, (2, zi41) € pUp~'. In particular, if
p and o are equivalence relations on a set X, then in € (X) their join pV o is the
relation defined by x (pV o)y if and only if there exist zq, 2o, ..., z, € X such that
r=2z1,2, =y and (z;,zi41) € 1,7 € {p,0},i € {1,2,....,n— 1}.

Definition 1.2. [10] Let S and I'" be non-empty sets. Then S is said to be a
['—semigroup if there exists a mapping S x I' x S — S written as (s,7,t) — s,
satisfying (syt) fu = sy (tfu) for all s,t,u € S and v, € I'. An element e in a
['—semigroup S is called a left (right) I'—identity if eys = s (sye = s) for all s € S
and v € I'. By a I'-identity we mean an element of S which is both a left and a
right I'-identity. A I'-semigroup with a I'-identity 1 is called a I'-monoid.

Definition 1.3. [12] Let S be a I'-semigroup with a left I'-identity e and A be a
non-empty set. A mapping A: S xT'x A — A where (s,v,a) — sya := X (s,7,a)
such that (syt) fa = sy (tfa) and eya = a for alla € A, s,t € S and v, 5 € T, is
called a left I' — S—action and A is said to be a left I' — S—act which is denoted by
['— sA. Also, for a I'-semigroup S with a right I'-identity e, by a right I' — S—act
we mean a non-empty set A together with a mapping A : A x I' x S — A where
(a,7,s) — ays = X(a,~,s) satisfying the properties a7y (sft) = (a7ys) St and
aye = a for all a € A;s,t € S and 7,5 € I'. We denote a right I' — S— act by
I'— Ag.

Remark 1.4. If S is a [-monoid with I'-identity 1 and I' — ¢ A is a left I' — S—act,
then for every s,t € S,a € A,~v, 5 € I', we have syt = sft and sya = sfa. Indeed,
syt = (sB1)vt = sB(1t) = sft; and sya = (sf1)ya = sf(1va) = sBa. Therefore,
it is more interesting to consider left I' — S—acts for a I'-semigroup S with a left
[—identity (not a I'-identity) and, likewise, right I" — S—acts for a I'-semigroup S
with a right I'-identity (not a I'-identity).

2. I'-biacts and some basic properties

The purpose of this section is to introduce the structure of I'-biacts and investigate
some of their properties.
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Definition 2.1. [8] Let T"and S be monoids. A T'—S-biact r Ag is a non-empty set
A equipped with a left T-action Tx A — A, (t,a) — ta, satisfying (t1t2)a = t1(t2a)
for all t1,to € T,a € A, and a right S-action A x S — A, (a, s) — as, satisfying
a(s182) = (asy)sy for all sy, € S;a € A, for which (ta)s = t(as) holds for all
teT,se€ S ae A ForaTl—S-biact 1Ag, arelation p € B(A),i.e. p C AX A, is
called T'—S—compatible if (a,b) € p implies that (tas,tbs) € pforallt € T,a,b € A
and s € S. Moreover, an equivalence relation p € € (A) which is T'— S—compatible
is called a T' — S—congruence on 1 Ag. The set of all T' — S—congruences on rAg

is denoted by Con(rAg) .

Definition 2.2. Let I' — A be a left I' — T—act and I' — Ag be a right I' — S—act.
We call A a ' —T — S-biact, or simply a I'-biact, and write I' — 1 Ag, if for all
teT,se S,ae€ Aand -, el (tya)Bs =ty (afs).

From now on, I' — 7Ag stands for a I' — T" — S—biact where T and S are
['—semigroups with a left and a right I'-identity, respectively (see Remark 1.4),
unless otherwise stated. If no confusion arises, we may use the same symbol 1 for
a left I'-identity and a right I'-identity.

Remark 2.3. Every T'— S-biact 1 Ag over semigroups 7" and S with a left identity
and a right identity, respectively, can be made into a I' — T — S—biact over the
induced left I'-semigroup T" with a left I'-identity by setting tyt' := tt',t,t' € T,
and right ['-semigroup S with a right ['-identity by defining sys' := ss’,s,s" € S.
Define mappings T'x I' x A — A by tya =ta and A x I' x S — A by afis = as
forallte T, a e A,s € Sand v,3 €I'. It is easily seen that rAgisa ' —T — S—
biact. Conversely, let A be a I' — T — S—biact where T is a '-semigroup with a
left I'-identity and S is a ['-semigroup with a right ['-identity. Fix an element ~y
in I". First note that 7" and S are semigroups with the operations tt' := ¢yt and
ss’ = sys for all t, ¢’ € T and s,s € S respectively. We define T x A — A by
ta :==tyaand Ax S — Abyas:=aysforallteT aec A,s € S. Then one can
show that A is a T' — S—biact.

Example 2.4. Let S = T = {4n+3|neN},I' = {4n+1|n e N} and
A = {4n | n € N}. Under the usual addition of natural numbers, S and 7" are
['—semigroups and A is a I' —T" — S-biact, but not a T' — S-biact.

Definition 2.5. Let I'—7Ag be a I' =T — S-biact. A relation p € B(A),i.e. pC
Ax A, is called I' = T'— S— compatible if (a,b) € p implies that (tyafs,tybBs) € p
forall t € T, a,b € A,s € Sand 7,8 € I'. For a ' =T — S-biact I' — rAg,
an equivalence relation p € e(A) which is I' — 7" — S—compatible is called a
I' = T — S—congruence, or simply a I'-congruence, on I' — rAg. We denote the
set of all I'-congruences on I' — 1 Ag by Con(I" — 7 Ag) . Clearly, under the usual
inclusion of relations, Con(I' — 7 Ag) is a poset.

Remark 2.6. If |S| = 1, we have a definition of a I' — T—compatible relation and
a I'—T—congruence on I'— 7 A; and if |T'| = 1, we have that of a I' — S—compatible
relation and a I' — S—congruence on I' — Ag.
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Lemma 2.7. For a I'=T—S-biact I'—1Ag and a relation p € B (A) (or p € € (A)),
p is T'—T — S—compatible (or a T'—T — S—congruence) on I'—1Ag if and only if p
is both I' = T—compatible (or a ' — T —congruence) on I'—r A and I' — S—compatible
(or a I' — S—congruence) on I' — Ag.

Proof. We need only to show the assertion for the case p € B (A).

Necessity. Suppose that p € B(A) is '=T—S—compatible on '=7Ag and (a, b) € p.
For every 7,8 € I'and t € T, s € S we have (tva,tyb) = (tyal1,tybp1) € p and
(afBs,bps) = (1vaBs,1vbBs) € p which means that p is both I'=T—compatible
and I'—S—compatible.

Sufficiency. Let p € B(A) be both I' — T—compatible and I' — S—compatible
on I' — 7Ag, (a,b) € p,t € T, s € S and ~,5 € I'. Then (tvya,tyb) € p by
' — T-compatibility, and therefore ((tya) 8s, (t7b) Bs) € p by I' = S—compatibility.
Hence, p is I' = T' — S—compatible on I' — 7 Ag. n

Definition 2.8. Let I' — 1 Ag be a I'-biact and p € B (A). The relation
pc = {(t7a1557t7a253) €EAxA ’ le Tv (a17a2) €p, SE Sv 775 € F}

is called the I' — T — S—compatible closure of p. The unique smallest I' — T — S—
congruence on rAg containing p € B (A) will be denoted by p# and called the
['—congruence closure of p.

Proposition 2.9. Let p,o € B(A) for a I'-biact I' — 1 Ag. Then

) = pf.
Uo)* =pUo“

= p° if and only if p 1s I' =T — S—compatible.

b

Proof. (1) Take (ai,a2) € p. Then (ay,a2) = (1va161,1yasfl) € p¢ for all
v, € I'. Hence, p C p°.

(2) Take (a1”,a5") € (p°)~". So (ay”,a,") € p° and then ay” = t'v'ay'3's,
a” = t'y'a)'p's’ for some t' € T, s € S,+,0" € ' and (as’,a1") € p whence

(ai’,a") € p=t C (p~1)°. Therefore, a)’ = tya,Bs, as’ = tyayfs for some t € T,
s €S, 7,8 el and (ar,as) € p~'. Hence, a,” = (t'7't) va, 5 (sB's') and ay” =
t’w’t) 23 (sf's') that t'4't € T,sf's € S, ie. (a1”,a)") € (p~!)°. Hence,

(
(pc)_ ( 1), Similarly, (p=1)" C (pc)_l. Therefore, (pc)_1 = (p_l)c

(3) Let p C 0. Take (a1”,a2”) € p°. Then (a1, ay”) =(t'y'd"\f's', 'y a’23's")
for some t' € T, s" € S+, 5" € I" and (ay', as’) € p. Therefore, (a1 , Q2 ) €0 Wthh
implies that (a,”,as”) € 0. Hence, p° C o°.

(4) By (1) pc C (p°)°. Conversely, let (a1”,a2”) € (p°)°. Then (a1”,ay”) =
(t'y'a'\f's' t'y'a'yf8's") for some ' € T,s" € S,+', 6" € I and (a1, as’) € p°. Then
(a1, as") = (tyay8s,tyasfs) for some t € T,s € S,v,0 € T',(a1,a2) € p. Hence,
a’y = (t'Y't)ya1B(sp's’) and a’y = (t'y't)yaeB(sp's'), i.e. (a1”,as”) € p°. Hence,
(p°)° C p°. Therefore, (p°)° = p“.
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(5) Using (3), we have p¢ C (pJo)® and o¢ C (pJo)", and therefore
pclUJoc C (pJo)°. Conversely, suppose that (ai’,as’) € (pUo)". Then a' =
tyaifs,as’ = tyasfs for some t € T,s € S;v,4 € T and (a1,as) € plJo. Thus,
(a1,a2) € p or (ar,az) € o, and hence (ai’,ay’) € p® or (ai’,as’) € o°. Thus,
(ai',a9’) € p°\Jo°. Hence, (plJo)° C p°lJo°. Therefore, (p|Jo) = p°Jo°.

(6) Let first p = p°. Then (a1, az) € p implies that (tyai8s, tyas5s) € p© = p,
forallt € T)s € S and 7,8 € I". Thus, pis I' =T — S—compatible. Conversely,
if pis a I' = T — S—compatible relation and (ai’,as’) € p° then ay" = tyaifs,
as’ = tyasfs for some t € T, s € S, (ay,a2) € p,7, 5 € I'. Therefore, (a’,ay’) =
(tya1Bs,tyasBs) € p by I' = T'— S—compatibility. Thus, p¢ C p. But, by (1),
p C p°. Therefore, p = p°. u

Lemma 2.10. Let I' — 1 Ag be a I'-biact. If the relation p € B(A) isT' =T — S-
compatible, then p" is also I' — T — S—compatible for any n € N,

Proof. Let (aj,az) € p" Then there exist by, by, ..., 0,1 € A such that
(ay,b1),(b1,b2), ..., (by_1,a2) € p. Since p is '=T—S—compatible, (tyaiSs, tyb5s)
(tyb1Bs, tybafs) , ..., (tyby_18s,tyasfs) € pforallt € T, s € S and 7,5 € I, and
o (tyayBs,tyass) € p". n

Definition 2.11. Let '~ Ag be a [~biact and p € B (A). If (a1/,a2’) € (pUp™ 1),
or equivalently, a;’ = tya;8s and ay’ = tyayfs for some t € T, s € S, v, € T’
and (a1, az) € p or (ag,a;) € p, then we say that a;’ is connected with as’ by an
elementary I' — T — S — p—transition, and use the notation a;’ — as’.

Theorem 2.12. Let I'-pAg be a T'-biact and p € B (A). Then p* = (p°)°.

Proof. Obviously, p C p¢ C (p°)°. We show that (p°)° € Con(I" — 7Ag) . In view
of [8, Theorem 1.1.6], (p°)° = 6> where 0 = p°|J (p°) "' JAa. Let (ay,az) € (p°)°.
Then (ay,a2) € 6™ for some n € N. Using Proposition 2.9(2) and (5), and the
clear fact AG = A, we get

o= U UJas= U Jaw =

Therefore, by Proposition 2.9(6), 6 is I' — T' — S—compatible and then so is 6"
by Lemma 2.10. Thus, (tyai8s,tyasBs) € 0™ C (p°)° for every t € T, s € S,
7,8 € T'. Hence, (p°)° is a ['- congruence on I'-rAg containing p. Let o be a
['—congruence on I'-rAg containing p. Then, by using Proposition 2.9(3) and (6),
we get p¢ C 0¢ = o and so (p°)° C 0° = 0. Hence, p* = (p°)°. .
Corollary 2.13. Let p € B(A) for aT-biact '—7Ag, ay,as € A. Then (ay,as) € p*
iof and only if a; = as or for some n € N there is a sequence a; = z; — 29 —
oo — 2z, = ag of elementary I' — T — S — p—transitions connecting a; to as.

Proof. Using Theorem 2.12, (a1, as) € p* if and only if (a1, a2) € (p°)¢, and by
Corollary 1.1, if and only if a; = ay or for some n € N there exists a sequence
of elements a; = z1, 29, ..., 2, = az in A such that for every i € {1,2,...,n—1},
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(zi,zi01) € p°U (0°) "'=(p U p")° by Proposition 2.9(2) and (5) so that z;— 21,
which gives the required sequence a; = z; — 29 — - -+ — 2, = ay of elementary
I' =T — S — p-transitions. 0

In what follows we shall often use a more explicit version of Corollary 2.13 in
the case of |[T'| =1, i.e. in the case of right I' — S—acts.

Lemma 2.14. Let I' — Ag be a right ' — S—act and p € B(A). Then for any
a,b € A, (a,b) € p* if and only if a = b or there exist P1, ..., Pu, q1, s qn € A,

Wy, ..oy Wy € Sz Y1572y 3 Vn € F7 where fOT’Zl = 17"'7”7 (p’L)Ql) € por (qZ;pz) € p,
such that

a = P1Y1W1, G2Y2W2 = P3Y3W3, ...y n YWy = D.
q171W1 = P272W2, 3773W3 = P474W4, ...

Proof. Using Corollary 2.13, we have (a,b) € p* if and only if @ = b or for some
n € N there is a sequence a = 2y — 29 — -+ — 2, = b of elementary ' — § — p—
transitions connecting a to b. If a = b, it is clear. If a = 2y = 20 — --- — 2, = b,
then a = z; = pyy1wy, 22 = 1w, such that (p1,q1) € p or (g1, p1) € p and 2z =
PaYaWe = 171W1,23 = ayews such that (po,qe) € p or (g2,p2) € p. Continuing
the same way, we get ¢n_1Vn-1Wn—1 = PpYnW, and g, y,w, = z, = b, for some
D1y s Prs Qls -5 G € AW, ooy wy € 5, Y1, Y2, oooy Y € T .

Proposition 2.15. Let ¢ € ¢ (A) for a I'-biact I'—rAg. Then
e = {(ay,as) € A x A| (tya,Bs,tyasBs) €cforallt € T,s € S,v,8 €'}
is the largest I'—congruence on I'-rAg contained in €.

Proof. Taking t = 1 and s = 1 we see that £* C . Clearly, £° is an equivalence
relation. If (ai,a;) €t and t' € T, s' € S,+/, 8" € T, then we have

(ty ('Y a1 B's") Bs, ty ('Y axf's’) Bs) = ((tyt') Y a1 B’ (s'Bs) , (tyt') v axf’ (s'Bs)) € €

forallt € T,s € S, v,8 €T and so (t'va,8's',t'vay's') € €. This means that
e’ € Con(I' — 74g). If 0 € Con(I' — 7Ag) and o C &, then for all a;,as € A, let
(a1,a9) € osothat forallt € T, s € S, v, € I' we have (tya, s, tyasfs) € o C e.
Thus, (a1,as) € e’ and then o C €, i.e. €’ is the largest I'-congruence on I'-7Ag
contained in e. .

Remark 2.16. [8] For a T'— S-biact rAg, the poset Con(rAg) is a lattice and
for any p,o € Con(rAg), pAcis p(oand pVois (plJo)* = (pJo)® where
(pJo)” denotes the T — S-congruence closure of p| Jo. Similarly, the poset £(A)
of all equivalence relations on the set A as a subposet of B(A) is also a lattice and
for any p,o € e(A), pAcis p(oand pVois (pJo)".

Proposition 2.17. LetI'—1Ag be a '=T—S-biact. Then the poset Con(I' — 1 Ag)
is a lattice and for any p,o € Con(T' — 1 Ag), pAc = p(o and pVo = (pJo)* =

(pUo)"
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Proof. Let p,o € Con(T' — pAg). It is easily seen that p()o and (p|Jo)? are
the meet and the join of p, o in Con(I" — 1 Ag) , respectively. Then Con(I" — rAg)
is a lattice. It remains to show that (p|Jo)* = (p|Jo)°. Applying Theorem 2.12,
we have (pUJo)* = (pU0)) = (p°Uc9)° = (pJo) in which the last two
identities follow from Proposition 2.9(5) and (6). .

Theorem 2.18. Let p,o € Con(I' — rAg) for aI' =T — S-biact I' — 1 Ag. Then
pVao=(pJo)* = (pooc)™. This means that if ai,ay € A, then (ai,a3) € pV o
if and only if for some n € N there exist elements by, by, ....b,_1 € A such that
(a1,b1) € 11, (b1,02) € Ty oo, (by_1,a2) € Tn, where 7; € {p,0}, i =1,...,n.

Proof. Consider any p,0 € Con(I' — rAg). By using Proposition 2.17, we
have pVo = (pUo) = [(pU)U(Uo) " UAA™T = (pJo)™ of which last
equality follows from the symmetry and reflexivity properties of p|Jo. We claim
that (pJo)™ = (poo)™. To this end, first note that since p,o are reflexive,
p,0 Cpoo C (poo)™ and so plJo C (poo)™. This implies that (pJo)™ C
(po o). For the reverse inclusion, we have p,c C plJo C (plJo)™ so that
poa C(pUJo) o (pUo)™ C (plJo)™ which the last inclusion follows from the
transitivity property of (p|Jo)™. Then (poo)™ C (pUo)™, as claimed. The
second assertion is an easy consequence of the identity pV o = (p|Jo)™ in the
first one. n

Corollary 2.19. For a I' — T — S-biact I' — v Ag, if p,o € Con(I' — rAg) are
such that poo =ocop, then pVo=poo.

Proof. By the assumption, (p o o)’ = pioo’ for all i € N. On the other hand, since
p, o are reflexive and transitive, p° = p, o’ = o for all i € N. Then (poo)" = poo.

i

Hence, using Theorem 2.18, we get pV o = (poo)™ = J (poo) =poo. .
i=1

3. Green’s relations on ['-biacts

This section is devoted to study Green’s relations on I'-biacts.

Definition 3.1. [8] Let 7As be a biact. The Green’s equivalences on rAg are
defined by the following rules:

(a1,a2) € pL if and only if Tay; = Tasy,

(a1,a2) € Rg if and only if 415 = asS,

(a1,a9) € 1Js if and only if T'a1S = Tay S,
for all a;,as € A. Further,

Hs :=1LANRs =1L\ Rs,

TDS = T,C V RS = (T»C U Rs)e.

Definition 3.2. Let I'—7Ag be a I'-biact. We define Green’s relationson I'—1Ag
as follows:

(a1,a2) € oL if and only if TTa; = TTas,

(a1,a2) € Rg if and only if a11'S = asI'S,



416 A.R. SHABANI, H. RASOULI

(a1,a9) € 1Js if and only if TTa;I'S = TTa,I'S,
for all a;,as € A. Note that it is clear that +£,Rg and 77 are equivalence
relations on the set A. Thus, in view of Remark 2.16, we also define

THg =7LANRg = T,CﬂRS € E(A),

TDS = T£ V RS = (TEURs)e S S(A)

Lemma 3.3. In terms of the previous definition we have 1L € Con(I' — Ag) and
Rs € Con(I' — 7 A).

Proof. Let aj,as € A, (ay,ay) € 7L. Take s € S and v € I'. Then TT'ay = TTay
and so TT (a17ys) = (TTay)ys = (TTay)vs = TT (agys), i.e. (ar17ys,azys) € rL.
This means that 7L is a I' — S— congruence on Ag. The proof for Rg is similar. =

Theorem 3.4. Let I' — rAg be a I'-biact. If p € Con(I' — 1rA) and p C Rg,
A€ Con(I'— Ag) and A C L, then Ao p=po\. In particular, pLoRs=RgorL.

Proof. Let (aj,a3) € Ao p. So there exists ag € A with a;Aazpas. Since A C 7L
and p C Rg, we get TTa1=TTasz, asl'S=a'S. Then as=t1y1a1, as=a3f3ss,
ay; = tzyzaz and ag = as sy for some ty,t3 € T, 59,53 € S and v1,73, 52, F3 € T
Let d = a183s3. Then d = t3yzazfss3 = tsyzas. Now agpas implies that
(tsysas) p (tgysaz). Thus, ajpd. Also, ajdas gives that (aif3s3) A (as3f3s3) and
then dAay. Hence, a; (p o ) ay which follows that Ao p C po A. Analogously, the
reverse inclusion also holds. Since p and A are arbitrary in £ and R respectively,
using Lemma 3.3, 7LoRg = RgorL. "

Remark 3.5. Since £ and Rg commute by Theorem 3.4, it follows from Corol-
lary 2.19 that 7Ds = 7LV Rs = 7L 0 Rg = Rg o rL. It is clear that |T| = 1
implies that 7Js = Rg and |S| = 1 implies that 7Js = +£. Moreover, we have
1Ds C 1Js. Indeed, first note that 7£ C 7 Js and Rg C 7 Js whence 7L |JRs C
rJs. Since 1Js € €(A), 1Ds = 7LV Rs = (1LURs) C (+Ts)" = 1Ts.

Here we generalize the notion of periodic semigroup to the I'-semigroups
which is needed in the sequel.

Definition 3.6. [8] A monogenic (cyclic) semigroup is a semigroup generated by
a singleton. A semigroup is called periodic if all of its monogenic subsemigroups
are finite.

Definition 3.7. Let S be a I'-semigroup and v € I'. An element e € S is called
a y—idempotent if 6% = e where e% means eye. A subset T of a S is called a -
subsemigroup of S if for every x,y € T, xyy € T. A I'-semigroup S is said to be
periodic if all of its monogenic y—subsemigroups are finite for every v € I'. Here,
a monogenic y-subsemigroup of S generated by s € S is denoted by (s)_, and

<$>7 = {sz |n € N} where s% =5, 33 — 575, .0, 80 = 82_173‘
Lemma 3.8. [8] Every finite semigroup includes an idempotent element.

Lemma 3.9. Among the powers sl of elements of a periodic I'-semigroup S for
v e I', there is a y—idempotent.
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Proof. Let s € S and v € I". Consider the monogenic y—subsemigroup (s) .- For

every x,y € (s)., define xy := xyy € (s),. Then (s), is made into a semigroup

by this operation. Since S is periodic, (s) ., 1s a finite ['-semigroup and then a

finite semigroup. Then, using Lemma 3.8, there is an idempotent element e in

the semigroup <s>7. Thus, there exists k£ € N, e = s,’j. Using the operation,
k

e=e?=eve= e%. Then e = s7 is a y-idempotent element of S. u

Notation 3.10. Let S be a I'-semigroup, s1,52 € S, 7,0 € I'. Then we put
(31752)% 1= (s51782)B(s51752).

Theorem 3.11. Let I' — 1 Ag be a I'-biact over periodic I'-semigroups Tand S.
Then on I' — rAg we have 1Dg = 775.

Proof. In view of Remark 3.5, it suffices to prove that 77 C 7Dg. Assume that
aj,as € A and (a1, a2) € 1Js, i.e. TT'ayI'S = TTasl'S. Thus, a1 = taavagAse and
as = t1ya1Bsy for some s1,80 € 9, t1,to € T and a, \,y,3 € I'. Then

a1 = tQOé <t17a1581> )\82 = (tgat1> 7@16 (Sl/\82> = (thétl) ’Ytg()éag/\Sgﬁ (81>\82)
= (taaty) ytaatiya Bs1Ase 8 (s1A89) = (tg()étl)i ya, (51)\32)/23 = ...

Analogously, we obtain
a9 = (tl’}/t2> O[ag/\ (82/381) = (tl’ytg)i (XCLQ/\ (81582)3\ = -

Since T and S are periodic I'-semigroups, we can find m € N such that (tyat;)
is a 7— idempotent by Lemma 3.9. Let now ¢ = t;va; € A. Then

m
1%

ap = (tgatl):} 'yalﬁ (Sl)\SQ)Tﬁn = (tgatl):ﬁb Y (tgatl)? 'yalﬁ (81>\82)7ﬁn

= (tgatl):} Yap = ((tgatl);nil ’}/t2> « (tl’yal) = <(t20&t1>;n71 ’yt2> acC.

Therefore, (ai,c¢) € L. Moreover, we have cfs; = t1ya18s1 = ag, and, using
Lemma 3.9, if we choose n € N such that (s2fs1)} is a A-idempotent, then we get

c = twalztw(batl)2*17(11&(51)\32)24'1:(twtg)gﬂoz(twalﬁsl))\(32631);‘/\52
= (t17t2)g+10[a2/\(82681)?\n/\SQZ((t17t2)2+1aa2/\(82581)K—Fl))\(SQﬁSl)g_l/\SQ
= ag)\(Sgﬂsl)g_l)\Sg.

Hence, (¢, as) € Rs and so, using Remark 3.5, (a1,a2) € 7L o Rs = 7Dg. .

Definition 3.12. Let p € Con(I"' — 1 Ag) for a I'-biact I'—pAg. The set % =
{lal, | a € A} with the left I'—T-action ty[a] , := [tya], and the right I'— S-action
[a] ,ys = [ays], for every t € T,s € S and v € I' is clearly a I*-biact which is
called the factor I'-biact of I' — 7 Ag by p.

Proposition 3.13. Let T' — 1 Ag be a T'-biact and p € Con(T' — 1 Ag). Then
(i) If p C rL, then for all a,b € A, a L b if and only if [a]p 7L [b]p in %.
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(i) If p C R, then for all a,b € A, a Rs b if and only if [a] , Rs [b], in %.
(ili) If p C vHs, then for all a,b € A, a vHs b if and only if [a], 7Hs [b],, in

F—rAg g
p
Proof. (i) Let a,b € A. If a 7L b, then there exist t,u € T and 7,5 € I' such
that a = tyb and b = ufBa. Then [a] , = [ty0] , = tv[b], and [b] ) = [uBa], = uBla],.
Therefore, TT[a], = TT'[b] , which means that [a], 7.L [b] ) in %. Conversely,
assume that [a], 7£ [0], in %. Then TTa], = TT'[b], so that there exist
t,u € T and v, € I' such that [a] , = ty[b], = [t70] , and [b], = upla] , = [uBal ,,
i.e. ap(tyb) and bp (ufa). Since p C vL, a 7L tyb and b 7L ufa. Then TTa =
TT (tyb) and TTbh = TT (uBa). This implies that a € TT (tyb) = (TTt)yb C TTh
and b € TT (ufa) = (TTu)pb C TTa. Therefore, TT'a = TTb, i.e. a 7L b.
(ii) It is similar to (i).
(iii) Let a,b € A. Assume that p C rHg. Since rHg = L[ Rs, p C rL and
p € Rs. Using (i) and (ii), a 7Hs b if and only if a £ b and a Rg b if and only
if [a], 7£ [b], and [a], R [b],, if and only if [a], 7Hs [b], in =245,

i .
p p
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