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1. Introduction

The non-additive set functions have been the object of several studies. Among the
related literature, we quote for instance [1], [19], [31], [35] and their bibliographies.
In [17], [18] it is dealt with the so-called M-measures, that are increasing set
functions, continuous from above and from below and compatible with respect
to finite suprema and infima, which have several applications, for example to
intuitionistic fuzzy events and observables (see also [1], [33]).

Here we prove some extension results for a continuous k-subadditive lattice-
group valued capacity, (s)-bounded with respect to a single regulator, defined on
a ring W , to the σ-ring σ(W) generated by W , extending earlier results proved
in [21] and [31]. We first construct a continuous extension by considering unions
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of suitable increasing sequences and/or intersections of suitable decreasing se-
quences of sets, using an approach similar to that in [21], and afterwards we prove
(s)-boundedness (and continuity) with respect to a single regulator of the found
extension, by “approximating” an element of σ(W) with a suitable set of W , by
means of a technique similar to that used in [11] in the finitely and countably
additive cases. Some other results about extensions of finitely additive or modu-
lar real-valued, lattice group- or vector lattice-valued measures can be found, for
instance, in [3]-[6], [8], [17], [18], [24]-[30], [32], [36], [37].

We often use the tool of (D)-convergence in the lattice group setting, which
allows us to apply the Fremlin Lemma, by means of which it is possible to replace
a sequence of regulators with a single regulator.

In the literature, the study of extensions of set functions is also related to
different kinds of limit theorems. For a recent literature about these topics, see
also [10]-[14], [20] and, for a comprehensive overview, see for example [15], [31] and
their bibliographies. In [16], some kinds of limit theorems are proved for lattice
group-valued k-subadditive capacities. Finally, we pose some open problems.

2. Preliminaries

We begin with recalling the following basic concepts on lattice groups (see also
[15]).

Definitions 2.1

(a) An abelian partially ordered group R = (R,+,≤) with neutral element 0 is
called a lattice group iff it is a lattice (that is a∨ b and a∧ b, the supremum
and the infimum between a and b, respectively, belong to R for any a, b ∈ R)
and a+ c ≤ b+ c whenever a, b, c ∈ R and a ≤ b.

(b) For every element x of a lattice group R, set x+ = x∨ 0 and x− = (−x)∨ 0.
The elements x+ and x− are called the positive and negative part of x,
respectively. Given x ∈ R, the absolute value |x| of x is defined by |x| =
x ∨ (−x). It is not difficult to see that x = x+ − x− and |x| = x+ + x− for
every x ∈ R.

(c) A nonempty set A ⊂ R is said to be bounded from above (from below, res-
pectively) iff there exists an element s ∈ R with a ≤ s (a ≥ s, respectively)
for every a ∈ A. We say that A is bounded iff it is bounded both from above
and from below.

(d) A lattice group R is said to be Dedekind complete iff every nonempty sub-
set of R, bounded from above (from below, respectively), has supremum
(infimum, respectively) in R.

(e) A Dedekind complete lattice group R is said to be super Dedekind complete
iff for every nonempty set A ⊂ R, bounded from above, there is a finite or
countable subset of A having the same supremum as A.

(f) A sequence (σp)p inR is called (O)-sequence iff it is decreasing and
∞∧
p=1

σp = 0.
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(g) A bounded double sequence (at,r)t,r in R is a (D)-sequence or a regulator iff
(at,r)r is an (O)-sequence for every t ∈ N.

(h) A lattice group R is said to be weakly σ-distributive iff
∧

φ∈NN

( ∞∨
t=1

at,φ(t)

)
= 0,

for every (D)-sequence (at,r)t,r in R.

(i) A sequence (xn)n in R is said to be order convergent (or (O)-convergent )
to x iff there exists an (O)-sequence (σp)p in R such that for every p ∈ N
there is a positive integer n0 with |xn − x| ≤ σp for each n ≥ n0, and in this
case we write (O) lim

n
xn = x.

(j) If (xn)n is a bounded sequence in R, then set

lim sup
n

xn =
∞∧
s=1

( ∞∨
n=s

xn

)
, lim inf

n
xn =

∞∨
s=1

( ∞∧
n=s

xn

)
.

Note that (O) lim
n

xn = x if and only if lim sup
n

xn = lim inf
n

xn = x (see

also [15]).

(k) A sequence (xn)n in R is (D)-convergent to x iff there is a (D)-sequence
(at,r)t,r in R such that, for every φ ∈ NN, there is n∗ ∈ N, with |xn − x|

≤
∞∨
t=1

at,φ(t) whenever n ≥ n∗, and we write (D) lim
n

xn = x.

(l) We call sum of a series
∞∑
n=1

xn in R the limit (O) lim
n

n∑
j=1

xj, if it exists in R.

Remarks 2.2

(a) Observe that in every Dedekind complete lattice groupR any (O)-convergent
sequence is also (D)-convergent, while the converse is true if and only if R
is weakly σ-distributive.

(b) Some examples of super Dedekind complete and weakly σ-distributive lattice
groups are the space NN endowed with the usual componentwise order and
the space L0(X,B, ν) of all ν-measurable functions defined on a set function
space (X,B, ν) with the identification up to ν-null sets endowed with almost
everywhere convergence, where ν is a positive, countably additive and σ-
finite extended real-valued set function (see also [15]).

We now recall the Fremlin Lemma, which has a fundamental importance
in the setting of (D)-convergence, because it allows us to replace a sequence of
regulators with a single (D)-sequence.

Lemma 2.3 (see also [23, Lemma 1C], [33, Theorem 3.2.3]) Let R be any Dedekind

complete lattice group and (a
(n)
t,r )t,r, n ∈ N, be a sequence of regulators in R. Then

for every u ∈ R, u ≥ 0 there is a (D)-sequence (at,r)t,r in R with

u ∧
( ∞∑
n=1

( ∞∨
t=1

a
(n)
t,φ(t+n)

))
≤

∞∨
t=1

at,φ(t) for every φ ∈ NN.
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We now recall the following version of the Fremlin lemma in the setting of
(O)-convergence, which allows to replace a countable family of (O)-sequences with
a single (O)-sequence, and will be useful in the sequel.

Lemma 2.4 (see also [13, Lemma 2.8]) Let R be a super Dedekind complete and

weakly σ-distributive lattice group, and {(σ(n)
p )p : n ∈ N} be a countable family

of (O)-sequences in R, such that the set {(σ(n)
p )p: n, p ∈ N} is bounded in R.

Then there exists an (O)-sequence (bj)j, such that for every j, n ∈ N there is

p = p(j, n) ∈ N with σ
(n)
p ≤ bj.

We now recall some fundamental properties of lattice group-valued capacities
(see also [16], [19], [31]). From now on, R is a super Dedekind complete and
weakly σ-distributive lattice group, G is any infinite set, P(G) is the family of
all subsets of G, W ⊂ P(G) is a ring, σ(W) is the smallest sub-σ-ring of P(G)
containing W , and k is a fixed positive integer.

Definitions 2.5

(a) A capacity m : W → R is a bounded increasing set function with m(∅) = 0.

(b) We say that a capacity m is k-subadditive on W iff

m(A ∪B) ≤ m(A) + km(B) whenever A,B ∈ W , A ∩B = ∅.(2.1)

(c) When R = R, a 1-subadditive capacity is called also a submeasure (see also
[15], [21], [22]).

We now recall the following result.

Proposition 2.6 (see [16, Proposition 3.2]) A capacity m is k-subadditive on W
if and only if

m
( n∪
q=1

Eq

)
≤ m(E1) + k

n∑
q=2

m(Eq)(2.2)

for each n ∈ N, n ≥ 2, and whenever E1, E2, . . . , En ∈ W.

Definitions 2.7

(a) Let E ∈ W . We say that a capacity m is continuous from above (from below,
respectively) at E iff

∞∧
n=1

m(En) = (D) lim
n

m(En) = m(E)(2.3)

( ∞∨
n=1

m(En) = (D) lim
n

m(En) = m(E), respectively
)

(2.4)

for every decreasing (increasing, respectively) sequence (En)n in W such

that
∞∩
n=1

En = E ∈ W (
∞∪
n=1

En = E ∈ W , respectively).
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(b) A capacity m is continuous from above (from below, respectively) on W iff
it is continuous from above (from below, respectively) at every E ∈ W .

(c) If in (2.3) ( (2.4), respectively) it is possible to take the involved (D)-limits
with respect to a single regulator, then we say that m is globally continuous
from above (globally continuous from below) at E, respectively. Similarly as
above, the concepts of global continuity from above and from below on W
can be formulated.

Note that, when R = R, the concepts of continuity and global continuity
are equivalent (see also [15]).

(d) A capacity m : W → R is said to be (s)-bounded on W iff

(D) lim
n

m(Cn) = 0(2.5)

for every disjoint sequence (Cn)n in W .

(e) If the (D)-limit in (2.5) can be taken with respect to a single (D)-sequence,
then m is said to be globally (s)-bounded on W .

3. The main results

We begin with giving the following

Proposition 3.1 Let m : W → R be a k-subadditive capacity, continuous from
above at ∅. Then m is continuous from above and from below.

Proof. We first prove continuity from above. Let (An)n be a decreasing sequence

in W , A :=
∞∩
n=1

An, A ∈ W , and let Bn := An \A. We get Bn ∈ W for each n ∈ N,
∞∩
n=1

Bn = ∅, and hence

(D) lim
n

m(Bn) =
∞∧
n=1

m(Bn) = 0.

Taking into account monotonicity and k-subadditivity of m (see also Proposition
2.6), we obtain

0 ≤ m(An)−m(A) ≤ km(An \ A) = km(Bn),

and so

0 ≤ lim sup
n

(m(An)−m(A)) ≤ k

∞∧
n=1

m(Bn) = 0.

Therefore (D) lim
n
(m(An)−m(A)) = 0, namely (D) lim

n
(m(An)) = m(A), that is

m(A) = (D) lim
n

m(An) =
∞∧
n=1

m(An).
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Thus, we obtain continuity from above of m.

We now prove continuity from below. Let (En)n be an increasing sequence

of elements of W , E :=
∞∪
n=1

En, E ∈ W . Let Fn := E \ En, n ∈ N. Note that

Fn ∈ W for every n ∈ N and that
∞∩
n=1

Fn = ∅. Hence, by hypothesis, we get

(D) lim
n

m(Fn) =
∞∧
n=1

m(Fn) = 0. By monotonicity and k-subadditivity of m, we

have
0 ≤ m(E)−m(En) ≤ km(E \ En) = km(Fn),

and hence
0 ≤ lim sup

n
(m(E)−m(En)) ≤ k

∞∧
n=1

m(Fn) = 0.

Thus, (D) lim
n
(m(E)−m(En)) = 0, that is m(E) = (D) lim

n
m(En) =

∞∨
n=1

m(En).

So, we get that m is continuous from below.

Set now W+ := {E ⊂ G: there exists an (increasing) sequence (En)n in

W with E =
∞∪
n=1

En}, W− := {E ⊂ G: there is a (decreasing) sequence (En)n

in W with E =
∞∩
n=1

En}, and similarly let us define W+− and W−+. It is not

difficult to see that W+, W−, W+− and W−+ are four lattices, W+ and W−+

are closed under countable (increasing) unions, W− and W+− are closed under
countable (decreasing) intersections. We will give extension results for globally
(s)-bounded, k-subadditive and continuous R-valued capacities from a ring W
to σ(W), extending [11, Theorem 4.4], [21, Theorem 18], [26, Theorem 2.5], [31,
Theorems 5.11 and 5.12]. To this aim, we proceed in several steps.

Theorem 3.2 Let m0 : W → R be a k-subadditive capacity, globally (s)-bounded
and continuous from above at ∅ on W, and define m+

0 : W+ → R as

m+
0

( ∞∪
n=1

En

)
=

∞∨
n=1

m0(En),(3.1)

whenever E ∈ W+ and (En)n is any increasing sequence in W with E =
∞∪
n=1

En.

Then m+
0 : W+ → R is a k-subadditive capacity, continuous from above and from

below on W+.

Proof. First of all, we prove that the set function m+
0 in (3.1) is well-defined.

Let E ∈ W+, E =
∞∪
n=1

En =
∞∪
q=1

Fq, where (En)n and (Fq)q are any two increasing
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sequences in W . Since, by Proposition 3.1, m0 is continuous from below on W ,
then we get

∞∨
n=1

m0(En) =
∞∨
n=1

m0(En ∩ E) =
∞∨
n=1

m0

( ∞∪
q=1

(En ∩ Fq)
)

=
∞∨
n=1

( ∞∨
q=1

m0(En ∩ Fq)
)
=

∞∨
q=1

( ∞∨
n=1

m0(En ∩ Fq)
)

=
∞∨
q=1

m0

( ∞∪
n=1

(En ∩ Fq)
)
=

∞∨
q=1

m0(E ∩ Fq) =
∞∨
q=1

m0(Fq),

and so m+
0 is well-defined.

We now prove that m+
0 is monotone. Let A, B ∈ W+, A ⊂ B, A =

∞∪
n=1

An,

B =
∞∪
n=1

Bn, where (An)n and (Bn)n are two increasing sequences in W . For each

n ∈ N, set Cn := An ∩ Bn. Note that (Cn)n is an increasing sequence in W and
∞∪
n=1

Cn = A. By monotonicity of m0, for any n ∈ N we get

m0(Cn) ≤ m0(Bn) ≤
∞∨
n=1

m0(Bn) = m+
0 (B).(3.2)

Taking in (3.2) the supremum as n varies in N, we obtain

m+
0 (A) =

∞∨
n=1

m0(Cn) ≤ m+
0 (B).

From this and arbitrariness of A and B we get monotonicity of m+
0 .

We now prove that m+
0 is k-subadditive. To this aim, choose arbitrarily

A, B ∈ W+, A =
∞∪
n=1

An, B =
∞∪
n=1

Bn, where (An)n and (Bn)n are two increasing

sequences inW . For every n ∈ N, setDn := An∪Bn. Note that (Dn)n is an increa-

sing sequence in W and
∞∪
n=1

Dn = A ∪B. By monotonicity and k-subadditivity of

m0 on W we have

m0(Dn) ≤ m0(An) + km0(Bn) for each n ∈ N,

m+
0 (A ∪B) =

∞∨
n=1

m0(Dn) ≤
∞∨
n=1

m0(An) + k
∞∨
n=1

m0(Bn)(3.3)

= m+
0 (A) + km+

0 (B).

The k-subadditivity of m+
0 follows from (3.3) and arbitrariness of A and B.
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Let (at,r)t,r be a regulator, related to global (s)-boundedness of m0 on W . We

claim that, if E ∈ W+ with E =
∞∪
n=1

En, where (En)n is any increasing sequence

in W , then

(D) lim
n

m+
0 (E \ En) = 0(3.4)

with respect to (at,r)t,r. From this it will follow that for each E ∈ W+ and φ ∈ NN

there is a set E− ∈ W with

E− ⊂ E and m+
0 (E \ E−) ≤

∞∨
t=1

at,φ(t).(3.5)

Indeed, if (En)n is any increasing sequence in W , then for each φ ∈ NN there is
n ∈ N with

m0(En+p \ En) ≤
∞∨
t=1

at,φ(t)(3.6)

whenever n ≥ n and p ∈ N. Otherwise there exist an element φ ∈ NN and two
sequences (ni)i, (pi)i in N, with ni+1 > ni + pi and

m0(Eni+pi \ Eni
) ̸≤

∞∨
t=1

at,φ(t)

for every i ∈ N, getting a contradiction with global (s)-boundedness of m0 on W
with respect to the (D)-sequence (at,r)t,r. Moreover note that, since

∞∪
p=1

(En+p \ En) = E \ En ∈ W+

for every n ∈ N, then

m+
0 (E \ En) =

∞∨
p=1

m0(En+p \ En) for each n.(3.7)

Taking in (3.6) the supremum as p tends to +∞ and keeping fixed n, from (3.6)
and (3.7) we obtain

m+
0 (E \ En) ≤

∞∨
t=1

at,φ(t)(3.8)

for each n ≥ n, that is the claim.

We now prove that m+
0 is continuous from below on W+. Let (Al)l be an in-

creasing sequence in W+, and set A =
∞∪
l=1

Al. For each l ∈ N there is an increasing
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sequence (An
l )n in W with

∞∪
n=1

An
l = Al. For each l, n ∈ N, set Bn

l :=
l∪

s=1

An
s . It is

not difficult to see that the sequences (Bn
l )n and (Bn

l )l are in W , are increasing

and Al =
∞∪
n=1

Bn
l for any l ∈ N. For each n ∈ N, set Cn = Bn

n . It is not difficult

to see that (Cn)n is an increasing sequence in W and A =
∞∪
n=1

Cn. By (3.4), for

every φ ∈ NN there is l ∈ N with

m+
0 (A)−m0(Cl) ≤ km+

0 (A \ Cl) ≤ k

∞∨
t=1

at,φ(t).(3.9)

Since Al ⊃ Cl and m+
0 is monotone, we get

m+
0 (A)−m+

0 (Al) ≤ m+
0 (A)−m+

0 (Cl).(3.10)

From (3.9) and (3.10) it follows that (D) lim
l
m+

0 (Al)=
∞∨
l=1

m+
0 (Al)=m+

0 (A), namely

(global) continuity from below of m+
0 on W+ with respect to the regulator (at,r)t,r.

We now prove that m+
0 is continuous from above at ∅ on W+. Let (En)n be

any decreasing sequence in W+ with
∞∩
n=1

En = ∅, and choose arbitrarily φ ∈ NN.

By (3.5), there is a sequence in (Fn)n in W with Fn ⊂ En and

m+
0 (En \ Fn) ≤

∞∨
t=1

at,φ(t+n)(3.11)

for every n ∈ N. Set Hn =
n∩

j=1

Fj, n ∈ N. Note that Hn ∈ W and Hn ⊂ En for

each n ∈ N, and hence
∞∩
n=1

Hn = ∅. By continuity from above at ∅ of m0 on W ,

we have
∞∧
n=1

m0(Hn) = (D) lim
n

m0(Hn) = 0.(3.12)

Taking into account monotonicity and k-subadditivity of m+
0 , we get:

m+
0 (En \Hn) = m+

0

( n∪
j=1

(En \ Fj)
)
≤ m+

0

( n∪
j=1

(Ej \ Fj)
)

≤ k
n∑

j=1

m+
0 (Ej \ Fj) ≤ k

∞∑
j=1

( ∞∨
t=1

at,φ(t+j)

)
.
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Moreover, by construction, m+
0 (En \Hn) ≤ u, where

u =
∨
A∈W

m0(A).(3.13)

By Lemma 2.3, we find a regulator (bt,r)t,r with

u ∧
(
k2

∞∑
n=1

( ∞∨
t=1

at,φ(t+n)

))
≤

∞∨
t=1

bt,φ(t) for each φ ∈ NN

and thus, thanks to k-subadditivity of m+
0 ,

m+
0 (En)−m0(Hn) ≤ km+

0 (En \Hn) ≤
∞∨
t=1

bt,φ(t),

namely m+
0 (En) ≤ m0(Hn) +

∞∨
t=1

bt,φ(t). Hence, taking into account (3.12),

0 ≤ lim sup
n

m+
0 (En) ≤ lim sup

n
m0(Hn) +

∞∨
t=1

bt,φ(t)

= (D) lim
n

m0(Hn) +
∞∨
t=1

bt,φ(t) =
∞∨
t=1

bt,φ(t).(3.14)

From (3.14), arbitrariness of φ ∈ NN and weak σ-distributivity of R we obtain

0 ≤ lim sup
n

m+
0 (En) ≤

∧
φ∈NN

( ∞∨
t=1

bt,φ(t)

)
= 0.

Hence, (D) lim
n

m+
0 (En) = 0, and so we get (global) continuity from above at ∅ of

m+
0 on W+ with respect to the (D)-sequence (bt,r)t,r.

Now, we prove continuity from above of m+
0 on W+ in the general case.

Let (En)n be a decreasing sequence in W+, with
∞∩
n=1

En = E ∈ W+. There is an

increasing sequence (Vn)n in W , with E :=
∞∪
n=1

Vn ∈ W+ and (D) lim
n

m0(Vn) =

∞∨
n=1

m0(Vn) = m+
0 (E), and so the sequence (En \ Vn)n is in W+, decreasing and

∞∩
n=1

(En \ Vn) = ∅. Then, by the previous step, we get (D) lim
n

m+
0 (En \ Vn) = 0

with respect to the regulator (bt,r)t,r. Moreover, thanks to monotonicity and k-
subadditivity of m+

0 , we have

0 ≤ m+
0 (En)−m0(Vn) ≤ km+

0 (En \ Vn),
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and hence (D) lim
n
(m+

0 (En)−m0(Vn)) = 0. So,

m+
0 (E) = (D) lim

n
m+

0 (En) =
∞∧
n=1

m+
0 (En).

Thus, m+
0 is (globally) continuous from above onW+ with respect to the regulator

(k bt,r)t,r.

Theorem 3.3 Let W∗ = {A ⊂ G: there is D ∈ W+ with D ⊃ A}. For each

A ∈ W∗, set m∗
0(A) =

∧{
m+

0 (D): D ⊃ A, D ∈ W+
}
. Then m∗

0 is a k-subaddi-

tive capacity on W∗, such that for every A ∈ W∗ there exists a set D ∈ W+−,
D ⊃ A, with m∗

0(A) = m∗
0(D). Moreover, if (An)n is any decreasing sequence in

W+ with A =
∞∩
n=1

An, then m∗
0(A) =

∞∧
n=1

m+
0 (An).

Proof. It is not difficult to check that m∗
0 is a k-subadditive capacity on W∗. We

now claim that for each A ∈ W∗ there is D ∈ W+−, D ⊃ A, with

m∗
0(A) = m∗

0(D).(3.15)

Choose arbitrarily A ∈ W∗. Since R is super Dedekind complete, there is a

sequence (Cn)n in W+, with Cn ⊃ An for every n ∈ N and m∗
0(A) =

∞∧
n=1

m+
0 (Cn).

For each n ∈ N, set

Dn =
n∩

i=1

Ci.(3.16)

Then Dn ∈ W+, Dn ⊃ A and the sequence (Dn)n is decreasing.

Put D =
∞∩
n=1

Dn =
∞∩
n=1

Cn. We get D ⊃ A. By monotonicity of m∗
0, we have

(3.17)

m∗
0(A) ≤ m∗

0(D) ≤
∞∧
n=1

m+
0 (Dn) = (D) lim

n
m+

0 (Dn)

≤
∞∧
n=1

m+
0 (Cn) = m∗

0(A).

Thus, all inequalities in (3.17) are equalities, and so we get (3.15). Furthermore,
note that, by (3.17), we find a (D)-sequence (wt,r)t,r such that for every φ ∈ NN

there is n ∈ N with

m+
0 (Dn) ≤ m+

0 (A) +
∞∨
t=1

wt,φ(t)(3.18)
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whenever n ≥ n. Taking in (3.18) the set A+ = Dn, we get that for every A ∈ W∗

and φ ∈ NN there is A+ ∈ W+, A+ ⊃ A, with

m+
0 (A

+) ≤ m+
0 (A) +

∞∨
t=1

wt,φ(t).(3.19)

We now prove that, if (An)n is any decreasing sequence in W+ and A =
∞∩
n=1

An,

then

∞∧
n=1

m+
0 (An) = (D) lim

n
m+

0 (An) = m∗
0(A).(3.20)

Indeed, if (Dq)q is a decreasing sequence in W+ associated with A as in (3.16),
then, by (3.17), monotonicity of m+

0 and continuity from above of m+
0 on W+,

we get

∞∧
n=1

m+
0 (An) ≤

∞∧
n=1

( ∞∧
q=1

m+
0 (An ∪Dq)

)
=

∞∧
q=1

( ∞∧
n=1

m+
0 (An ∪Dq)

)
=

∞∧
q=1

m+
0 (Dq) = m∗

0(A) ≤
∞∧
n=1

m+
0 (An),

and so we obtain (3.20). This ends the proof.

We now prove the following result about the existence of extensions of conti-
nuous k-subadditive capacities.

Theorem 3.4 Let m0 : W → R be a globally (s)-bounded k-subadditive capacity,
continuous from above at ∅. Then there exists a (unique) k-subadditive capacity
m : σ(W) → R, continuous from above and from below, with m(A) = m0(A) for
every A ∈ W.

Proof. Let S := {A ∈ W∗ such that there are E ∈ W+−, F ∈ W−+ with
F ⊂ A ⊂ E and m∗

0(E \ F ) = 0}. We begin with proving that for every A ∈ S
there is a regulator (γt,r)t,r such that for every φ ∈ NN there are D ∈ W+ and
H ∈ W− with H ⊂ A ⊂ D and

m+
0 (D \H) ≤

∞∨
t=1

γt,φ(t).(3.21)

Choose arbitrarily A ∈ S and, in correspondence with A, let E and F be two
sets satisfying the conditions in the definition of S. There are a decreasing se-

quence (En)n in W+ and an increasing sequence (Fn)n in W− with E =
∞∩
n=1

En,

F =
∞∪
n=1

Fn.
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Note that En \ Fn ∈ W+ and E \ F =
∞∩
n=1

(En \ Fn). Then, by (3.20), we get

∞∧
n=1

m+
0 (En \ Fn) = (D) lim

n
m+

0 (En \ Fn) = m∗
0(E \ F ) = 0,(3.22)

that is there exists a (D)-sequence (γt,r)t,r such that for every φ ∈ NN there is
n ∈ N with

m+
0 (En \ Fn) ≤

∞∨
t=1

γt,φ(t)(3.23)

for each n ≥ n. Taking in (3.23) D = En and H = Fn, we obtain (3.21).

We now prove that S is a σ-ring containing W . First of all, it is readily seen
that W ⊂ S. Now, choose arbitrarily A1, A2 ∈ S, and let E1, E2 ∈ W+−, F1,
F2 ∈ W−+ be with Fi ⊂ Ai ⊂ Ei and m∗

0(Ei \ Fi) = 0, i = 1, 2. It is not difficult
to check that E1 ∪ E2, E1 \ F2 ∈ W+−, F1 ∪ F2, F1 \ E2 ∈ W−+. Taking into
account also monotonicity and k-subadditivity of m∗

0, we get

F1 ∪ F2 ⊂ A1 ∪ A2 ⊂ E1 ∪ E2,

F1 \ E2 ⊂ A1 \ A2 ⊂ E1 \ F2,

0 ≤ m∗
0((E1 ∪ E2) \ (F1 ∪ F2)) ≤ m∗

0((E1 \ F1) ∪ (E2 \ F2))(3.24)

≤ m∗
0(E1 \ F1) + km∗

0(E2 \ F2) = 0,

0 ≤ m∗
0((E1 \ F2) \ (F1 \ E2)) ≤ m∗

0((E1 \ F1) ∪ (E2 \ F2))

≤ m∗
0(E1 \ F1) + km∗

0(E2 \ F2) = 0.

Thus, all inequalities in (3.24) are equalities, and hence A1 ∪ A2, A1 \ A2 ∈ S.
Therefore, S is a ring. So, in order to prove that S is a σ-ring it will be enough to

show that, if (An)n is an increasing sequence in S and A =
∞∪
n=1

An, then A ∈ S.

To this aim, for technical reasons it is more advisable to proceed dealing with (O)-
convergence rather than (D)-convergence. By (3.22), to every n ∈ N it is possible
to associate two sequences (Eh,n)h and (Fh,n)h in W+ and W−, respectively, with
Fh,n ⊂ An ⊂ Eh,n for every h and n, and

∞∧
h=1

m+
0 (Eh,n \ Fh,n) = (O) lim

h
m+

0 (Eh,n \ Fh,n)(3.25)

= (D) lim
h

m+
0 (Eh,n \ Fh,n) = 0.

Hence, taking into account monotonicity and k-subadditivity of m+
0 , for every

n ∈ N there is an (O)-sequence (σ
(n)
p )p such that for every p ∈ N there exists

h ∈ N with

m+
0

( n∪
i=1

(Eh,i \ Fh,i)
)
≤ k

n∑
i=1

m+
0 (Eh,i \ Fh,i) ≤ σ(n)

p(3.26)
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for every h ≥ h. Let u be as in (3.13). Without loss of generality, we can assume

that σ
(n)
p ≤ u for each n, p ∈ N since, by construction, m+

0 (A) ≤ u for every
A ∈ W+. Thus, taking into account that R is super Dedekind complete and
weakly σ-distributive, by Lemma 2.4 there is an (O)-sequence (bj)j such that for

every j and n ∈ N there is p ∈ N with σ
(n)
p ≤ bj. From this and (3.26) it follows

that for every n and j ∈ N there is h′ ∈ N with

m+
0

( n∪
i=1

(Eh,i \ Fh,i)
)
≤ k

n∑
i=1

m+
0 (Eh,i \ Fh,i) ≤ bj(3.27)

for every h ≥ h′. Passing to the supremum as n varies in N in (3.26), taking into
account continuity from below of m+

0 , from (3.27) we obtain

m+
0

( ∞∪
i=1

(Eh,i \ Fh,i)
)
≤ bj(3.28)

whenever h ≥ h′. Let nowEh :=
∞∪
n=1

Eh,n, E :=
∞∩
h=1

Eh, Fh :=
∞∩
n=1

Fh,n, F :=
∞∪
h=1

Fh.

It is not difficult to check that Eh ∈ W+, Fh ∈ W− for all h ∈ N, E ∈ W+−,
F ∈ W−+, F ⊂ A ⊂ E,

E \ F ⊂ Eh \ Fh ⊂
∞∪
n=1

(Eh,n \ Fh,n) for every h ∈ N.(3.29)

From (3.27), (3.28), (3.29), positivity and monotonicity of m∗
0 we obtain

0 ≤ m∗
0(E \ F ) ≤ m∗

0(Eh \ Fh) ≤ m+
0

( ∞∪
n=1

(Eh,n \ Fh,n)
)
≤ bj.(3.30)

By arbitrariness of j, we get m∗
0(E \ F ) = 0. Thus, E and F are the required

sets associated with A and satisfying the conditions in the definition of S. Thus,
A ∈ S, and so we deduce that S is a σ-ring. Since S ⊃ W , then S ⊃ σ(W).

Now we prove that m∗
0 is continuous from above at ∅ on S. Let (An)n be

a decreasing sequence in S, with
∞∩
n=1

An = ∅. By (3.21), taking into account

monotonicity and k-subadditivity of m∗
0, for every n ∈ N there exists a (D)-

sequence (vt,r)t,r such that for each φ ∈ NN, in correspondence with An, there is
Cn ∈ W+ with Cn ⊃ An and

m∗
0

( n∪
i=1

(Ci \ Ai)
)
≤ k

n∑
i=1

m∗
0(Ci \ Ai) ≤

∞∨
t=1

v
(n)
t,φ(t+n).(3.31)

For each n ∈ N, set Dn :=
n∩

i=1

Ci. Then (Dn)n is a decreasing sequence in W+ and

Dn ⊃ An for each n ∈ N.
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Indeed, by induction, if Dn ⊃ An, then Dn+1 = Dn ∩ Cn+1 ⊃ An ∩ An+1 = An+1,
since (An)n is decreasing. By monotonicity of m∗

0, from (3.31) it follows that

m∗
0

( n∪
i=1

(Di \ Ai)
)
≤

∞∨
t=1

v
(n)
t,φ(t+n).(3.32)

By (3.19), in correspondence with Dn \ An there are a regulator (w
(n)
t,r )t,r and a

set In ∈ W+, In ⊃ Dn \ An, with

k
n∑

i=1

m+
0 (Ii) ≤ k

n∑
i=1

m+
0 (Di \ Ai) +

∞∨
t=1

w
(n)
t,φ(t+n),

and hence, taking into account monotonicity and k-subadditivity of m+
0 ,

m+
0

( n∪
i=1

Ii

)
≤ k

n∑
i=1

m+
0 (Ii) ≤

∞∨
t=1

v
(n)
t,φ(t+n) +

∞∨
t=1

w
(n)
t,φ(t+n).(3.33)

Let xt,r := 2(vt,r +wt,r), t, r ∈ N, and u be as in (3.13). By virtue of Lemma 2.3,
we find a (D)-sequence (τt,r)t,r with

u ∧
( ∞∑
n=1

( ∞∨
t=1

x
(n)
t,φ(t+n)

))
≤

∞∨
t=1

τt,φ(t) for every φ ∈ NN.

Since, by construction,m+
0

( n∪
i=1

Ii

)
≤ u, thenm+

0

( n∪
i=1

Ii

)
≤

∞∨
t=1

τt,φ(t) for each n ∈ N.

If I =
∞∪
n=1

In, then I ∈ W+, I ⊃
∞∪
n=1

(Dn \ An) and, by continuity from below of

m+
0 , we get

m+
0 (I) =

∞∨
n=1

m+
0

( n∪
i=1

Ii

)
≤

∞∨
t=1

τt,φ(t).(3.34)

As
∞∩
n=1

An = ∅, then

∞∩
n=1

Dn =
( ∞∩
n=1

Dn

)
\
( ∞∩
n=1

An

)
⊂

∞∪
n=1

(Dn \ An) ⊂ I

and so, from (3.20), (3.34) and monotonicity of m∗
0 we obtain

0 ≤
∞∧
n=1

m∗
0(An) ≤

∞∧
n=1

m+
0 (Dn) = m∗

0

( ∞∩
n=1

Dn

)
≤ m+

0 (I) ≤
∞∨
t=1

τt,φ(t).(3.35)

By arbitrariness of φ ∈ NN and weak σ-distributivity of R, we obtain
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0 ≤
∞∧
n=1

m∗
0(An) ≤

∧
φ∈NN

( ∞∨
t=1

τt,φ(t)

)
= 0,

that is
∞∧
n=1

m∗
0(An) = 0. So we get that m∗

0 is continuous from above at ∅ on S.

Continuity from above and from below of m∗
0 on S follows from continuity from

above at ∅ of m∗
0 on S and Proposition 3.1. Thus, the restriction m : σ(W) → R

of m∗
0 satisfies the thesis of the theorem.

Now, we are in position to prove our main result on extensions of lattice
group-valued k-subadditive capacities.

Theorem 3.5 Let W, σ(W) and m be as in Theorem 3.4. Then m is globally
(s)-bounded, and there exists a regulator (ct,r)t,r such that for each A ∈ σ(W) and
φ ∈ NN there is F ∈ W with

m(A△F ) ≤
∞∨
t=1

ct,φ(t).(3.36)

Proof. Let m0 : W → R and m : σ(W) → R be as in Theorem 3.4, and (at,r)t,r
be a regulator, related with global (s)-boundedness of m0 on W . We begin with

proving (3.36). Let u =
∨

A∈σ(W)

m(A). By Lemma 2.3, there is a regulator (At,r)t,r

with

u ∧
( ∞∑
n=1

( ∞∨
t=1

at,φ(t+n)

))
≤

∞∨
t=1

At,φ(t).

Set bt,r = 2 (at,r + At,r) and ct,r = 2 k bt,r, t, r ∈ N. We prove that (ct,r)t,r satisfies

(3.36). To this aim, we first recall that by (3.4), if H ∈ W+, H =
∞∪
n=1

Hn, where

(Hn)n is an increasing sequence in W , then for each φ ∈ NN there is n ∈ N with

m(H \Hn) ≤
∞∨
t=1

at,φ(t) whenever n ≥ n.(3.37)

Choose arbitrarily an element B ∈ W+− and let (Vn)n be any decreasing sequence

in W+ with B =
∞∩
n=1

Vn. Pick any element φ ∈ NN. By (3.37), for each n ∈ N

there exists En ∈ W such that En ⊂ Vn and

m(Vn \ En) ≤
∞∨
t=1

at,φ(t+n).

Set now Fn :=
n∩

i=1

Ei, n ∈ N. Then (Fn)n is a decreasing sequence in W .
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Proceeding analogously as in (3.6), we find a positive integer n0 with m(Fn\Fn+p)

≤
∞∨
t=1

at,φ(t) for every n ≥ n0 and p ∈ N. Since m is k-subadditive, we get

m(Vn \B) ≤ m(Vn \ Vn+p) + km(Vn+p \B)

for every n, p ∈ N. It is possible to check that

Vn \ Fn ⊂ (V1 \ E1) ∪ . . . ∪ (Vn \ En),

(Vn \ Vn+p)△(Fn \ Fn+p) ⊂ (V1 \ E1) ∪ . . . ∪ (Vn+p \ En+p)

for every n, p ∈ N, and hence

m(Vn \Vn+p) ≤ m(Fn \Fn+p)+u∧
(
k

n+p∑
h=1

m(Vh \Eh)
)
≤ k

( ∞∨
t=1

at,φ(t)+
∞∨
t=1

At,φ(t)

)
,

for each n ≥ n0 and p ∈ N. Thus, we get

m(Vn \B) ≤ k
( ∞∨
t=1

at,φ(t) +
∞∨
t=1

At,φ(t)

)
+ km(Vn+p \B)

for every n ≥ n0 and p ∈ N. Letting p tend to +∞ and taking into account

continuity from above of m, we obtain m(Vn \B) ≤ k
∞∨
t=1

bt,φ(t) for any n ≥ n0.

Taking H = Vn0 , we get that for every B ∈ W+− and φ ∈ NN there exists a set
H ∈ W+ with H ⊃ B and

m(H \B) ≤ k
∞∨
t=1

bt,φ(t).(3.38)

Moreover by (3.37), in correspondence with H and φ, there is a set A ∈ W ,
A ⊂ H, with

m(H \ A) ≤
∞∨
t=1

at,φ(t).(3.39)

From (3.38) and (3.39), monotonicity and k-subadditivity of m, it follows that

m(A△B) ≤ m((H \ A) ∪ (H \B)) ≤ m(H \ A) + km(H \B) ≤

≤
∞∨
t=1

at,φ(t) + k

∞∨
t=1

bt,φ(t) ≤
∞∨
t=1

ct,φ(t).

By (3.15), since σ(W) ⊂ W∗, we get that for every E ∈ σ(W) there is B ∈ W+−

with B ⊃ E and m(E) = m(B). Thus, if E is any element of σ(W) and A
is as in (3.39), then, using monotonicity and k-subadditivity of m, we obtain
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m(A△E) ≤ m(A△B) + km(B△E) = m(A△B) ≤
∞∨
t=1

ct,φ(t), and hence (3.36) is

proved.

Now, we prove global (s)-boundedness of m. Let u, (at,r)t,r and (ct,r)t,r be as
above. By Lemma 2.3, there is a regulator (Ct,r)t,r with

u ∧
∞∑
n=1

( ∞∨
t=1

ct,φ(t+n)

)
≤

∞∨
t=1

Ct,φ(t).

Put

dt,r := 2k(Ct,r + at,r), t, r ∈ N.(3.40)

We prove that m is globally (s)-bounded on σ(W) with respect to (dt,r)t,r. Choose
arbitrarily a disjoint sequence (Hn)n in σ(W) and an element φ ∈ NN. By (3.36),
for each n ∈ N there is a set Fn ∈ W with

m(Hn△Fn) ≤
∞∨
t=1

ct,φ(t+n).

Set F ∗
1 := F1, F ∗

n := Fn \
(n−1∪
j=1

Fj

)
for every n ≥ 2. We get

F ∗
n ∈ W for every n ∈ N and Hn△F ∗

n ⊂
n∪

j=1

(Hj△Fj).(3.41)

From (3.41), monotonicity and k-subadditivity of m we obtain

m(Hn) ≤ m(Hn△F ∗
n) + km(F ∗

n)(3.42)

≤ u ∧
(
k

n∑
j=1

m(Hj△Fj)
)
+ km(F ∗

n)

≤
∞∨
t=1

Ct,φ(t) + km(F ∗
n).

Since the sequence (F ∗
n)n is disjoint, then, by global (s)-boundedness of m on W

with respect to (at,r)t,r, for every φ ∈ NN there is n ∈ N with

m(F ∗
n) ≤

∞∨
t=1

at,φ(t).(3.43)

From (3.42) and (3.43) it follows that m(Hn) ≤
∞∨
t=1

dt,φ(t). From this and arbitrari-

ness of the chosen sequence (Hn)n we get global (s)-boundedness of m on σ(W)
with respect to the regulator (dt,r)t,r.

Furthermore, by construction, taking into account that the set functions m+
0

and m∗
0 are well-defined, using weak σ-distributivity of R, it is not difficult to

check that the extension m : σ(W) → R of m0 is unique. This ends the proof.
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Remark 3.6 Observe that the set function m in Theorem 3.4 is also globally
continuous on σ(W). Indeed, let (En)n be a decreasing sequence in σ(W) with
empty intersection, and (dt,r)t,r be as in (3.40). Using global (s)-boundedness of
m on σ(W), analogously as in (3.6) it is possible to see that for every φ ∈ NN

there is n ∈ N with

m(En \ En+p) ≤
∞∨
t=1

dt,φ(t)(3.44)

for every n ∈ N, n ≥ n and p ∈ N. Taking into account continuity from below of
m on σ(W), from (3.44), keeping fixed n and letting p tend to +∞, we get

m(En) ≤
∞∨
t=1

dt,φ(t)(3.45)

for every n ∈ N, n ≥ n. By arbitrariness of the chosen sequence (En)n, from
(3.45) we get global continuity from above at ∅ of m on σ(W). Global continuity
from above and from below of m on σ(W) follows from global continuity from
above at ∅, by proceeding analogously as in Proposition 3.1.

Open problems:

(a) Find some types of extensions for continuous set functions with values in
a not necessarily super Dedekind complete or weakly σ-distributive lattice
group.

(b) Is the extension found in [4] still valid for lattice group-valued measures on
effect algebras or even on pseudo-effect algebras?
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