FURTHER PROPERTIES OF THE GENERALIZATION OF PRIMAL SUPERIDEALS

Ameer Jaber¹ Moh'D Yasein

Department of Mathematics The Hashemite University Zarqa 13115 Jordan e-mails: ameerj@hu.edu.jo myasein@hu.edu.jo

Abstract. In [7], the author studied several generalizations of primal superideals of a commutative super-ring R. This paper is devoted to study further properties of ϕ -primal superideals of R, where $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ is any function and $\mathfrak{I}(R)$ is the set of all proper superideals of R. In particular, if $J \in \mathfrak{I}(R)$ then there is a one-to-one correspondence between ϕ - P^I -primal superideals I of R with $J \subseteq \phi(I)$ and ϕ_J - P^I/J -primal superideals of R/J. Moreover, for a multiplicatively closed subset S of h(R), if $I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S))$ for any $I \in \mathfrak{I}(R)$, then there is a one-to-one correspondence between ϕ - P^I -primal superideals I of R and ϕ_S - P^I_S -primal superideals I_S of R_S with $P^I \cap S = \emptyset$.

Keywords: primal superideal, ϕ -primal superideal, ϕ -prime superideal. **AMS Classification:** 13A02, 16D25, 16W50.

1. Introduction

Let R be any ring with unity, then R is called a super-ring if R is a \mathbb{Z}_2 -graded ring such that if $a, b \in \mathbb{Z}_2$ then $R_a R_b \subseteq R_{a+b}$ where the subscripts are taken modulo 2. Let $h(R) = R_0 \cup R_1$ then h(R) is the set of homogeneous elements in R and $1 \in R_0$.

Throughout, R will be a commutative super-ring with unity. By a proper superideal of R we mean a superideal I of R such that $I \neq R$. We will denote the set of all proper superideals of R by $\mathfrak{I}(R)$. If I and J are superideals of R, then the superideal $\{r \in R : rJ \subseteq I\}$ is denoted by (I:J). Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. We call a proper superideal I of R ϕ -prime (prime) if for $x, y \in h(R)$

¹Corresponding author

with $xy \in I - \phi(I)$ $(xy \in I)$ then $x \in I$ or $y \in I$. Since $I - \phi(I) = I - (\phi(I) \cap I)$, there is no loss of generality to assume that $\phi(I) \subseteq I$ for every proper superideal I of R. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, we say that an element $a \in h(R)$ is ϕ -prime to I (prime to I), if whenever $ra \in I - \phi(I)$ $(ra \in I)$, where $r \in h(R)$, then $r \in I$. That is $a \in h(R)$ is ϕ -prime to I (prime to I), if $h((I:a)) - h((\phi(I):a)) \subseteq h(I)$ (if $h((I:a)) \subseteq h(I)$).

Let $\nu(I)$ be the set of all homogeneous elements in R that are not prime to I. We define I to be primal if the set

$$P = (\nu(I))_0 + (\nu(I))_1 \cup \{0\}$$

forms a superideal in R. In this case we say that I is a P-primal superideal of R, and P is the adjoint superideal of I.

Let $\nu_{\phi}(I)$ be the set of all homogeneous elements in R that are not ϕ -prime to I. We define I to be ϕ -primal if the set

$$P = \begin{cases} [(\nu_{\phi}(I))_0 + (\nu_{\phi}(I))_1 \cup \{0\}] + \phi(I) & : & \text{if } \phi \neq \phi_{\emptyset} \\ (\nu_{\phi}(I))_0 + (\nu_{\phi}(I))_1 & : & \text{if } \phi = \phi_{\emptyset} \end{cases}$$

forms a superideal in R. In this case we say that I is a ϕ -P-primal superideal of R, and P is the adjoint superideal of I.

In [7], the author gave a generalization of primal superideals of R and he studied some properties of that generalization, he also studied the relation between ϕ -primary and ϕ -primal superideals. Moreover, the author introduced some conditions under which ϕ -primal superideals are primal.

In the next example we give some famous functions $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ and their corresponding ϕ -primal superideals.

Example 1.1.

$$\begin{array}{lll} \phi_{\emptyset} & \phi_{\emptyset}(I) = \emptyset & \forall \ I \in \mathfrak{I}(R) & \text{primal superideal.} \\ \phi_{0} & \phi_{0}(I) = \{0\} & \forall \ I \in \mathfrak{I}(R) & \text{weakly primal superideal.} \\ \phi_{2} & \phi_{2}(I) = I^{2} & \forall \ I \in \mathfrak{I}(R) & \text{almost primal superideal.} \\ \phi_{n} & \phi_{n}(I) = I^{n} & \forall \ I \in \mathfrak{I}(R) & n\text{-almost primal superideal.} \\ \phi_{\omega} & \phi_{\omega}(I) = \cap_{n=1}^{\infty} I^{n} & \forall \ I \in \mathfrak{I}(R) & \omega\text{-primal superideal.} \end{array}$$

Observe that $\phi_0 \leq \phi_0 \leq \phi_\omega \leq \cdots \leq \phi_{n+1} \leq \phi_n \leq \cdots \leq \phi_2$.

In this paper, we prove that if J is a ϕ -prime superideal of R then then there is a one-to-one correspondence between ϕ - P^I -primal superideals I of R with $J \subseteq \phi(I)$ and ϕ_J - P^I/J -primal superideals of R/J. Also, we prove that for a multiplicatively closed subset S of h(R) and under the condition that $I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S))$ for any $I \in \mathfrak{I}(R)$, where $\rho: R \to R_S$ is the canonical homomorphism, there is a one-to-one correspondence between ϕ - P^I -primal superideals I of R and ϕ_S - P^I_S -primal superideals I_S of R_S with $P^I \cap S = \emptyset$.

2. ϕ_J -P/J-primal superideals

We start this section by the following two examples to show that the concepts "primal superideals" and " ϕ -primal superideals" are different.

Example 2.1. Let $R = \mathbb{Z}_{24} + u\mathbb{Z}_{24}$, where $u^2 = 0$, be a commutative super-ring and assume that $\phi = \phi_0$. Let $I = 8\mathbb{Z}_{24} + u\mathbb{Z}_{24}$.

- (1) Since $0 \neq \bar{2} \cdot \bar{4} \in I$ with $\bar{2}, \bar{4} \notin I$, then we get that $\bar{2}$ and $\bar{4}$ are not ϕ -prime to I. Easy computations imply that $\bar{2} + \bar{4} = \bar{6}$ is ϕ -prime to I. Thus we obtain that I is not a ϕ -primal superideal of R.
- (2) Set $P = 2\mathbb{Z}_{24} + u\mathbb{Z}_{24}$. We show that I is a primal superideal of R. It is easy to check that every element of h(P) is not prime to I. Conversely, assume that $\bar{a} \in h(R) h(P)$, then $\bar{a} \in \mathbb{Z}_{24}$ with gcd(a, 8) = 1. If $\bar{a} \cdot \bar{n} \in I$ for some $\bar{n} \in \mathbb{Z}_{24}$, then 8 divides n; hence $\bar{n} \in I$. Therefore, h(P) is exactly the set of elements in h(R) which are not prime to I. Thus I is a primal superideal of R.

Example 2.2. Let $\phi = \phi_0$, and let T(R) be the collection of all homogeneous zero divisors of R. If R is not a superdomain such that $Z(R) = T_0(R) + T_1(R)$ is not a superideal of R. Then the trivial superideal of R is a ϕ -primal superideal which is not primal.

According to Examples 2.1 and 2.2 a primal superideal of R need not to be ϕ -primal and a ϕ -primal superideal of R need not to be primal.

Let R be a commutative super-ring with unity and let J be a proper superideal of R. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. As a generalization of [2], we define $\phi_J: \mathfrak{I}(R/J) \to \mathfrak{I}(R/J) \cup \{\emptyset\}$ by $\phi_J(I/J) = (\phi(I)+J)/J$ for every superideal $I \in \mathfrak{I}(R)$ with $J \subseteq I$ (and $\phi_J(I/J) = \emptyset$ if $\phi = \phi_\emptyset$).

We leave the trivial proof of the next lemma to the reader.

- **Lemma 2.3.** Let R be a commutative super-ring with unity and let J be a proper superideal of R. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. If P is a ϕ -prime superideal of R containing J. Then P/J is a ϕ_J -prime superideal of R/J.
- **Lemma 2.4.** Let R be a commutative super-ring with unity and let J be a proper superideal of R, and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. Let P be a superideal of R containing J. If P/J is a ϕ_J -prime superideal of R/J with $J \subseteq \phi(P)$, then P is a ϕ -prime superideal of R.

Proof. Let a, b be homogeneous elements in R with $ab \in P - \phi(P)$. Then $ab \in J + P$ and $ab \notin J + \phi(P) = \phi(P)$. Thus, $ab \in (J + P) - (J + \phi(P))$, so $\overline{ab} \in (J + P)/J - (J + \phi(P))/J$ which implies that $\overline{ab} \in P/J - \phi_J(P/J)$, that is $\overline{a} \in P/J$ or $\overline{b} \in P/J$ so $a \in P$ or $b \in P$. Therefore, P is a ϕ -prime superideal of R.

In the next result and under the condition that $J \subseteq \phi(I)$ we prove that I is a ϕ -primal superideal of R if and only if I/J is a ϕ_J -primal superideal of R/J.

Theorem 2.5. Let R be a commutative super-ring with unity and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. Let I be a proper superideal of R, and let J be a superideal of R with $J \subseteq \phi(I)$. Then I is a ϕ -P-primal superideal of R if and only if I/J is a ϕ_J -P/J-primal superideal of R/J.

Proof. Suppose that I is ϕ -P-primal superideal of R with $J \subseteq I$. Then, by [7, Theorem 2.5], P is a ϕ -prime superideal of R containing J. Therefore, by Lemma 2.3, P/J is a ϕ_J -prime superideal of R/J. We show that I/J is ϕ_J -P/J-primal superideal of R/J. That is we have to prove that

$$P/J = \begin{cases} [(\nu_{\phi_J}(I/J))_0 + (\nu_{\phi_J}(I/J))_1 \cup \{0\}] + \phi_J(I/J) & : & \text{if } \phi_J \neq \phi_\emptyset \\ (\nu_{\phi_J}(I/J))_0 + (\nu_{\phi_J}(I/J))_1 & : & \text{if } \phi_J = \phi_\emptyset \end{cases}$$

Let $\bar{a} \in h(P/J)$ then $a \in h(P)$ is not ϕ -prime to I. That is there exists r in h(R) - h(I) with $ra \in I - \phi(I)$. If $a \in J + \phi(I) = \phi(I)$ then $\bar{a} \in \phi_J(I/J)$. So we may assume that $a \notin J + \phi(I) = \phi(I)$. Therefore, $\bar{r}\bar{a} \in I/J - (J + \phi(I))/J = I/J - \phi_J(I/J)$ and because $\bar{r} \notin I/J$ we get that $\bar{a} \in \nu_{\phi_J}(I/J)$.

Now, assume that \bar{b} is a homogeneous element in R/J such that $\bar{b} \in \nu_{\phi_J}(I/J)$. Then, there exists a homogeneous element \bar{r} in R/J - I/J such that $\bar{r}\bar{b} \in I/J - \phi_J(I/J)$, so $rb \in I - \phi(I)$ with $r \notin I$. Thus, b is not ϕ -prime to I which implies that $b \in P$, and hence $\bar{b} \in P/J$. Therefore,

$$P/J = \begin{cases} [(\nu_{\phi_J}(I/J))_0 + (\nu_{\phi_J}(I/J))_1 \cup \{0\}] + \phi_J(I/J) & : & \text{if } \phi_J \neq \phi_\emptyset \\ (\nu_{\phi_J}(I/J))_0 + (\nu_{\phi_J}(I/J))_1 & : & \text{if } \phi_J = \phi_\emptyset \end{cases}$$

and so I/J is ϕ_J -P/J-primal superideal of R/J.

Conversely, suppose that I/J is ϕ_J -P/J-primal superideal of R/J with the adjoint superideal P/J. We show that I is a ϕ -P-primal superideal of R. Now, by [7, Theorem 2.5], P/J is a ϕ_J -prime superideal of R/J with $J \subseteq P$, so by Lemma 2.4, P is a ϕ -prime superideal of R. To finish the proof we need to show that

$$P = \begin{cases} [(\nu_{\phi}(I))_0 + (\nu_{\phi}(I))_1 \cup \{0\}] + \phi(I) & : & \text{if } \phi \neq \phi_{\emptyset} \\ (\nu_{\phi}(I))_0 + (\nu_{\phi}(I))_1 & : & \text{if } \phi = \phi_{\emptyset} \end{cases}.$$

Clearly, $\phi(I) \subseteq I \subseteq P$. Let $a \in \nu_{\phi}(I)$, then there exists a homogeneous element $r \in R - I$ with $ra \in I - \phi(I)$. Since $ra \not\in \phi(I) = J + \phi(I)$ we get that $\bar{r}\bar{a} \in I/J - (J + \phi(I))/J = I/J - \phi_J(I/J)$ and $\bar{r} \not\in I/J$. So, $\bar{a} \in P/J$ and hence $a \in P$. Now, let $a \in h(P)$. Suppose that $\bar{a} \in I/J$, then $a \in I$. If $a \in \phi(I)$, then done. If $a \not\in \phi(I)$, then $a \in I - \phi(I)$ and so, a is not ϕ -prime to I, hence $a \in \nu_{\phi}(I)$. Thus,

$$a \in \begin{cases} [(\nu_{\phi}(I))_0 + (\nu_{\phi}(I))_1 \cup \{0\}] + \phi(I) & : & \text{if } \phi \neq \phi_{\emptyset} \\ (\nu_{\phi}(I))_0 + (\nu_{\phi}(I))_1 & : & \text{if } \phi = \phi_{\emptyset} \end{cases}.$$

Therefore, we may assume that $\bar{a} \notin I/J$, so there exists $\bar{r} \in h(R/J) - h(I/J)$ with $\bar{r}\bar{a} \in I/J - \phi_J(I/J)$, and so $\bar{r}\bar{a} \notin (J + \phi(I))/J$ that is $ra \notin J + \phi(I) = \phi(I)$. Therefore, $ra \in I - \phi(I)$ with $r \notin I$ that is $a \in \nu_\phi(I)$.

By using Theorem 2.5, we have the following result.

Theorem 2.6. Let R be a commutative super-ring with unity, and let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. let J be a superideal of R. Then there is one-to-one correspondence between the ϕ - P^I -primal superideals I of R containing J with $J \subseteq \phi(I)$ and ϕ_J - P^I/J -primal superideals of R/J.

3. Multiplicatively closed subsets

Let R be a commutative super-ring with unity, and let S be a multiplicatively closed subset of h(R). Consider the canonical homomorphism $\rho: R \to R_S$ which is defined by $r \mapsto \frac{r}{1}$ for all $r \in h(R)$. Then ρ is a homogeneous superhomomorphism of degree 0.

Now let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. We define $\phi_S: \mathfrak{I}(R_S) \to \mathfrak{I}(R_S) \cup \{\emptyset\}$ by $\phi_S(J) = (\phi(\rho^{-1}(J)))_S$ for every $J \in \mathfrak{I}(R_S)$. Note that $\phi_S(J) \subseteq J$, since for $J \in \mathfrak{I}(R_S)$, we get that $\phi(\rho^{-1}(J)) \subseteq \rho^{-1}(J)$ implies $\phi_S(J) \subseteq (\rho^{-1}(J))_S \subseteq J$.

Example 3.1. Let $R = \mathbb{Z}_6 + u\mathbb{Z}_6$ with $u^2 = 0$. Let $S = \{1, 2, 4\}$, $\phi = \phi_2$. Then S is a multiplicatively closed subset of h(R). If $P = \{0\}$ then one can easily check that P is ϕ_2 -P-primal superideal of R. Moreover, $P_S = (\phi(P))_S = \{0\}$, hence $\phi_S(P_S) = P_S$ since $\rho^{-1}(P_S) = \{0, 3, 3u\}$, where $\rho : R \to R_S$ is the canonical homomorphism. Therefore, P_S is ϕ_S - P_S -primal superideal in R_S .

We start by proving the following properties about ϕ -prime superideals of R, where $\rho: R \to R_S$ is the canonical homomorphism.

Theorem 3.2. Let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -prime superideal of R with $I \cap S = \emptyset$, then I_S is a ϕ_S -prime superideal of R_S .

Proof. Let $\frac{x}{s}$, $\frac{y}{t}$ be homogeneous elements in R_S with $(\frac{x}{s})(\frac{y}{t}) \in I_S - \phi_S(I_S)$, then for some $u \in S$ $xyu \in I - \phi(I)$, so $x \in I$ or $yu \in I$ and thus $\frac{x}{s} \in I_S$ or $\frac{y}{t} \in I_S$, hence I_S is a ϕ_S -prime superideal of R_S .

Theorem 3.3. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let P be a ϕ -prime superideal of R with $h(P) \cap S = \emptyset$. If $\rho^{-1}((\phi(P))_S) \subseteq P$, then $\rho^{-1}(P_S) = P$.

Proof. It is easy to see that $P \subseteq \rho^{-1}(P_S)$.

Conversely, let x be a homogeneous element in $\rho^{-1}(P_S)$, then for some $s \in S$, $xs \in P$. If $xs \notin \phi(P)$ then $xs \in P - \phi(P)$ and $s \notin P$ so $x \in P$. Therefore we may assume that $xs \in \phi(P)$, so x is a homogeneous element in $\rho^{-1}((\phi(P))_S)$. Thus,

$$\rho^{-1}(P_S) \subseteq P \cup \rho^{-1}((\phi(P))_S),$$

and since $\rho^{-1}((\phi(P))_S) \subseteq P$ then we have that $\rho^{-1}(P_S) = P$.

Lemma 3.4. Let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -P-primal superideal of R with $h(P) \cap S = \emptyset$. If $a/s \in h(I_S) - h(\phi_S(I_S))$ then $a \in I$.

Proof. Let $a/s \in h(I_S) - h(\phi_S(I_S))$, so $a/s \notin \phi_S(I_S)$, and hence $a/1 \notin \phi_S(I_S)$, thus $a/1 \notin (\phi(I))_S$ since $(\phi(I))_S \subseteq \phi_S(I_S)$. Now, $\frac{a}{1} = \frac{r}{u}$ for some $r \in h(I)$ and $u \in S$, so, $r = au \in I$ and $au \notin \phi(I)$ because if $au \in \phi(I)$ then $a/1 \in (\phi(I))_S$, a contradiction. Thus $au \in I - \phi(I)$, if $a \notin I$ then u is not a ϕ -prime to I which mplies that $u \in h(P) \cap S$, a contradiction. Therefore, $a \in I$.

Lemma 3.5. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -P-primal superideal of R with $h(P) \cap S = \emptyset$. Then $h(\rho^{-1}(I_S)) - h(\rho^{-1}(\phi_S(I_S))) \subseteq h(I) - h(\phi(I))$.

Proof. Let a be a homogeneous element in $\rho^{-1}(I_S)$ such that $a \notin h(\rho^{-1}(\phi_S(I_S)))$, then $a/1 \in h(I_S) - h(\phi_S(I_S))$ and by Lemma 3.4, $a \in I$. If $a \in \phi(I)$ then $a/1 \in (\phi(I))_S \subseteq \phi_S(I_S)$ implies that $a \in h(\rho^{-1}(\phi_S(I_S)))$ a contradiction. Therefore, $a \in h(I) - h(\phi(I))$.

Lemma 3.6. Let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -P-primal superideal of R with $h(P) \cap S = \emptyset$. Then $\nu_{\phi_S}(I_S) \subseteq (\nu_{\phi}(I))_S$.

Proof. If $a/s \in \nu_{\phi_S}(I_S)$, then we show in the proof of Lemma 3.4 that $au \in I - \phi(I) \subseteq \nu_{\phi}(I)$ for some u in S, hence $ua/us = a/s \in (\nu_{\phi}(I))_S$.

Corollary 3.7. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -P-primal superideal of R with $h(P) \cap S = \emptyset$. If $I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S))$ then $\nu_{\phi_S}(I_S) = (\nu_{\phi}(I))_S$.

Proof. In Lemma 3.6, we proved that $\nu_{\phi_S}(I_S) \subseteq (\nu_{\phi}(I))_S$.

Conversely, let $\frac{x}{s}$ be a homogeneous element in $(\nu_{\phi}(I))_S$, then $\frac{x}{s} = \frac{y}{t}$, where $y \in \nu_{\phi}(I)$. If $y \in I$, then $\frac{y}{t} \in I_S - (\phi(I))_S$ and so

$$y \in \rho^{-1}(I_S) - \rho^{-1}((\phi(I))_S) \subseteq I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S)).$$

Hence $\frac{y}{t} \in I_S - \phi_S(I_S) \subseteq \nu_{\phi_S}(I_S)$. Therefore we may assume that $y \notin I$. Since $y \in \nu_{\phi}(I)$ there exists a homogeneous element u in R - I with $uy \in I - \phi(I)$, but $I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S))$, so $(\frac{u}{1})(\frac{y}{t}) \in I_S - \phi_S(I_S)$ with $\frac{u}{1} \notin I_S$, thus $\frac{y}{t} \in \nu_{\phi_S}(I_S)$.

We recall that if J is a superideal in R, then $J \subseteq \rho^{-1}(J_S)$ and therefore we may assume that $(\phi(J))_S \subseteq \phi_S(J_S)$. Under the condition that

$$I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S))$$

for all superideals I of R, we have the following proposition.

Proposition 3.8. Let S be a multiplicatively closed subset of h(R) with $1 \in S$, let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -P-primal superideal of R with $h(P) \cap S = \emptyset$. Then I_S is a ϕ_S - P_S -primal superideal of R_S .

Proof. By Theorem 3.2, P_S is a ϕ_S -prime superideal of R_S . To show that I_S is a ϕ_S - P_S -primal superideal of R_S , we must prove that

$$P_S = \begin{cases} [(\nu_{\phi_S}(I_S))_0 + (\nu_{\phi_S}(I_S))_1 \cup \{0\}] + \phi_S(I_S) & : & \text{if } \phi_S \neq \phi_\emptyset \\ (\nu_{\phi_S}(I_S))_0 + (\nu_{\phi_S}(I_S))_1 & : & \text{if } \phi_S = \phi_\emptyset \end{cases}$$

Clearly, $\phi_S(I_S) \subseteq P_S$, let a/s be a homogenous element in $\nu_{\phi_S}(I_S)$, then there exists $r/u \in h(R_S) - h(I_S)$ with $(\frac{r}{u}) \cdot (\frac{a}{s}) \in I_S - \phi_S(I_S)$ so, by Lemma 3.5, $ra \in I - \phi(I)$ and $r \notin h(I)$, thus $a \in \nu_{\phi}(I) \subseteq P$ and hence $a/s \in P_S$.

Conversely, let $a/s \in h(P_S)$ such that $a/s \notin \phi_S(I_S)$. If $a/s \in I_S$, then $(1/1)(a/s) \in I_S - \phi_S(I_S)$, $(1/1) \notin I_S$, so a/s is not ϕ_S -prime to I_S , thus $a/s \in \nu_{\phi_S}(I_S)$. Therefore, we may assume that $a/s \notin I_S$, that is $ta \notin I$ for every $t \in S$. Since $a/s \in P_S$, then for some $t \in S$, $ta \in P - I$, and so $ta \in \nu_{\phi}(I)$ which implies that $a/s \in (\nu_{\phi}(I))_S$, and by Corollary 3.7, we have that $\nu_{\phi_S}(I_S) = (\nu_{\phi}(I))_S$ thus $a/s \in \nu_{\phi_S}(I_S)$.

Let R be a commutative super-ring with unity, and let S be a multiplicatively closed subset of h(R). Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, then under the condition that

$$I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S))$$

for all proper superideals I of R, we have the following proposition.

Proposition 3.9. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let J be a ϕ_S -Q-primal superideal of R_S , then $\rho^{-1}(J)$ is ϕ -primal superideal of R with the adjoint superideal $\rho^{-1}(Q)$. Moreover, $J = (\rho^{-1}(J))_S$.

Proof. To show that $\rho^{-1}(J)$ is ϕ -primal superideal of R with the adjoint superideal $\rho^{-1}(Q)$ we must show that

$$\rho^{-1}(Q) = \begin{cases} [(\nu_{\phi}(\rho^{-1}(J)))_0 + (\nu_{\phi}(\rho^{-1}(J)))_1 \cup \{0\}] + \phi(\rho^{-1}(J)) & : & \text{if } \phi \neq \phi_{\emptyset} \\ (\nu_{\phi}(\rho^{-1}(J)))_0 + (\nu_{\phi}(\rho^{-1}(J)))_1 & : & \text{if } \phi = \phi_{\emptyset} \end{cases}$$

But $\phi(\rho^{-1}(J)) \subseteq \rho^{-1}(J) \subseteq \rho^{-1}(Q)$. Now let a be a homogenous element in $\nu_{\phi}(\rho^{-1}(J))$, then $\frac{a}{1} \in (\nu_{\phi}(\rho^{-1}(J)))_S$, but by Corollary 3.7, $(\nu_{\phi}(\rho^{-1}(J)))_S = \nu_{\phi_S}(J)$, so $\frac{a}{1} \in \nu_{\phi_S}(J) \subseteq Q$ and hence $a \in \rho^{-1}(Q)$.

Conversely, let a be a homogeneous element in $\rho^{-1}(Q)$, then a/1 in Q. We may assume that $a \notin \phi(\rho^{-1}(J))$, so $a/1 \notin \phi_S(J)$. If $a/1 \in J$, then $(a/1) \in J - \phi_S(J)$ and since $\phi(\rho^{-1}(J)) \subseteq \rho^{-1}(\phi_S(J))$, we have that $a \in \rho^{-1}(J) - \rho^{-1}(\phi_S(J)) \subseteq \rho^{-1}(J) - \phi(\rho^{-1}(J))$, but $1 \notin \rho^{-1}(J)$, so $a \in \nu_{\phi}(\rho^{-1}(J))$. If $a/1 \notin J$, then $a/1 \in Q - J$ and so $a/1 \in \nu_{\phi_S}(J)$. Let $\frac{x}{s}$ be a homogeneous element in $R_S - J$ with $(\frac{a}{1})(\frac{x}{s}) \in J - \phi_S(J)$ then $ax \in \rho^{-1}(J) - \rho^{-1}(\phi_S(J)) \subseteq \rho^{-1}(J) - \phi(\rho^{-1}(J))$, since $\frac{ax}{1} \in J$ and $\frac{ax}{1} \notin \phi_S(J)$, because if $\frac{ax}{1} \in \phi_S(J)$, then $\frac{ax}{s} \in \phi_S(J)$, a contradiction. Thus we have that $ax \in \rho^{-1}(J) - \phi(\rho^{-1}(J))$ and $x \notin \rho^{-1}(J)$, since $\frac{x}{s} \notin J$. Therefore, $a \in \nu_{\phi}(\rho^{-1}(J))$ and hence $\rho^{-1}(J)$ is ϕ -primal superideal of R with the adjoint superideal $\rho^{-1}(Q)$. Moreover, by [7, Theorem 2.5], $\rho^{-1}(Q)$ is a ϕ -prime superideal of R.

Finally, we show that $J = (\rho^{-1}(J))_S$. Clearly, $J \subseteq (\rho^{-1}(J))_S$.

Conversely, let $\frac{x}{s}$ be a homogeneous element in $(\rho^{-1}(J))_S$, then $xt \in \rho^{-1}(J)$ for some $t \in S$. Thus, $\frac{xt}{1} \in \rho(\rho^{-1}(J)) = J$, and hence $(\frac{xt}{1})(\frac{1}{st}) = \frac{x}{s} \in J$. Therefore, $J = (\rho^{-1}(J))_S$.

By using Propositions 3.8 and 3.9, we have the following result.

Theorem 3.10. Let R be a commutative super-ring with unity. Let S be a multiplicatively closed subset of h(R), and let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function with the condition that $I - \phi(I) = \rho^{-1}(I_S) - \rho^{-1}(\phi_S(I_S))$ for any proper superideal I of R. Then there is one-to-one correspondence between the ϕ - P^I -primal superideals I of R and ϕ_S - P^I_S -primal superideals I_S of R_S , where P^I is a ϕ -prime superideal of R with $P^I \cap S = \emptyset$.

References

- [1] Anderson, D.F., Badawi, A., On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
- [2] Anderson, D., Bataineh, M., Generalizations of prime ideals, Comm. in Algebra, 36 (2008), 686-696.
- [3] Atani, E., Darani, Y., On weakly primal ideals (I), Demonstratio Math., 40 (2007), 23-32.
- [4] DARANI, Y., Generalizations of primal ideals in commutative rings, Matematiqki Vesnik, 64 (2012), 1, 2531.
- [5] EBRAHIMPOUR, M., NEKOOEI, R., On generalizations of prime ideals, Comm. Algebra, 40 (2012), 1268-1279.
- [6] Fuchs, L., On primal ideals, Amer. Math. Soc., 1 (1950), 1-6.
- [7] Jaber, A., Generalization of primal superideals, Algebra and Discrete Mathematics, 21 (2) (2016), 202-213.
- [8] Jaber, A., Weakly primal graded superideals, Tamkang Journal of Mathematics, 43 (1) (2012), 123-135.
- [9] Jabbar, A. K., Ahmed, C. A., On almost primary ideals, International Journal of Algebra, 5 (2011) 627-636.

Accepted: 20.03.2016