ON NEARLY CAP-EMBEDDED SUBGROUPS OF FINITE GROUPS

Yong Xu
School of Mathematics and Statistics
Southwest University
Chongqing, 400715
China
School of Mathematics and Statistics
Henan University of Science and Technology
Luoyang, Henan 471023
China
e-mail: xuy_2011@163.com

Guiyun Chen
School of Mathematics and Statistics
Southwest University
Chongqing, 400715
China
e-mail: gychen1963@163.com

Abstract. We introduce a new subgroup embedding property of a finite group called nearly CAP-embedded subgroup. Using this subgroup property, we determine the structure of finite groups with some nearly CAP-embedded subgroups of Sylow subgroups. Our results unify and generalize some recent theorems on p-nilpotency and supersolvability of finite groups.

Keywords: nearly CAP-embedded subgroup, p-nilpotency, finite group.

2010 Mathematics Subject Classification: 20D10, 20D15.

1. Introduction

In this paper, all groups considered are finite. Let $\pi(G)$ stand for the set of all prime divisors of the order of a group G. Let F denote a formation, U the class of supersolvable groups. $H \text{ } \text{Char} \text{ } G$ means that H is a characteristic subgroup of G. The other notations and terminology are standard (see[9]).

Let H be a subgroup of G, and A/B be a G-chief factor. We say that H covers A/B if $HA = HB$; and H avoids A/B if $H \cap A = H \cap B$. H is said to have cover-avoiding property in G, in brevity, H is a CAP-subgroup of G, if H either covers or avoids any G-chief factor. In 1962, Gaschütz[5] introduced a certain conjugacy class of subgroups of a solvable group called the pre-Frattini subgroups. These subgroups have cover-avoidance property. Thereafter, many

1Corresponding author.
authors devoted to find some kind of subgroups of a solvable group having this property, for example, Gillam[6] and Tomkinson[14]. In 1993, Ezquerro[4] considered the converse questions, he gave some characterizations for a group G to be p-supersolvable and supersolvable based on the assumption that all maximal subgroups of some subgroups of G are CAP-subgroups. Asaad in [1] obtained further results within the framework of formation theory. As a generalization of CAP-subgroups, Guo and Guo in[7] introduced CAP-embedded subgroups. A subgroup H of G is said to have the CAP-embedded property in G or is called a CAP-embedded subgroup of G if, for each prime p dividing the order of H, there exists a CAP subgroup K of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup of K. Moreover, they presented some conditions for a finite group to be p-nilpotent and supersolvable under the condition that some subgroups of Sylow subgroup are CAP-embedded.

In recent years, it has been of interest to use some supplemented properties of subgroups to determine the structure of a group. For example, Wang in [15] introduced the concept of c-normal subgroups. A subgroup H of G is c-normal in G if there is a normal subgroup K_1 of G such that $G = HK_1$ and $H \cap K_1 \leq H_G = Core_G(H)$. As applications, he gave some criteria for the solvability and supersolvability of groups.

We provide examples in Section 2 to show that CAP-embedded property and c-normality cannot imply from one to the other one. In this paper, we will try an attempt to unify the two concepts and introduce a new subgroup embedding property of a finite group called nearly CAP-embedded subgroup. As applications, we study the influence of nearly CAP-embedded subgroups on the structure of finite groups. We present some sufficient conditions for a group to be p-nilpotent, p-supersolvable and supersolvable.

2. Basic definitions and preliminary results

When we recall the concepts of a c–normal subgroup and a CAP-embedded subgroup, it is easy to see that a normal subgroup N of G is both c-normal and CAP-embedded. The following examples show that c-normal and CAP-embedded are different properties:

Example 2.1. Let $G = A_5$, the alternative group of degree 5. Then all Sylow subgroups of G are CAP-embedded subgroups of G, but every Sylow subgroup is not a c-normal subgroup of G.

Example 2.2. Let A_4 be the alternative group of degree 4 and $C = \langle c \rangle$ be a cyclic group of order 2. Let $G = C \times A_4$. Then $A_4 = [K_4]C_3$, where $K_4 = \langle a, b \rangle$ is the Klein Four Group with generators a and b of order 2 and C_3 is the cyclic group of order 3. Take $H = \langle ac \rangle$ be the cyclic subgroup of order 2 of G. Then $G = HA_4$ and $H \cap A_4 = 1$. By definition, H is c-normal in G. However, H is not a CAP-embedded subgroup of G, if not, then there exists a CAP-subgroup B of G such that $H \in Syl_2(B)$, so B covers or avoids $(C \times K_4)/C$, it is impossible.
In the c-normal case, $G = HK_1$, if we let $K_2 = H GK_1$, then $G = HK_2$ and $H \cap K_2 = HK$; $H \cap K_2$ is, of course, a CAP-embedded subgroup of G. Based on the observation, we introduce the following:

Definition 2.3. A subgroup H of a group G is said to be nearly CAP-embedded in G if there are a subnormal subgroup T of G and a CAP-embedded subgroup H_{ce} of G contained in H such that $G = HT$ and $H \cap T \leq H_{ce}$.

If H is a CAP-embedded subgroup of G, taking $T = G$, we get H is a nearly CAP-embedded subgroup of G. Hence nearly CAP-embedded subgroup is a real uniform generalization of a c-normal subgroup and a CAP-embedded subgroup.

For the sake of convenience, we list here some known results which will be useful in the sequel.

Lemma 2.4 ([[7, Lemma 1]]). Suppose that U is CAP-embedded in a group G and $N \leq G$. Then UN/N is CAP-embedded in G/N.

Lemma 2.5. ([19, Lemma 2.4]) Let H be a normal subgroup of a group G such that G/H is p-nilpotent and let P be a Sylow p-subgroup of H, where p is a prime divisor of $|G|$. If $|P| \leq p^2$ and one of the following conditions holds, then G is p-nilpotent:

1. $(|G|, p - 1) = 1$ and $|P| \leq p$;
2. G is A_4-free if $p = \min \pi(G)$;
3. $(|G|, p^2 - 1) = 1$.

Lemma 2.6. ([20, Theorem 3.1]) Let \mathcal{F} be a saturated formation containing \mathcal{U}, and G a group with a normal subgroup N such that $G/N \in \mathcal{F}$. If all Sylow subgroups of $F^*(N)$ are cyclic, then $G \in \mathcal{F}$.

Lemma 2.7. ([17, Theorem 3.1]) Let \mathcal{F} be a saturated formation containing \mathcal{U}, G a group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If for any maximal subgroup M of G, either $F(H) \leq M$ or $F(H) \cap M$ is a maximal subgroup of $F(H)$, then $G \in \mathcal{F}$. The converse also holds, in the case where $\mathcal{F} = \mathcal{U}$.

Lemma 2.8. Let U be a nearly CAP-embedded subgroup and N a normal subgroup of a group G. Then

1. If $N \leq U$, then UN/N is nearly CAP-embedded in G/N.
2. If $(|U|, |N|) = 1$, then UN/N is nearly CAP-embedded in G/N.

Proof. By the hypotheses, there are a subnormal subgroup T of G and a CAP-embedded subgroup U_{ce} of G contained in U such that $G = UT$ and $U \cap T \leq U_{ce}$.

1. $G/N = (U/N)(TN/N)$, $TN/N \triangleleft G/N$ by [3, Chap A, Lemma 14.1(b)], and $(U/N) \cap (TN/N) = (U \cap TN)/N = (U \cap T)N/N \leq (U_{ce}N)/N$. By Lemma 2.4, $(U_{ce}N)/N$ is CAP-embedded in G/N. Hence U/N is nearly CAP-embedded in G/N.

2. Let π be the set of all prime divisors of $|U|$, then N is a normal π'-subgroup and U is a π-subgroup of G. Since $|G|_{\pi'} = |T|_{\pi'} = |TN|_{\pi'}$, we have that $|T \cap N| =
Let $P_G = N$ be a P-embedded subgroup of G. Therefore, $G/N = (UN/N)(T/N)$, $T/N < G/N$ by [3, Ch. A, Lemma 14.1(b)], and $(UN/N) \cap T/N = (U \cap T)N/N \leq (U_GN)/N$. By Lemma 2.4, we have $(U_GN)/N$ is CAP-embedded in G/N. Hence, $(UN)/N$ is nearly CAP-embedded in G/N.

3. Main results and their proofs

Theorem 3.1. Let G be a group, N a normal subgroup of G such that G/N is p-nilpotent and P a Sylow p-subgroup of N, where $p \in \pi(G)$ with $|G|, p - 1 = 1$. If all maximal subgroups of P are nearly CAP-embedded in G, then G is p-nilpotent.

Proof. Assume that the result is false. Let G be a minimal counterexample with least $|N| + |G|$.

(1) G has a unique minimal normal subgroup L contained in N, G/L is p-nilpotent and $L \not\leq \Phi(G)$.

Let L be a minimal normal subgroup of G contained in N. Consider the factor group $\overline{G} = G/L$. Clearly $\overline{G}/\overline{N} \cong G/N$ is p-nilpotent and $\overline{P} = PL/L$ is a Sylow p-subgroup of \overline{N}, where $\overline{N} = N/L$. Now let $\overline{P}_1 = P_1 L/L$ be a maximal subgroup of \overline{P}. We may assume that \overline{P}_1 is a maximal subgroup of P. Then $P_1 \cap L = P \cap L$ is a Sylow p-subgroup of L. By the hypothesis, there are a subnormal subgroup T of G and a CAP-embedded subgroup $(P_1)_{ce}$ contained in P_1 of G such that $G = P_1 T$ and $P_1 \cap T \leq (P_1)_{ce}$. Clearly $TL/L < G/L$.

Now we let $\pi(G) = \{p_1, p_2, \cdots , p_n\}$ where $p_1 = p$, and T_{p_i} be a Sylow p_i-subgroup of G. Then T_{p_i} is also a Sylow p_i-subgroup of G, hence $T_{p_i} \cap L$ is a Sylow p_i-subgroup of $L (i = 2, \cdots , n)$. Write $V = L \cap \langle L \cap T_{p_1}, \cdots , L \cap T_{p_n} \rangle$, then $V \leq T \cap L$. Note that $(|L : P_1 \cap L|, |L : V|) = 1$, $L = (P_1 \cap L)V$, thus $P_1 L \cap TL = (P_1 L \cap T)L = (P_1 V \cap T)L = (P_1 \cap T)VL = (P_1 \cap T)L$. It follows from Lemma 2.4 that $(P_1 L/L) \cap (TL/L) = (P_1 \cap T)L/L \leq (P_1)_{ce}L/L$ and $(P_1)_{ce}L/L$ is CAP-embedded in G/L. Therefore \overline{P}_1 is nearly CAP-embedded in \overline{G}. The choice of G implies that \overline{G} is p-nilpotent. Since the class of p-nilpotent groups is a saturated formation, L is a unique minimal normal subgroup of G contained in N and $L \not\leq \Phi(G)$.

(2) $O_{p'}(G) = 1$.

If $E = O_{p'}(G) \neq 1$, we consider $\overline{G} = G/E$. Clearly, $\overline{G}/\overline{N} \cong G/NE$ is p-nilpotent because G/N is, where $\overline{N} = NE/E$. Let $\overline{P}_1 = P_1 E/E$ be a maximal subgroup of \overline{P}. We may assume that P_1 is a maximal subgroup of P. Since P_1 is nearly CAP-embedded in G, $P_1 E/E$ is nearly CAP-embedded in G/E by Lemma 2.8 (2). The minimality of G yields that G is p-nilpotent, therefore G is p-nilpotent, a contradiction.

(3) $O_p(N) = 1$ and so L is not p-nilpotent.

If not, then by (1), $L \leq O_p(N)$ and, there is a maximal subgroup M of G such that $G = LM$ and $L \cap M = 1$. Since $M_p < P$, where $M_p \in Syl_p(M)$, we may let P_1 be a maximal subgroup of P containing M_p. Because P_1 is a nearly CAP-embedded subgroup of G, there are a subnormal subgroup T of G and a CAP-embedded subgroup $(P_1)_{ce}$ contained in P_1 of G such that $G = P_1 T$ and $P_1 \cap T \leq (P_1)_{ce} \in Syl_p(K)$, where K is a CAP subgroup of G. If K covers
Let $T \in \text{P}\text{-embedded in } \text{CAP}$, then L that be the normal p-complement of T. Then $T'_{p'}$ is a Hall p'-subgroup of G and $T'_{p'} \cap \text{Char } T \leq L$, so $T'_{p'} \leq G$, contrary to $O_{p'}(G) = 1$.

If L is p-nilpotent, then $L'_{p'} \cap \text{Char } L \leq L$, so $L'_{p'} \leq O_{p'}(N) \leq O_{p'}(G) = 1$ by (2). Thus L is a p-group, $L \leq O_{p}(N) = 1$, a contradiction. Hence (3) holds.

(4) The final contradiction.

If $P \cap L \leq \Phi(P)$, then L is p-nilpotent by Tate's theorem [9, IV, Th 4.7], contrary to (3). Consequently, there exists a maximal subgroup P_1 of P such that $P = (L \cap P)P_1$. Let T be a subnormal supplement of P_1 in G, we have $P_1 \cap T \leq (P_1)_{ce} \leq \text{Syl}_p(K)$, where K is a CAP subgroup of G. If K covers $L/1$, then $L \leq K$. It follows from $(P_1)_{ce} \leq \text{Syl}_p(K)$ that $P_1 \cap K = (P_1)_{ce} \leq \text{Syl}_p(K)$, then $P_1 \cap L \leq \text{Syl}_p(L)$. Thus $L \cap P = L \cap P_1$. We obtain $P = (L \cap P)P_1 = P_1$, a contradiction. So K must avoids $L/1$, i.e., $K \cap L = 1$, hence $P_1 \cap T \cap L = 1$. Consequently, $|P \cap T \cap L| \leq p$. Since $T \cap L \cap T \geq TL/CapL \leq G/L$, $T \cap L \cap T$ is p-nilpotent. It follows that T is p-nilpotent by Lemma 2.5. Let $T'_{p'}$ be the normal p-complement of T. Then $T'_{p'}$ is a Hall p'-subgroup of G and $T'_{p'} \cap \text{Char } T \leq L$, so $T'_{p'} \leq G$, contrary to $O_{p'}(G) = 1$. This contradiction completes the proof.

Theorem 3.2. Let p be a prime dividing the order of the group G and let N be a p-solvable normal subgroup of G such that G/N is p-supersolvable. If there exists a Sylow p-subgroup P of N such that every maximal subgroup of P is nearly CAP-embedded in G, then G is p-supersolvable.

Proof. Assume that the result is false and let G be a counterexample of minimal order. Now, arguing as in the proof of Theorem 3.1, the following statements (1) and (2) about G are true.

(1) G has a unique minimal normal subgroup L contained in N, G/L is p-supersolvable and $L \nleq \Phi(G)$.

(2) $O_{p'}(G) = 1$.

Since G is p-solvable and $O_{p'}(G) = 1$, L is a p-group and $L \leq P$. If $L \leq \Phi(P)$, by [12, Theorem 5.2.13], $L \leq \Phi(G)$, a contradiction. Consequently, there exists a maximal subgroup P_1 of P such that $P_1L = P$. Since P_1 is a nearly CAP-embedded subgroup of G, there are a subnormal T of G and a CAP-embedded subgroup $(P_1)_{ce}$ of G such that $G = P_1T$ and $P_1 \cap T \leq (P_1)_{ce} \leq \text{Syl}_p(K)$, where K is a CAP subgroup of G. If K covers $L/1$, then $L \leq K$. It follows from $(P_1)_{ce} \leq \text{Syl}_p(K)$ that $L \leq P_1$, thus $P = LP_1 = P_1$, a contradiction. So K must avoids $L/1$, i.e., $K \cap L = 1$, hence $P_1 \cap T \cap L = 1$. Consequently, $|T \cap L| \leq p$. Noting that G/T_G is p-group, so $N \cap T_G \neq 1$. If not, then $G = G/N \cap T_G \leq G/N \times G/T_G$ is p-supersolvable, a contradiction. So $L \leq N \cap T_G$ by (1). Hence $|L| = |T \cap L| = p$. The p-supersolvability of G/L implies that G is p-supersolvable, final contradiction.
Remark 3.3. The hypothesis that N is p-solvable in Theorem 3.2 is essential. For example, if we let G be the alternating group A_5 of degree 5, $N = G$ and $p = 3$, then it is clear that the statement of Theorem 3.2 does not hold.

Theorem 3.4. Let G be a group. Then G is supersolvable if and only if there exists a normal subgroup N such that G/N is supersolvable and all maximal subgroups of any Sylow subgroup of N are nearly CAP-embedded in G.

Proof. The necessity part can be obtained if we let $N = G$ and apply a result due to Ezquerro[4]. So we need to prove the sufficiency part.

Let p be the smallest prime divisor of $|G|$. The supersolvability of G/N implies that G/N is p-nilpotent. By Theorem 3.1, G is p-nilpotent. Furthermore G is solvable. Applying Theorem 3.2, it is easy to see that G is supersolvable. ■

Theorem 3.5. Let \mathcal{F} be a saturated formation containing U. Suppose that G is a group with a normal subgroup N such that $G/N \in \mathcal{F}$. If all maximal subgroups of any Sylow subgroup of N are nearly CAP-embedded in G, then $G \in \mathcal{F}$.

Proof. Let G be a minimal counterexample. With similar arguments as in the proof of Theorem 3.1, we have the following claim (1).

(1) G has a unique minimal normal subgroup L contained in N such that $G/L \in \mathcal{F}$ and $L \not\in \Phi(G)$.

(2) L is an elementary abelian p-group for some prime p.

Let q be the smallest prime divisor of $|N|$, Q a Sylow q-subgroup of N. If $Q \cap L \not\in \Phi(Q)$, then there exists a maximal subgroup Q_1 of Q such that $Q = (Q \cap L)Q_1$. By the hypotheses, there are a subnormal T of G and a CAP-embedded subgroup $(Q_1)_{ce}$ of G such that $G = Q_1T$ and $Q_1 \cap T \leq (Q_1)_{ce} \in Syl_q(K)$, where K is a CAP subgroup of G. If K covers $L/1$, then $L \leq K$. It follows from $(Q_1)_{ce} \in Syl_q(K)$ that $L \cap Q_1 = L \cap Q$, thus $Q = (Q \cap L)Q_1 = (Q_1 \cap L)Q_1 = Q_1$, a contradiction. So K must avoid $L/1$, i.e., $K \cap L = 1$, hence $Q_1 \cap T \cap L = 1$. Consequently, $|T \cap L| \leq q$. Noting that G/T_G is q-group, so $N \cap T_G \neq 1$. If not, then $G = G/N \cap T_G \leq G/N \times G/T_G$ belongs to \mathcal{F}, a contradiction. So $L \leq N \cap T_G$ by (1). Hence $|L| = |T \cap L| = q$. By applying Lemma 2.6, we obtain $G \in \mathcal{F}$, a contradiction. Therefore, $Q \cap L \not\in \Phi(Q)$, then L is q-nilpotent by Tate’s theorem [9, IV, Th 4.7] and, by the Odd Order Theorem, L is solvable, statement (2) is true.

(3) A final contradiction.

From (1) and (2), there exists a maximal subgroup M of G such that $G = LM$ and $L \cap M = 1$. Let P be a Sylow p-subgroup of N. Then $P = LM_p$ where $M_p \in Syl_p(G)$. Since $M_p < P$, we may let P_1 be a maximal subgroup of P such that $M_p \leq P_1$. By the hypotheses, there are a subnormal T of G and a CAP-embedded subgroup $(P_1)_{ce}$ of G such that $G = P_1T$ and $P_1 \cap T \leq (P_1)_{ce} \in Syl_p(K)$, where K is a CAP subgroup of G. If K covers $L/1$, then $L \leq K$. It follows from $(P_1)_{ce} \in Syl_p(K)$ that $L \leq P_1$, thus $P = LM_p \leq P_1$, a contradiction. So K must avoid $L/1$, i.e., $K \cap L = 1$, hence $P_1 \cap T \cap L = 1$. Consequently, $|T \cap L| \leq p$. Noting that G/T_G is p-group, so $N \cap T_G \neq 1$. If not, then $G = G/N \cap T_G \leq G/N \times G/T_G$
belongs to \mathcal{F}, a contradiction. So $L \leq N \cap T_G$ by (1). Hence $|L| = |T \cap L| = q$.
By applying Lemma 2.6, we obtain $G \in \mathcal{F}$, final contradiction. We are done.

Theorem 3.6. Let \mathcal{F} be a saturated formation containing \mathcal{U} and let N be a solvable normal subgroup of G such that $G/N \in \mathcal{F}$. If all maximal subgroups of any Sylow subgroup of $F(N)$ are nearly CAP-embedded subgroups of G, then $G \in \mathcal{F}$.

Proof. Assume that the result is false and let G be a counterexample of minimal order. First we have $\Phi(G) = 1$. Suppose that $\Phi(G) \neq 1$ and take a prime p dividing $|\Phi(G)|$. Denote $D = O_p(\Phi(G)) \neq 1$. Clearly $D \trianglelefteq G$. Let $F(ND/D) = L/D$. By L/D Char $ND/D \trianglelefteq G/D$, $L/D \trianglelefteq G/D$. Hence $L \trianglelefteq G$. Since L/D is a normal nilpotent subgroup of G/D and $D \leq \Phi(G)$, applying a result due to Gaschütz[9, III, Theorem 3.5], we have that L is a normal nilpotent subgroup of ND. Thus $L \leq F(ND)$. Consequently $F(ND/D) = F(ND)/D = L/D$. By [2, Lemma 3.1], $F(ND/D) = F(N)D/D$. It is clear that $(G/D)/(ND/D) \cong G/ND \cong (G/N)/(ND/N)$ belongs to \mathcal{F}. Now, by Lemma 2.8(1), the hypotheses of the theorem hold in G/D. By the minimality of G, $G/D \notin \mathcal{F}$. Since \mathcal{F} is saturated, $G \notin \mathcal{F}$, a contradiction. We obtain $\Phi(N) \leq \Phi(G) = 1$. Let M be a maximal subgroup of G such that $F(N) \nsubseteq M$. Then there exists a prime p such that $O_p(N) \nsubseteq M$. It follows that $G = O_p(N)M$. Clearly, $O_p(N) \cap M < O_p(N)$, so we may take a maximal subgroup P_1 of $O_p(N)$ containing $O_p(N) \cap M$. Then $P_1 \cap M = O_p(N) \cap M \leq G$, therefore $P_1 \cap M \leq (P_1)_G$. If $(P_1)_GM = G$, then $O_p(N) = O_p(N) \cap (P_1)_GM = (P_1)_G(O_p(N) \cap M) = (P_1)_G$, a contradiction. Thus $(P_1)_GM < G$, so $(P_1)_G \leq O_p(N) \cap M$ and $P_1 \cap M = O_p(N) \cap M = (P_1)_G$. Let $O_p(N)/K$ be a chief factor of G with $O_p(N)\cap M \leq K$. Then $O_p(N) \cap M = K \cap M$. If $KM = G$, then $O_p(N) = O_p(N) \cap KM = K(O_p(N) \cap M) = K$, a contradiction. Thus $KM < G$, so $K \leq M$ and $K = O_p(N) \cap M = (P_1)_G$. Since P_1 is a nearly CAP-embedded subgroup of G, there are a normal T of G and a CAP-embedded subgroup $(P_1)_{ce}$ of G such that $G = P_1T$ and $P_1 \cap T \leq (P_1)_{ce} \in Syl_p(B)$, where B is a CAP subgroup of G. Clearly $(P_1)_G(O_p(N) \cap T)$ is normal in G. From the fact that $O_p(N)/(P_1)_G$ is a G-chief factor, we know that either $(P_1)_G = (P_1)_G(O_p(N) \cap T)$ or $(P_1)_G(O_p(N) \cap T) = O_p(N)$. If the former holds, then $O_p(N) \cap T \leq (P_1)_G$. Furthermore, $O_p(N) \cap T = P_1 \cap T$ and $O_p(N) = P_T = O_p(N)T = G$, a contradiction. So $(P_1)_G(O_p(N) \cap T) = O_p(N)$, we obtain $O_p(N) \leq (P_1)_GT$. Thus $G = P_1T = (P_1)_GT$. Noting that B is a CAP subgroup of G. If B covers $O_p(N)/(P_1)_G$, then $O_p(N) \leq B(P_1)_G$. It follows from $(P_1)_{ce} \in Syl_p(B)$ that $O_p(N) \leq P_1$, a contradiction. So B must avoids $O_p(N)/(P_1)_G$, i.e., $(P_1)_{ce} = B \cap O_p(N) = B \cap (P_1)_G$, hence $(P_1)_{ce} \leq (P_1)_G$. Consequently $(P_1)_G \cap T = P_1 \cap T$, we have $P_1 = (P_1)_G = O_p(N) \cap M$. Therefore $|G : M| = |O_p(N) : O_p(N) \cap M| = p$. By Lemma 2.7, we get $G \in \mathcal{F}$, a final contradiction.

Remark 3.7. The hypothesis that N is solvable in Theorem 3.6 cannot be removed. For example, if we let $G = SL(2,5)$ and $N = G$, then $F(N)$ is a group of order 2. Thus all maximal subgroups of any Sylow subgroup of $F(N)$ have the nearly CAP-embedded property in G, but G is not supersolvable.
4. Some applications

Since many relevant families of subgroups, such as normal subgroups, c-normal subgroups, CAP subgroups, CAP-embedded subgroups and c^\sharp-normal subgroups, enjoy the nearly CAP-embedded property, a lot of nice results can be obtained according to our theorems.

Recall first the concept of c^\sharp-normal subgroups mentioned above. Let H be a subgroup of G. We call H a c^\sharp-normal subgroup of G if there exists a normal subgroup T of G such that $G = HT$ and $H \cap T$ is a CAP subgroup of G (see[16]).

Now, we here list special cases of our theorems which can be found in the literature.

Theorem 3.1 immediately implies:

Corollary 4.1. ([7, Theorem 3.1]) Let p be a prime dividing the order of the group G with $(|G|, p - 1) = 1$ and let H be a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that P is cyclic or every maximal subgroup of P is CAP-embedded in G, then G is p-nilpotent.

Proof. If P is a cyclic group, by [9, p. 420, Theorem 2.8], we have G is p-nilpotent. So every maximal subgroup of P has the CAP-embedded property in G. Hence G is p-nilpotent by Theorem 3.1.

Corollary 4.2. ([8, Theorem 3.4]) Let p be the smallest prime number dividing the order of a group G and P a Sylow p-subgroup of G. If every maximal subgroup of P is c-normal in G, then G is p-nilpotent.

Corollary 4.3. ([16, Theorem 3.1]) Let G be a group, H a normal subgroup of G such that G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor of $|G|$ with $(|G|, p - 1) = 1$. If all maximal subgroups of P are c^\sharp-normal in G, then G is p-nilpotent. In particular, G is p-supersolvable.

From Theorem 3.2 we obtain:

Corollary 4.4. ([7, Theorem 4.1]) Let p be a prime dividing the order of the group G and let H be a p-solvable normal subgroup of G such that G/H is p-supersolvable. If there exists a Sylow p-subgroup P of H such that every maximal subgroup of P is CAP-embedded in G, then G is p-supersolvable.

Corollary 4.5. ([16, Theorem 3.4]) Let G be a p-solvable group, H a normal subgroup of G such that G/H is p-supersolvable and P a Sylow p-subgroup of H, where p is a prime. If all maximal subgroups of P are c^\sharp-normal in G, then G is p-supersolvable.

By Theorem 3.5 we have:

Corollary 4.6. ([13, Theorem 1]) If the maximal subgroups of the Sylow subgroups of G are normal in G, then G is supersolvable.

Corollary 4.7. ([11, Theorem 3.5]) Assume that G/H is supersolvable and all maximal subgroups of the Sylow subgroups of H are normal in G. Then G is supersolvable.
Corollary 4.8. ([15, Theorem 4.1]) If the maximal subgroups of the Sylow subgroups of G are c-normal in G, then G is supersoluble.

Corollary 4.9. ([16, Theorem 4.1]) Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of any Sylow subgroup of H are c^\sharp-normal in G, then $G \in \mathcal{F}$.

As immediate corollaries of Theorem 3.6, we have the following:

Corollary 4.10. ([11, Theorem 3.1]) Assume that G is solvable and every maximal subgroup of the Sylow subgroups of $F(G)$ is normal in G. Then G is supersolvable.

Corollary 4.11. [7, Theorem 4.3] Let G be a group. Then G is supersolvable if and only if there exists a solvable normal subgroup H such that $G/H \in \mathcal{F}$ and all maximal subgroups of any Sylow subgroup of $F(H)$ have the CAP-embedded property in G.

Corollary 4.12. ([10, Theorem 2]) Let G be a group and E a soluble normal subgroup of G such that G/E is supersoluble. If all maximal subgroups of the Sylow subgroups of $F(E)$ are c-normal in G, then G is supersoluble.

Corollary 4.13. [1, Theorem 4.4] Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a solvable group with a normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of $F(H)$ are CAP-subgroups of G, then $G \in \mathcal{F}$.

Corollary 4.14. ([18, Theorem 1]) Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a soluble normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of $F(H)$ are c-normal in G, then $G \in \mathcal{F}$.

Acknowledgement. This work was supported by the National Natural Science Foundation of China (Grant No. 11271301, 11601225, 11501235), the Natural Science Foundation of Jiangsu Province (No. BK20140451).

References

Accepted: 22.12.2015