ON MARGINAL AUTOMORPHISM OF INFINITE GROUPS

Masumeh Khademi Ahmad Gholami¹

Department of Mathematics Faculty of Science University of Qom Qom. I.R. Iran

Abstract. Let W be a non-empty subset of a free group and G be any group. An automorphism α of G is called marginal automorphism if $g^{-1}\alpha(g) \in W^*(G)$ for any $g \in G$ where $W^*(G)$ is marginal subgroup of G. In this paper we study some properties of marginal automorphism of infinite group G.

Keywords: marginal automorphism, purely non-abelian group, finitely generated group.

1. Introduction

Let F be a free group on a countably infinite set $\{x_1, x_2, ...\}$ and let W be a nonempty subset of F. If $w = x_1^{l_1} ... x_r^{l_r} \in W$ and $g_1, ..., g_r$ are elements of a arbitrary group G, the value of the word w at $(g_1, ..., g_r)$ is $w(g_1, ..., g_r) = g_1^{l_1} ... g_r^{l_r}$. We define

$$W(G) = \langle w(g_1, g_2, ...) | g_i \in G, w \in W \rangle$$
.

 $W^*(G) = \{g \in G | w(g_1, ..., g_{i-1}g_ig, g_{i+1}, ..., g_r) = w(g_1, ..., ..., g_r) \text{ for all } g_i \in G, a \in N \text{ and all } w(x_1, x_2, ..., x_r) \in W \}.$

W(G) and $W^*(G)$ are the verbal subgroup and marginal subgroup of G with respect to W, respectively. Clearly that W(G) is fully-invariant and $W^*(G)$ is always characteristic subgroup of G (see [9] for more information).

An automorphism σ of G is called marginal with respect to W if $g^{-1}\sigma(g) \in W^*(G)$ for all $g \in G$. The set of all marginal automorphism of G is normal subgroup of $\operatorname{Aut}(G)$ which is denoted by $\operatorname{Aut}_{W^*}(G)$.

An automorphism α of G is called verbal automorphism with respect to W if $g^{-1}\sigma(g) \in W(G)$ for all $g \in G$. The set of all verbal automorphism of G, denoted by $\operatorname{Aut}_W(G)$, is a normal subgroup of $\operatorname{Aut}(G)$.

¹Corresponding author. E-mail: a.gholami@qom.ac.ir

A variety is an equationally defined class of groups. More precisely the class of all groups G such that W(G) = 1, or equivalently $W^*(G) = G$ is called the variety ν determined by W. In particular, if $W = \{[x_1, x_2]\}$ where $[x_1, x_2] = x_1^{-1}x_2^{-1}x_1x_2$, then variety ν is the class of abelian groups and $W^*(G) = Z(G)$ and W(G) = G'. In abelian variety, $\operatorname{Aut}_W(G) = \operatorname{IA}(G)$, and it is called IAautomorphism of G, also $\operatorname{Aut}_{W^*}(G) = \operatorname{Autcent}(G)$, and it is called central automorphism of G, see also [1]-[3], [6], [7].

Franciosi, De Giovanni and M.L. Newell in [3], proved that if G be a purely non-abelian such that Z(G) or $\frac{G}{G'}$ is torsion with finite abelian section rank, then γ : Autcent $(G) \longrightarrow \text{Hom}(G, Z(G))$ is a bijection map. Also they characterized such groups that have nilpotent central automorphism.

Rai in [8] showed that for a finite *p*-group G, $C_{IA(G)}Z(G)$ = Autcent (*G*) if and only if G' = Z(G). ($C_{IA(G)}Z(G)$ is the set of all IA-automorphism of *G* fixing Z(G) element-wise.)

Jamali and Mosavi in [6] using the concept of isoclinic obtained the relation between central automorphism of two isoclinic groups. They proved that if G is a group such that $Z(G) \leq G'$ and H be a group isoclinic to G, then there is a monomorphism from $\operatorname{Aut}_c(G)$ into $\operatorname{Aut}_c(H)$.

In the present paper, we generalize the above result to marginal automorphism and prove the following theorems:

Theorem 1.1 Let ν be a variety and $\emptyset \neq W \subseteq F$ and let G, H be two ν -isologism groups such that $W^*(G) \leq W(G)$ and $W^*(H) \leq W(H)$. Then

$$Aut_{W^*}(G) \simeq Aut_{W^*}(H).$$

Theorem 1.2 Let G be a purely non-abelian group and $\emptyset \neq W \subseteq F$ such that $W^*(G) \leq Z(G)$. If

- (i) $W^*(G)$ is torsion group with finite abelian section rank, or
- (ii) $\frac{G}{W(G)}$ is torsion group with finite abelian section rank and $W(G) \leq G'$.

Then there is a bijection map between $Aut_{W^*}(G)$ and $Hom\left(\frac{G}{W(G)}, W^*(G)\right)$.

Theorem 1.3 Let G be a finitely generated purely non-abelian group and $\emptyset \neq W \subseteq F$ such that $G' \leq W(G) \leq W^*(G) \leq Z(G)$ and $W^*(G)$ is torsion with finite abelian section rank. Then $C_{Aut_W(G)}(W^*(G)) = Aut_{W^*}(G)$ if and only if $W^*(G) = W(G)$.

Theorem 1.4 Let G be a purely non-abelian group such that $W^*(G)$ or $\frac{G}{W(G)}$ is finite and $W^*(G) \leq Z(G)$. Then $Aut_{W^*}(G)$ is a nilpotent group of finite exponent.

2. Preliminary Lemmas

Notation in this paper is standard. Let G be a group, by Z(G), G', Aut(G) we denoted the center, the commutator subgroup and the group of all automorphism, respectively. Also a non abelian group G that has no non-trivial abelian direct factor is said to be purely non-abelian group.

Let G be an abelian group, the element of finite order of G form a subgroup T(G), the torsion subgroup of G. Moreover, elements with order some power of a fixed prime p likewise form a subgroup G_p , the p-primary component of G. By The Primary Decomposition Theorem, the torsion-subgroup T is the direct sum of the primary components of G.

In this section, we collect all results that will be used in Section 3. We need the following results of Attar [7] that are useful in our investigations.

Lemma 2.5 ([7]) Let G be a group and $\emptyset \neq W \subseteq F$. Every marginal automorphism of G leaves fixed every element of the verbal subgroup W(G).

Proposition 2.6 ([7]) Let G be a group and and $\emptyset \neq W \subseteq F$. If $W^*(G)$ is abelian, then $Hom(G, W^*(G)) \simeq Hom(\frac{G}{W(G)}, W^*(G))$.

The next theorem, determines structure of $\operatorname{Aut}_W(G)$ and the set of all verbal automorphism of G fixing $W^*(G)$ element-wise.

Theorem 2.7 Let G be a group and $\emptyset \neq W \subseteq F$ such that $W(G) \leq W^*(G) \cap Z(G)$. Then

(i) $Aut_W(G) \simeq Hom\left(\frac{G}{W(G)}, W(G)\right).$

(ii)
$$C_{Aut_W(G)}(W^*(G)) \simeq Hom\left(\frac{G}{W^*(G)}, W(G)\right).$$

Proof. (i) Let σ : Aut_W(G) \longrightarrow Hom $\left(\frac{G}{W(G)}, W(G)\right)$ defined by $\sigma(f) = \sigma_f$, where $\sigma_f(gW(G)) = g^{-1}f(g)$, for each $f \in$ Aut_W(G) and $g \in G$. Since $g^{-1}f(g) \in$ $W(G) \leq Z(G)$, it is clear that $\sigma_f \in$ Hom $\left(\frac{G}{W(G)}, W(G)\right)$, i.e., σ is well-defined.

Let $f_1, f_2 \in \operatorname{Aut}_W(G)$ since here $W(G) \leq W^*(G)$, so $\operatorname{Aut}_W(G) \leq \operatorname{Aut}_{W^*}(G)$ and by Lemma 2.5,

$$\sigma_{f_1 f_2} \big(g W(G) \big) = g^{-1} f_1 \big(g g^{-1} f_2(g) \big) = g^{-1} f_1(g) g^{-1} f_2(g)$$

Therefore, $\sigma(f_1f_2) = \sigma(f_1)\sigma(f_2)$ and σ is a homomorphism. Clearly, σ is injective, so it remains to show that σ is surjective. Let $h \in Hom\left(\frac{G}{W(G)}, W(G)\right)$, we define the map $f: G \longrightarrow G$ by f(g) = gh(gW(G)) for all $g \in G$. It is obvious that fis a monomorphism. Now, $g = gh(gW(G))(h(gW(G)))^{-1}$ for every $g \in G$. Since $h(gW(G)) \in W(G)$, so $f(h(gW(G)))^{-1} = (h(gW(G)))^{-1}$, which implies that f is surjective. Also we have $g^{-1}f(g) = g^{-1}gh(gW(G)) \in W(G)$, so $f \in Aut_W(G)$ such that $\sigma(f) = h$. Therefore, σ is an isomorphism.

(ii) If we utilize the above method for $C_{Aut_W(G)}(W^*(G))$, the result is obtained.

Similar to Theorem 2.7, we obtain the following lemma, used in proof of Theorem 1.4.

Lemma 2.8 Let G be a group and $\emptyset \neq W \subseteq F$ such that $W^*(G) \leq Z(G)$. Then

(i)
$$C_{Aut_{W^*}(G)}(W^*(G)) \simeq Hom\Big(\frac{G}{W^*(G)W(G)}, W^*(G)\Big).$$

(ii)
$$C_{Aut_{W^*}(G)}\left(\frac{G}{W(G)}\right) \simeq Hom\left(\frac{G}{W(G)}, W(G) \cap W^*(G)\right).$$

The items of the following lemma are well-known and easily verified.

Lemma 2.9 Let U, V and W be abelian groups. Then

- (i) $Hom(U \times V, W) \simeq Hom(U, W) \times Hom(V, W).$
- (ii) $Hom(U, V \times W) \simeq Hom(U, V) \times Hom(U, W)$.
- (iv) If U is torsion-free of rank n, then $Hom(U,V) \simeq V^n$.
- (v) If U is a torsion and V is a torsion-free group, then Hom(U, V) = 1.

The following concept was first introduced by Hall [4].

Definition 2.10 Let ν be a variety of groups defined by the set of laws W and Gand H be groups. A ν -isologism between G and H is a pair of isomorphisms (α, β) with $\alpha : \frac{G}{W^*(G)} \longrightarrow \frac{H}{W^*(H)}$ and $\beta : W(G) \longrightarrow W(H)$, such that for all s > 0, all $w(x_1, ..., x_s) \in V(F_s)$ and all $g_1, ..., g_s \in G$, it holds that $\beta(w(g_1, ..., g_s)) = w(h_1..., h_s)$, whenever $h_i \in \alpha(g_i W^*(G))$ (i = 1, ..., s). We write $G \sim H$ and we will say that G and H are ν -isologic.

In abelian variety, two group G and H in above definition are said to be isoclinic.

Lemma 2.11 ([5]) Let G and H be two groups and $\emptyset \neq W \subseteq F$. Let (α, β) be a ν -isologism between G and H. Let $v \in W(G)$. Then the following hold.

- (i) $\alpha(vW^*(G)) = \beta(v)W^*(H).$
- (ii) If $g \in G$ and $h \in \alpha(gW^*(G))$, then $\beta(v^g) = \beta(v)^h$.

Corollary 2.12 Let ν be a variety and $\emptyset \neq W \subseteq F$ and let (α, β) be a ν -isologism between G and H. Then β induces an isomorphism from $W^*(G) \cap W(G)$ onto $W^*(H) \cap W(H)$.

3. Main results

Proof of Theorem 1.1. Let (α, β) be a ν -isologism between G and H. Suppose $\sigma \in Aut_{W^*}(G)$ and $h \in H$, since α is surjective, there exists $g \in G$ such that $\alpha(gW^*(G)) = hW^*(H)$. Define a map $f_{\sigma} : H \longrightarrow H$ by $f_{\sigma}(h) = h\beta(g^{-1}\sigma(g))$ for any $h \in H$.

(i) f_{σ} is well-defined:

Let $h_1, h_2 \in H$ and $\alpha(g_i W^*(G)) = h_i W^*(H)$ for i = 1, 2. If $h_1 = h_2$ then $\alpha(g_1 W^*(G)) = \alpha(g_2 W^*(G))$ so $g_1 g_2^{-1} \in W^*(G) \leq W(G)$, since σ fixes W(G) element-wise hence $g_1^{-1} \sigma(g_1) = g_2^{-1} \sigma(g_2)$ and $f_\sigma(h_1) = f_\sigma(h_2)$

(ii) f_{σ} is homomorphism:

Let $h_1, h_2 \in H$ and $\alpha(g_i W^*(G)) = h_i W^*(H)$ for i = 1, 2. Then,

$$f_{\sigma}(h_1h_2) = h_1h_2\beta((g_1g_2)^{-1}\sigma(g_1g_2))$$

= $h_1h_2\beta(g_2^{-1}g_1^{-1}\sigma(g_1)g_2g_2^{-1}\sigma(g_2))$
= $h_1(\beta((g_1^{-1}\sigma(g_1))^{g_2}))^{h_2^{-1}}h_2\beta(g_2^{-1}\sigma(g_2))$

Applying Lemma 2.11, we obtain $\beta((g_1^{-1}\sigma(g_1))^{g_2}) = \beta(g_1^{-1}\sigma(g_1))^{h_2}$ so $f_{\sigma}(h_1h_2) = h_1\beta(g_1^{-1}\sigma(g_1))h_2\beta(g_2^{-1}\sigma(g_2)) = f_{\sigma}(h_1)f_{\sigma}(h_2).$

(iii) f_{σ} is injective:

Let $f_{\sigma}(h) = 1$ where $\alpha(gW^*(G)) = hW^*(H)$, so $\beta(g^{-1}\sigma(g)) = h^{-1}$. By Lemma 2.11, $\alpha(g^{-1}\sigma(g)W^*(G)) = \beta(g^{-1}\sigma(g))W^*(H) = h^{-1}W^*(H)$,

$$g^{-1}\sigma(g)W^*(G) = \alpha^{-1}(h^{-1}W^*(H)) = \alpha^{-1}(hW^*(H))^{-1} = g^{-1}W^*(G).$$

Hence $\sigma(g) \in W^*(G)$, since $W^*(G)$ is characteristic in $G, g \in W^*(G)$ that Lemma 2.5, implies $\sigma(g) = g$, so h = 1.

(iv) f_{σ} is surjective:

Let $h \in H$ where $\alpha(gW^*(G)) = hW^*(H)$. $h = \underbrace{h\beta(g^{-1}\sigma(g))}_{\in Imf_{\sigma}}(\beta(g^{-1}\sigma(g)))^{-1}$. By Lemma 2.11, $\beta(g^{-1}\sigma(g))W^*(H) = \alpha\Big(\Big(g^{-1}\sigma(g)\Big)W^*(G)\Big)$. Since $g^{-1}\sigma(g) \in W^*(G) \leq W(G)$ and σ fixes W(G) element-wise.

$$f_{\sigma}(\beta(g^{-1}\sigma(g))) = \beta(g^{-1}\sigma(g))\beta(g^{-1}\sigma(g))^{-1}\beta(\sigma(g^{-1}\sigma(g)))$$
$$= \beta(\sigma(g^{-1}\sigma(g)))$$
$$= \beta(g^{-1}\sigma(g)).$$

Hence $H \leq Im f_{\sigma}$.

(v) $h^{-1}f_{\sigma}(h) = \beta(g^{-1}\sigma(g))$, for any $h \in H$ where $\alpha(gW^*(G)) = hW^*(H)$. Since $g^{-1}\sigma(g) \in W^*(G)$ and $W^*(G) \cap W(G) = W^*(G)$ by Lemma 2.12, $\beta(g^{-1}\sigma(g)) \in W^*(H) \cap W(H) = W^*(H)$. Hence, $f_{\sigma} \in Aut_{W^*}(H)$. Let $\gamma : Aut_{W^*}(G) \longrightarrow Aut_{W^*}(H)$ such that $\gamma(\sigma) = f_{\sigma}$. We show that γ is an isomorphism. Suppose $\sigma_1, \sigma_2 \in Aut_{W^*}(G)$ and $h \in H$ such that $\alpha(gW^*(G)) = hW^*(H)$. Then,

$$\gamma(\sigma_1\sigma_2) = f_{\sigma_1\sigma_2}(h) = h\beta(g^{-1}\sigma_1\sigma_2(g))$$

= $h\beta(g^{-1}\sigma_2(g)(\sigma_2(g))^{-1}\sigma_1(\sigma_2(g)))$
= $h\beta(g^{-1}\sigma_2(g))\beta((\sigma_2(g)^{-1}\sigma_1(\sigma_2(g)))).$

Since $g^{-1}\sigma_2(g) \in W^*(G) \leq W(G)$, with use of Lemma 2.11, we have

$$\begin{aligned} \alpha^{-1} \Big(h\beta(g^{-1}\sigma_2(g))W^*(H) \Big) &= \alpha^{-1} \big(hW^*(H) \big) \alpha^{-1} \Big(\beta(g^{-1}\sigma_2(g))W^*(H) \Big) \\ &= gW^*(G)\alpha^{-1} \Big(\alpha \big(g^{-1}\sigma_2(g)W^*(G) \big) \Big) \\ &= \sigma_2(g)W^*(G). \end{aligned}$$

Therefore,

$$\gamma(\sigma_1\sigma_2) = f_{\sigma_1}\left(h\beta\left(g^{-1}\sigma_2(g)\right)\right) = f_{\sigma_1}f_{\sigma_2}(h) = \gamma(\sigma_1)\gamma(\sigma_2)$$

It remains to prove that γ is a bijection. Notice that $(\alpha^{-1}, \beta^{-1})$ is a ν -isologism between H and G. Let $f \in \operatorname{Aut}_{W^*}(H)$, we define $\sigma_f(g) = g\beta^{-1}(h^{-1}f(h))$ for any $g \in G$, where $\alpha^{-1}(hW^*(H)) = gW^*(G)$.

In a similar proof as above, $\sigma_f \in Aut_{W^*}(G)$. Now, we define $\delta : Aut_{W^*}(H) \longrightarrow Aut_{W^*}(G)$ as $\delta(f) = \sigma_f$. Let $g \in G$ where $\alpha(gW^*(G)) = hW^*(H)$. Then

$$\delta\gamma(\sigma)(g) = \delta(f_{\sigma})(h) = g\beta^{-1}(h^{-1}f_{\sigma}(h)) = g\beta^{-1}(h^{-1}h\beta(g^{-1}\sigma(g))) = \sigma(g).$$

So $\delta\gamma(\sigma) = \sigma$ i.e. $\delta\gamma = 1$, similarly $\gamma\delta = 1$. Thus γ is an isomorphism.

Let $\sigma \in \operatorname{Autcent}(G)$ and $x \in G$ so the map $x \longrightarrow x^{-1}\sigma(x)$ defines a homomorphism from G into Z(G). On the other hand the map $x \longrightarrow xf(x)$ defines an endomorphism of G for every f in $\operatorname{Hom}(G, Z(G))$. If G is a finite group, this endomorphism is a central automorphism if and only if $f(x) \neq x^{-1}$ for every $1 \neq x \in G$. In [1], Adney and Yen show that a necessary and sufficient condition for a finite group G to have such a bijection between $\operatorname{Autcent}(G)$ and $\operatorname{Hom}(G, Z(G))$ is that G has no abelian direct factors. Franciosi, De Giovanni and M.L. Newell in [3], with use of following lemma extend this result to a wider class containing all periodic groups with finite abelian section rank.

Lemma 3.13 ([3]) Let G be a group and $\alpha \in Hom(G, Z(G))$ such that $\alpha(g) = g^{-1}$ for some $g \neq 1$. If $Im\alpha$ is the direct product of a torsion group with finite abelian section rank and a free abelian group, then G has a non-trivial abelian direct factor.

Here we want to obtain the corresponding statement of Franciosi and De Giovanni theorem in arbitrary variety of group. If $W^*(G)$ is contained in the center of G then we have same result of Lemma 3.13 for $\alpha \in \text{Hom}(G, W^*(G))$.

Proof of Theorem 1.2. By Proposition 2.6, it is enough to show that there is a bijection map between $\operatorname{Aut}_{W^*}(G)$ and $\operatorname{Hom}(G, W^*(G))$. Let $\alpha \in \operatorname{Aut}_{W^*}(G)$ and $g \in G$ now we define $\alpha^* : G \longrightarrow W^*(G)$ such that $\alpha^*(g) = g^{-1}\alpha(g)$. From $g^{-1}\alpha(g) \in W^*(G) \leq Z(G)$ is obtained that α^* is a homomorphism so the map

$$\psi : \operatorname{Aut}_{W^*}(G) \longrightarrow \operatorname{Hom}(G, W^*(G))$$
$$\alpha \longrightarrow \alpha^*$$
$$\alpha^*(g) = g^{-1}\alpha(g)$$

is well-defined. It is clear that ψ is a one-to-one map. Our map is surjective, for this let $\gamma \in \operatorname{Hom}(G, W^*(G))$, we prove the map $\alpha : G \longrightarrow G$ where $\alpha(g) = g\gamma(g)$ is a marginal automorphism of G such that $\psi(\alpha) = \gamma$. Since $\gamma(g) \in W^*(G) \leq Z(G)$, α is an endomorphism of G. With let composition of the γ and incidence mapping $W^*(G) \longrightarrow Z(G)$, we have $\frac{G}{ker\gamma} \simeq Im\gamma \leq W^*(G) \leq Z(G)$ and $G' \leq ker\gamma$. Here by hypothesis $Im\gamma$ is torsion with finite abelian section rank. If $g \in ker\alpha$ then $\alpha(g) = 1$ so $\gamma(g) = g^{-1}$ that by Lemma 3.13, g = 1. Now, we show that α is onto and this concludes the proof of theorem. Let $T = Im\gamma$, the pcomponent T_p of T satisfies the minimal condition on subgroups for each prime p. Since $T_p \simeq \alpha(T_p)$, it follows that $\alpha(T_p) = T_p$, and T is contained in $Im\alpha$. Now $g = g\gamma(g)(\gamma(g))^{-1} \in Im\alpha$ for any $g \in G$, so $Im\alpha = G$.

By the previous theorem, we can study the relation between $C_{Aut_W(G)}(W^*(G))$ and $Aut_{W^*}(G)$. Let G be any group and $W^*(G) \leq Z(G)$ and $\frac{G}{W(G)}$ be torsion group so, for any $\sigma \in Aut_{W^*}(G)$ and $g \in G$, there exsits $n \in \mathbb{N}$ such that $g^n \in W(G)$ and by Lemma 2.5, $\sigma(g^n) = g^n$. Since $g^{-1}\sigma(g) \in W^*(G) \leq Z(G)$, $(g^{-1}\sigma(g))^n = 1$. Now, if $W^*(G)$ is torsion-free then $Aut_{W^*}(G) = 1$. Moreover, if $W(G) \leq W^*(G)$ then $\frac{G}{W^*(G)}$ is torsion and W(G) is torsion-free so, by Lemmas 2.8 and 2.9, $C_{Aut_W(G)}(W^*(G)) = 1$. Therefore, we have Theorem 1.3.

Proof of Theorem 1.3. Let $W^*(G) = W(G)$ so, by Lemma 2.5, result is obtained clearly.

Conversely, suppose $C_{Aut_W(G)}(W^*(G)) = \operatorname{Aut}_{W^*}(G)$ and $W(G) \neq W^*(G)$ then $W(G) < W^*(G)$. By Theorems 1.2 and 2.7, there is a bijection between $\operatorname{Hom}\left(\frac{G}{W^*(G)}, W(G)\right)$ and $\operatorname{Hom}\left(\frac{G}{W(G)}, W^*(G)\right)$.

G is finitely generated and $G' \leq W(G) \leq W^*(G)$ and $W^*(G)$ is torsion so $W^*(G), W(G)$ are finite and $\frac{G}{W(G)}, \frac{G}{W^*(G)}$ are finitely generated abelian groups.

Let
$$\frac{G}{W(G)} = T\left(\frac{G}{W(G)}\right) \times \mathbb{Z}^r$$
 and $\frac{G}{W^*(G)} = T\left(\frac{G}{W^*(G)}\right) \times \mathbb{Z}^s$ for $r, s \ge 0$.

By Lemma 2.9,

$$\left|\operatorname{Hom}\left(T\left(\frac{G}{W^{*}(G)}\right), W(G)\right)\right| \cdot |W(G)|^{s} = \left|\operatorname{Hom}\left(T\left(\frac{G}{W(G)}\right), W^{*}(G)\right)\right| \cdot |W^{*}(G)|^{r}$$

$$\frac{G/W(G)}{W^{*}(G)/W(G)} \simeq \frac{G}{W^{*}(G)} \text{ so } \frac{T(G/W(G))}{W^{*}(G)/W(G)} \times \mathbb{Z}^{r} \simeq T(G/W^{*}(G)) \times \mathbb{Z}^{s}.$$
Hence $r = s$ and $\frac{|T(G/W(G))|}{|T(G/W^{*}(G))|} = \frac{|W^{*}(G)|}{|W(G)|}$ and, since $W(G) \neq W^{*}(G)$, we get
$$\left|T\left(\frac{G}{W^{*}(G)}\right)\right| < \left|T\left(\frac{G}{W(G)}\right)\right|.$$
 Now, by Lemma 2-8 of [2],
$$\left|\operatorname{Hom}\left(T\left(\frac{G}{W^{*}(G)}\right), W(G)\right)\right| < \left|\operatorname{Hom}\left(T\left(\frac{G}{W(G)}\right), W^{*}(G)\right)\right|,$$

which is a contradiction.

To determine a group that its marginal automorphism is nilpotent, we need the following lemma of [3].

Lemma 3.14 ([3]) Let G he a purely non-abelian group, and let α be an automorphism of G such that $\alpha^n = 1$ for some positive integer n. If M is a torsion central subgroup of G such that $[G, \alpha] \leq M$, then $[G, \alpha] \leq M_{\pi}$, where π is the set of prime divisors of n.

Lemma 3.15 Let G be a purely non-abelian group and $\emptyset \neq W \subseteq F$ such that $W^*(G) \leq Z(G)$. If $[G, Aut_{W^*}(G)]$ is torsion. Then every torsion subgroup of $Aut_{W^*}(G)$ is the direct product of its Sylow subgroups.

Proof. Let $T = [G, \operatorname{Aut}_{W^*}(G)]$ that is an abelian torsion group so T is the direct sum of the primary components of G. Let $\alpha \in \operatorname{Aut}_{W^*}(G)$ and $g \in G$ and $\alpha^* : G \longrightarrow T$ be a map where $g \longrightarrow g^{-1}\alpha(g)$. Since $W^*(G) \leq Z(G)$, the map α^* is a homomorphism. We define $\alpha_p : G \longrightarrow G$ such that $\alpha_p(g) = g\pi_p\alpha^*(g)$ which $\pi_p : T \longrightarrow T_p$ be the natural projection. It is strightforward to see that $\alpha_p \in \operatorname{Aut}_{W^*}(G)$. Let $\theta : \operatorname{Aut}_{W^*}(G) \longrightarrow \operatorname{Aut}_{W^*}(G)$ defined by $\theta(\alpha) = \alpha_p$ for each $\alpha \in \operatorname{Aut}_{W^*}(G)$, now θ is a homomorphism: for if $\alpha, \beta \in \operatorname{Aut}_{W^*}(G)$ and $g \in G$, then

$$\begin{aligned} \alpha_p \beta_p(g) &= \alpha_p \Big(g \pi_p(\beta^*(g)) \Big) = g \pi_p(\beta^*(g)) \pi_p \Big(\alpha^* \big(g \pi_p \beta^*(g) \big) \Big) \\ &= g \pi_p(\beta^*(g)) \pi_p(\alpha^*(g)) \pi_p \Big(\alpha^* \big(\pi_p \beta^*(g) \big) \Big) \\ &= g \pi_p(\alpha^*(g)) \pi_p(\beta^*(g)) \pi_p \Big(\alpha^* \big(\beta^*(g) \big) \Big) \\ &= g \pi_p(\alpha^*(g)) \pi_p \Big(\beta^*(g) \alpha^* \big(\beta^*(g) \big) \Big) \\ &= g \pi_p(\alpha^*(g)) \pi_p \Big(\alpha \big(\beta^*(g) \big) \Big) = g \pi_p \big(g^{-1} \alpha(g) \alpha \big(g^{-1} \beta(g) \big) \\ &= g \pi_p \big(g^{-1} \alpha \beta(g) \big) = g \pi_p(\alpha \beta)^*(g) = (\alpha \beta)_p(g). \end{aligned}$$

Let A be a torsion subgroup of $\operatorname{Aut}_{W^*}(G)$ so $\theta(A) = A_p$ is also torsion and since $[G, A_p] \in T_p$, with use of Lemma 3.14, A_p is a p-group. Let group C is generated by A_p 's and prove C is an abelian group. Let p, q are distinct primes and show $[A_p, A_q] = 1$

$$\alpha_p(\alpha_q(g)) = \alpha_p(gg^{-1}\alpha_q(g)) = \alpha_p(g)\alpha_p(g^{-1}\alpha_q(g)) = gg^{-1}\alpha_p(g)\alpha_p(g^{-1}\alpha_q(g)).$$

Since $g^{-1}\alpha_q(g) \in T_q \leq W^*(G) \leq Z(G)$ and $[T_q, A_p] = [T_p, A_q] = 1$ so $\alpha_p(\alpha_q(g)) = g\alpha_p(g^{-1}\alpha_q(g))g^{-1}\alpha_p(g) = \alpha_q(g)g^{-1}\alpha_p(g) = \alpha_q(g)\alpha_q(g^{-1}\alpha_p(g)) = \alpha_q(\alpha_p(g)).$

Now, C is a torsion abelian group so it is direct product of its Sylow subgroups. If we show A is contained in C, the proof is complete.

Let $\gamma \in A$ so γ has finite order n let $p_1, ..., p_r$ be prime divisors of n, hence by Lemma 3.14, $[G, \gamma] \leq T_{p_i}$ for $1 \leq i \leq r$ so $[G, \gamma] \leq T_{p_1} \times ... \times T_{p_r}$. Let g be any element of G with use of definition of maps γ_{p_i} and γ^* we have

$$\gamma(g) = gg^{-1}\gamma(g) = g\gamma^{*}(g) = g\pi_{p_{1}}(\gamma^{*}(g))\pi_{p_{2}}(\gamma^{*}(g))...\pi_{p_{r}}(\gamma^{*}(g))$$
$$= \gamma_{p_{r}}(\gamma_{p_{r-1}}(...\gamma_{p_{1}}(g))).$$

Therefore, $\gamma = \gamma_{p_r} (\gamma_{P_{r-1}} (... (\gamma_{p_1}))) \in C$, which implies $A \leq C$.

Lemma 3.16 Let G be a purely non-abelian group and $\emptyset \neq W \subseteq F$ such that $W^*(G)$ or $\frac{G}{W(G)}$ is torsion and $W^*(G) \leq Z(G)$. Then every torsion subgroup of $Aut_{W^*}(G)$ is the direct product of its Sylow subgroups and the set $\pi(Aut_{W^*}G)$ is contained in $\pi(W^*(G))$. In particular, every finite subgroup of $Aut_{W^*}(G)$ is nilpotent.

Proof. By use of Lemma 3.15, it is enough to show that $T = [G, \operatorname{Aut}_{W^*}(G)]$ is torsion. We first assume that $W^*(G)$ is torsion. Then $T \leq W^*(G)$ is torsion. Now, suppose that $\frac{G}{W(G)}$ is torsion. Let $\alpha \in \operatorname{Aut}_{W^*}(G)$ and define the map $f: G \longrightarrow [G, \alpha]$, it is clearly that f is an epimorphism with $C_G(\alpha)$ as its kernel so $\frac{G}{C_G(\alpha)} \simeq [G, \alpha]$. Let $\frac{G}{C_G(\alpha)}$ is torsion-free and $gC_G(\alpha)$ be any non trivial element of it, i.e., $g \notin C_G(\alpha)$ since by Lemma 2.5, $W(G) \leq C_G(\alpha)$, $gC_G(\alpha)$ is nontrival element of $\frac{G}{W(G)}$ so there exist $n \in N$ such that $g^n \in W(G) \leq C_G(\alpha)$ then $(gC_G(\alpha))^n = 1$ that it is a contradiction. Hence $\frac{G}{C_G(\alpha)} \simeq [G, \alpha]$ is torsion and since α be arbitrary element of $\operatorname{Aut}_{W^*}(G)$ so T is torsion.

Now, if α be a marginal automorphism of order p, then by Lemma 3.14, $[G, \alpha] \in T_p$ so $1 \neq T_p \leq W^*(G)$ and $p \in \pi(W^*(G))$.

Since every finite subgroup of $\operatorname{Aut}_{W^*}(G)$ is the direct product of its Sylow subgroups, so it is nilpotent.

As a consequence of Lemma 3.16, we obtain the following corollary.

Corollary 3.17 Let G be a purely non-abelian p-group (p prime) and $\emptyset \neq W \subseteq F$ such that $W^*(G) \leq Z(G)$. Then every torsion subgroup of $Aut_{W^*}(G)$ is a p-group.

Proof of Theorem 1.4. Let $W^*(G)$ is torsion. Since $W^*(G)$ is characteristic in G, there is a homomorphism $\operatorname{Aut}_{W^*}(G) \longrightarrow \operatorname{Aut} W^*(G)$ with kernel $C_{\operatorname{Aut}_{W^*}(G)}W^*(G)$, that by Theorem 2.8, its kernel is an abelian group of finite exponent. Hence, $\operatorname{Aut}_{W^*}(G)$ is an abelian-by-finite group of finite exponent which its Sylow subgroups by Lemma 6-34 of [10] are nilpotent. Now, use of Lemma 3.16, implies that $\operatorname{Aut}_{W^*}(G)$ is nilpotent group.

i, implies that $\operatorname{Aut}_{W^*(G)}$ is imposed on G. Suppose now that $\frac{G}{W(G)}$ is finite, so there is a homomorphism $\psi : \operatorname{Aut}_{W^*}(G) \longrightarrow \operatorname{Aut}\left(\frac{G}{W(G)}\right)$ $\alpha \longrightarrow \alpha^*$ $\alpha^*(gW(G)) = \alpha(g)W(G)$

Since α is an automorphism, α^* is epimorphism and if $gW(G) \in ker\alpha^*$ then $\alpha(g) \in W(G)$ but W(G) is fully-invariant subgroup G so $g \in W(G)$ and α^* is one-to-one. Therefore, ψ is well-define. It is clear that ψ is homomorphism with kernel $C_{Aut_{W^*(G)}}\left(\frac{G}{W(G)}\right)$. The result with use of Lemma 2.8 is obtained in the previous case.

References

- ADNEY, J.E., YEN, T., Automorphims of a p-groups, Illinois J. Math, 9 (1965), 137-143.
- [2] CURRAN, M.J., Finite groups with central automorphism group of minimal order, Math. Proc. R. Ir. Acad., A 104 (2) (2004), 223-229.
- [3] FRANCIOSI, S., GIOVANNI, F.D., NEWELL, M.L., On central automorphisms of infinite groups, Comm. Algebra, 22 (7) (1994), 2559-2578.
- [4] HALL, PH., Verbal and marginal subgroups, J. Reine Angew. Math., 182 (1940), 156-157.
- [5] HEKSTER, N.S., Varieties of groups and isologisms, J. Austral. Math. Soc., Ser. A, 46 (1) (1989), 22-60.
- [6] JAMALI, A. AND MOUSAVI, H., On the central automorphisms group of finite p-groups. Algebra Colloquium, 9 (1), (2002), 7-14.
- [7] SHABANI ATTAR, M., On the marginal Aautomorphisms of a group, Communications in Algebra, 37 (7) (2009), 2300-2308.
- [8] RAI, P.K., On IA-automorphisms that fix the center element-wise, Indian acad. Sci., vol. 124, 2014, (169-173).
- [9] ROBINSON, D.J.S., A course in the theory of groups, Springer, Berlin, 1980.
- [10] ROBINSON, D.J.S., Finiteness conditions and generalized soluble groups, Springer, Berlin, 1972.

Accepted: 07.07.2016