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ON MARGINAL AUTOMORPHISM OF INFINITE GROUPS
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Abstract. Let W be a non-empty subset of a free group and G be any group. An
automorphism α of G is called marginal automorphism if g−1α(g) ∈ W ∗(G) for any
g ∈ G where W ∗(G) is marginal subgroup of G. In this paper we study some properties
of marginal automorphism of infinite group G.
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1. Introduction

Let F be a free group on a countably infinite set {x1, x2, ...} and let W be a
nonempty subset of F . If w = x1

l1 ...xr
lr ∈ W and g1, ..., gr are elements of a

arbitrary group G, the value of the word w at (g1...., gr) is w(g1, ..., gr) = g1
l1 ...gr

lr .
We define

W (G) =< w(g1, g2, ...)|gi ∈ G,w ∈ W > .

W ∗(G) = {g ∈ G|w(g1, ..., gi−1gig, gi+1, ..., gr) = w(g1, ..., ..., gr) for all gi ∈ G,
a ∈ N and all w(x1, x2, ..., xr) ∈ W}.

W (G) and W ∗(G) are the verbal subgroup and marginal subgroup of G with
respect to W , respectively. Clearly that W (G) is fully-invariant and W ∗(G) is
always characteristic subgroup of G (see [9] for more information).

An automorphism σ of G is called marginal with respect to W if g−1σ(g) ∈
W ∗(G) for all g ∈ G. The set of all marginal automorphism of G is normal
subgroup of Aut(G) which is denoted by AutW ∗(G).

An automorphism α of G is called verbal automorphism with respect to W if
g−1σ(g) ∈ W (G) for all g ∈ G. The set of all verbal automorphism of G, denoted
by AutW (G), is a normal subgroup of Aut(G).
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A variety is an equationally defined class of groups. More precisely the class
of all groups G such that W (G) = 1, or equivalently W ∗(G) = G is called the
variety ν determined by W . In particular, if W = {[x1, x2]} where [x1, x2] =
x1
−1x2

−1x1x2, then variety ν is the class of abelian groups and W ∗(G) = Z(G)
and W (G) = G′. In abelian variety, AutW (G) = IA(G), and it is called IA-
automorphism of G, also AutW ∗(G) = Autcent(G), and it is called central auto-
morphism of G, see also [1]-[3], [6], [7].

Franciosi, De Giovanni and M.L. Newell in [3], proved that if G be a purely

non-abelian such that Z(G) or
G

G′ is torsion with finite abelian section rank, then

γ : Autcent(G) −→ Hom(G,Z(G)) is a bijection map. Also they characterized
such groups that have nilpotent central automorphism.

Rai in [8] showed that for a finite p-group G, CIA(G)Z(G) = Autcent (G) if
and only if G′ = Z(G). (CIA(G)Z(G) is the set of all IA-automorphism of G fixing
Z(G) element-wise.)

Jamali and Mosavi in [6] using the concept of isoclinic obtained the relation
between central automorphism of two isoclinic groups. They proved that if G is
a group such that Z(G) ≤ G′ and H be a group isoclinic to G, then there is a
monomorphism from Autc(G) into Autc(H).

In the present paper, we generalize the above result to marginal automor-
phism and prove the following theorems:

Theorem 1.1 Let ν be a variety and ∅ 6= W ⊆ F and let G,H be two ν-isologism
groups such that W ∗(G) ≤ W (G) and W ∗(H) ≤ W (H). Then

AutW ∗(G) ' AutW ∗(H).

Theorem 1.2 Let G be a purely non-abelian group and ∅ 6= W ⊆ F such that
W ∗(G) ≤ Z(G). If

(i) W ∗(G) is torsion group with finite abelian section rank, or

(ii)
G

W (G)
is torsion group with finite abelian section rank and W (G) ≤ G′.

Then there is a bijection map between AutW ∗(G) and Hom
( G

W (G)
,W ∗(G)

)
.

Theorem 1.3 Let G be a finitely generated purely non-abelian group and
∅ 6= W ⊆ F such that G′ ≤ W (G) ≤ W ∗(G) ≤ Z(G) and W ∗(G) is torsion
with finite abelian section rank. Then CAutW (G)(W

∗(G)) = AutW ∗(G) if and only
if W ∗(G) = W (G).

Theorem 1.4 Let G be a purely non-abelian group such that W ∗(G) or
G

W (G)
is

finite and W ∗(G) ≤ Z(G). Then AutW ∗(G) is a nilpotent group of finite exponent.
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2. Preliminary Lemmas

Notation in this paper is standard. Let G be a group, by Z(G), G′,Aut(G) we
denoted the center, the commutator subgroup and the group of all automorphism,
respectively. Also a non abelian group G that has no non-trivial abelian direct
factor is said to be purely non-abelian group.

Let G be an abelian group, the element of finite order of G form a subgroup
T (G), the torsion subgroup of G. Moreover, elements with order some power of
a fixed prime p likewise form a subgroup Gp, the p-primary component of G. By
The Primary Decomposition Theorem, the torsion-subgroup T is the direct sum
of the primary components of G.

In this section, we collect all results that will be used in Section 3. We need
the following results of Attar [7] that are useful in our investigations.

Lemma 2.5 ([7]) Let G be a group and ∅ 6= W ⊆ F . Every marginal automor-
phism of G leaves fixed every element of the verbal subgroup W (G).

Proposition 2.6 ([7])Let G be a group and and ∅ 6= W ⊆ F . If W ∗(G) is

abelian, then Hom
(
G,W ∗(G)

) ' Hom
( G

W (G)
,W ∗(G)

)
.

The next theorem, determines structure of AutW (G) and the set of all verbal
automorphism of G fixing W ∗(G) element-wise.

Theorem 2.7 Let G be a group and ∅ 6= W⊆F such that W (G) ≤ W ∗(G)∩Z(G).
Then

(i) AutW (G) ' Hom
( G

W (G)
,W (G)

)
.

(ii) CAutW (G)(W
∗(G)) ' Hom

( G

W ∗(G)
,W (G)

)
.

Proof. (i) Let σ : AutW (G) −→ Hom
( G

W (G)
,W (G)

)
defined by σ(f) = σf ,

where σf

(
gW (G)

)
= g−1f(g), for each f ∈ AutW (G) and g ∈ G. Since g−1f(g) ∈

W (G) ≤ Z(G), it is clear that σf ∈Hom
( G

W (G)
,W (G)

)
, i.e., σ is well-defined.

Let f1, f2 ∈AutW (G) since here W (G) ≤ W ∗(G), so AutW (G) ≤AutW ∗(G)
and by Lemma 2.5,

σf1f2

(
gW (G)

)
= g−1f1

(
gg−1f2(g)

)
= g−1f1(g)g−1f2(g)

Therefore, σ(f1f2) = σ(f1)σ(f2) and σ is a homomorphism. Clearly, σ is injective,

so it remains to show that σ is surjective. Let h ∈ Hom
( G

W (G)
,W (G)

)
, we define

the map f : G −→ G by f(g) = gh
(
gW (G)

)
for all g ∈ G. It is obvious that f

is a monomorphism. Now, g = gh
(
gW (G)

)(
h(gW (G))

)−1
for every g ∈ G. Since
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h
(
gW (G)

) ∈ W (G), so f
(
h(gW (G))

)−1
=

(
h(gW (G))

)−1
, which implies that f

is surjective. Also we have g−1f(g) = g−1gh
(
gW (G)

) ∈ W (G), so f ∈ AutW (G)
such that σ(f) = h. Therefore, σ is an isomorphism.

(ii) If we utilize the above method for CAutW (G)(W
∗(G)), the result is ob-

tained.

Similar to Theorem 2.7, we obtain the following lemma, used in proof of
Theorem 1.4.

Lemma 2.8 Let G be a group and ∅ 6= W ⊆ F such that W ∗(G) ≤ Z(G). Then

(i) CAutW∗ (G)(W
∗(G)) ' Hom

( G

W ∗(G)W (G)
,W ∗(G)

)
.

(ii) CAutW∗ (G)

( G

W (G)

)
' Hom

( G

W (G)
,W (G) ∩W ∗(G)

)
.

The items of the following lemma are well-known and easily verified.

Lemma 2.9 Let U , V and W be abelian groups. Then

(i) Hom(U × V,W ) ' Hom(U,W )× Hom(V, W ).

(ii) Hom(U, V ×W ) ' Hom(U, V )× Hom(U,W ).

(iv) If U is torsion-free of rank n, then Hom(U, V ) ' V n.

(v) If U is a torsion and V is a torsion-free group, then Hom(U, V ) = 1.

The following concept was first introduced by Hall [4].

Definition 2.10 Let ν be a variety of groups defined by the set of laws W and G
and H be groups. A ν-isologism between G and H is a pair of isomorphisms (α, β)

with α :
G

W ∗(G)
−→ H

W ∗(H)
and β : W (G) −→ W (H), such that for all s > 0,

all w(x1, ..., xs) ∈ V (Fs) and all g1, ..., gs ∈ G, it holds that β
(
w(g1, ..., gs)

)
=

w(h1..., hs), whenever hi ∈ α
(
giW

∗(G)
)

(i = 1, ..., s). We write G ∼
ν

H and we

will say that G and H are ν-isologic.

In abelian variety, two group G and H in above definition are said to be isoclinic.

Lemma 2.11 ([5]) Let G and H be two groups and ∅ 6= W ⊆ F . Let (α, β) be a
ν-isologism between G and H. Let v ∈ W (G). Then the following hold.

(i) α
(
vW ∗(G)

)
= β(v)W ∗(H).

(ii) If g ∈ G and h ∈ α(gW ∗(G)), then β(vg) = β(v)h.

Corollary 2.12 Let ν be a variety and ∅ 6= W ⊆ F and let (α, β) be a ν-isologism
between G and H. Then β induces an isomorphism from W ∗(G) ∩ W (G) onto
W ∗(H) ∩W (H).
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3. Main results

Proof of Theorem 1.1. Let (α, β) be a ν-isologism between G and H. Suppose
σ ∈ AutW ∗(G) and h ∈ H, since α is surjective, there exists g ∈ G such that
α(gW ∗(G)) = hW ∗(H). Define a map fσ : H −→ H by fσ(h) = hβ(g−1σ(g)) for
any h ∈ H.

(i) fσ is well-defined:
Let h1, h2 ∈ H and α(giW

∗(G)) = hiW
∗(H) for i = 1, 2. If h1 = h2 then

α(g1W
∗(G)) = α(g2W

∗(G)) so g1g2
−1 ∈ W ∗(G) ≤ W (G), since σ fixes

W (G) element-wise hence g1
−1σ(g1) = g2

−1σ(g2) and fσ(h1) = fσ(h2)

(ii) fσ is homomorphism:
Let h1, h2 ∈ H and α(giW

∗(G)) = hiW
∗(H) for i = 1, 2. Then,

fσ(h1h2) = h1h2β
(
(g1g2)

−1σ(g1g2)
)

= h1h2β
(
g2
−1g1

−1σ(g1)g2g2
−1σ(g2)

)

= h1

(
β
(
(g1

−1σ(g1)
)g2

))h2
−1

h2β
(
g2
−1σ(g2)

)
.

Applying Lemma 2.11, we obtain β
((

g1
−1

σ(g1)
)g2)

= β
(
g1
−1σ(g1)

)h2 so
fσ(h1h2) = h1β

(
g1
−1σ(g1))h2β(g2

−1σ(g2)
)

= fσ(h1)fσ(h2).

(iii) fσ is injective:
Let fσ(h) = 1 where α(gW ∗(G)) = hW ∗(H), so β(g−1σ(g)) = h−1. By
Lemma 2.11, α

(
g−1σ(g)W ∗(G)

)
= β

(
g−1σ(g)

)
W ∗(H) = h−1W ∗(H),

g−1σ(g)W ∗(G) = α−1(h−1W ∗(H)) = α−1(hW ∗(H))−1 = g−1W ∗(G).

Hence σ(g) ∈ W ∗(G), since W ∗(G) is characteristic in G, g ∈ W ∗(G) that
Lemma 2.5, implies σ(g) = g, so h = 1.

(iv) fσ is surjective:
Let h ∈ H where α(gW ∗(G)) = hW ∗(H). h = hβ(g−1σ(g))︸ ︷︷ ︸

∈ Imfσ

(β(g−1σ(g)))−1.

By Lemma 2.11, β(g−1σ(g))W ∗(H) = α
((

g−1σ(g)
)
W ∗(G)

)
.

Since g−1σ(g) ∈ W ∗(G) ≤ W (G) and σ fixes W (G) element-wise.

fσ

(
β(g−1σ(g))

)
= β(g−1σ(g))β(g−1σ(g))−1β(σ(g−1σ(g)))

= β
(
σ(g−1σ(g))

)

= β
(
g−1σ(g)

)
.

Hence H ≤ Imfσ.

(v) h−1fσ(h) = β(g−1σ(g)), for any h ∈ H where α(gW ∗(G)) = hW ∗(H).
Since g−1σ(g) ∈ W ∗(G) and W ∗(G) ∩ W (G) = W ∗(G) by Lemma 2.12,
β(g−1σ(g)) ∈ W ∗(H) ∩W (H) = W ∗(H). Hence, fσ ∈ AutW ∗(H).
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Let γ : AutW ∗(G) −→ AutW ∗(H) such that γ(σ) = fσ. We show that γ is an
isomorphism. Suppose σ1, σ2 ∈ AutW ∗(G) and h ∈ H such that α(gW ∗(G)) =
hW ∗(H). Then,

γ(σ1σ2) = fσ1σ2(h) = hβ(g−1σ1σ2(g))

= hβ
(
g−1σ2(g)(σ2(g))−1σ1(σ2(g))

)

= hβ
(
g−1σ2(g)

)
β
(
(σ2(g)−1σ1(σ2(g))

)
.

Since g−1σ2(g) ∈ W ∗(G) ≤ W (G), with use of Lemma 2.11, we have

α−1
(
hβ(g−1σ2(g))W ∗(H)

)
= α−1

(
hW ∗(H)

)
α−1

(
β(g−1σ2(g))W ∗(H)

)

= gW ∗(G)α−1
(
α
(
g−1σ2(g)W ∗(G)

))

= σ2(g)W ∗(G).

Therefore,

γ(σ1σ2) = fσ1

(
hβ

(
g−1σ2(g)

))
= fσ1fσ2(h) = γ(σ1)γ(σ2)

It remains to prove that γ is a bijection. Notice that (α−1, β−1) is a ν-isologism
between H and G. Let f ∈ AutW ∗(H), we define σf (g) = gβ−1(h−1f(h)) for any
g ∈ G, where α−1(hW ∗(H)) = gW ∗(G).

In a similar proof as above, σf ∈ AutW ∗(G).

Now, we define δ : AutW ∗(H) −→ AutW ∗(G) as δ(f) = σf .

Let g ∈ G where α(gW ∗(G)) = hW ∗(H). Then

δγ(σ)(g) = δ(fσ)(h) = gβ−1(h−1fσ(h)) = gβ−1(h−1hβ(g−1σ(g)) = σ(g).

So δγ(σ) = σ i.e. δγ = 1, similarly γδ = 1. Thus γ is an isomorphism.

Let σ ∈ Autcent(G) and x ∈ G so the map x −→ x−1σ(x) defines a homo-
morphism from G into Z(G). On the other hand the map x −→ xf(x) defines an
endomorphism of G for every f in Hom(G,Z(G)). If G is a finite group, this endo-
morphism is a central automorphism if and only if f(x) 6= x−1 for every 1 6= x ∈ G.
In [1], Adney and Yen show that a necessary and sufficient condition for a finite
group G to have such a bijection between Autcent(G) and Hom(G,Z(G)) is that
G has no abelian direct factors. Franciosi, De Giovanni and M.L. Newell in [3],
with use of following lemma extend this result to a wider class containing all
periodic groups with finite abelian section rank.

Lemma 3.13 ([3]) Let G be a group and α ∈ Hom(G,Z(G)) such that
α(g) = g−1 for some g 6= 1. If Imα is the direct product of a torsion group
with finite abelian section rank and a free abelian group, then G has a non-trivial
abelian direct factor.
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Here we want to obtain the corresponding statement of Franciosi and De
Giovanni theorem in arbitrary variety of group. If W ∗(G) is contained in the
center of G then we have same result of Lemma 3.13 for α ∈ Hom(G,W ∗(G)).

Proof of Theorem 1.2. By Proposition 2.6, it is enough to show that there is
a bijection map between AutW ∗(G) and Hom

(
G,W ∗(G)

)
. Let α ∈ AutW ∗(G)

and g ∈ G now we define α∗ : G −→ W ∗(G) such that α∗(g) = g−1α(g). From
g−1α(g) ∈ W ∗(G) ≤ Z(G) is obtained that α∗ is a homomorphism so the map

ψ : AutW ∗(G) −→ Hom
(
G,W ∗(G)

)

α −→ α∗

α∗(g) = g−1α(g)

is well-defined. It is clear that ψ is a one-to-one map. Our map is surjective, for
this let γ ∈ Hom

(
G,W ∗(G)

)
, we prove the map α : G −→ G where α(g) = gγ(g) is

a marginal automorphism of G such that ψ(α) = γ. Since γ(g) ∈ W ∗(G) ≤ Z(G) ,
α is an endomorphism of G. With let composition of the γ and incidence mapping

W ∗(G) −→ Z(G), we have
G

kerγ
' Imγ ≤ W ∗(G) ≤ Z(G) and G′ ≤ kerγ.

Here by hypothesis Imγ is torsion with finite abelian section rank. If g ∈ kerα
then α(g) = 1 so γ(g) = g−1 that by Lemma 3.13, g = 1. Now, we show
that α is onto and this concludes the proof of theorem. Let T = Imγ, the p-
component Tp of T satisfies the minimal condition on subgroups for each prime
p. Since Tp ' α(Tp), it follows that α(Tp) = Tp, and T is contained in Imα. Now
g = gγ(g)(γ(g))−1 ∈ Imα for any g ∈ G, so Imα = G.

By the previous theorem, we can study the relation between CAutW (G)(W
∗(G))

and AutW ∗(G). Let G be any group and W ∗(G) ≤ Z(G) and
G

W (G)
be tor-

sion group so, for any σ ∈AutW ∗(G) and g ∈ G, there exsits n ∈ N such that
gn ∈ W (G) and by Lemma 2.5, σ(gn) = gn. Since g−1σ(g) ∈ W ∗(G) ≤ Z(G),
(g−1σ(g))n = 1. Now, if W ∗(G) is torsion-free then AutW ∗(G) = 1. Moreover, if

W (G) ≤ W ∗(G) then
G

W ∗(G)
is torsion and W (G) is torsion-free so, by Lemmas

2.8 and 2.9, CAutW (G)(W
∗(G)) = 1. Therefore, we have Theorem 1.3.

Proof of Theorem 1.3. Let W ∗(G) = W (G) so, by Lemma 2.5, result is
obtained clearly.

Conversely, suppose CAutW (G)(W
∗(G)) = AutW ∗(G) and W (G) 6= W ∗(G)

then W (G) < W ∗(G). By Theorems 1.2 and 2.7, there is a bijection between

Hom
( G

W ∗(G)
,W (G)

)
and Hom

( G

W (G)
,W ∗(G)

)
.

G is finitely generated and G′ ≤ W (G) ≤ W ∗(G) and W ∗(G) is torsion so

W ∗(G), W (G) are finite and
G

W (G)
,

G

W ∗(G)
are finitely generated abelian groups.

Let
G

W (G)
= T

( G

W (G)

)× Zr and
G

W ∗(G)
= T

( G

W ∗(G)

)× Zs for r, s > 0.
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By Lemma 2.9,
∣∣∣∣Hom

(
T

(
G

W ∗(G)

)
,W (G)

)∣∣∣∣·|W (G)|s =

∣∣∣∣Hom

(
T

(
G

W (G)

)
,W ∗(G)

)∣∣∣∣·|W ∗(G)|r

G/W (G)

W ∗(G)/W (G)
' G

W ∗(G)
so

T
(
G/W (G)

)

W ∗(G)/W (G)
× Zr ' T

(
G/W ∗(G)

) × Zs.

Hence r = s and
|T(

G/W (G)
)|

|T(
G/W ∗(G)

)| =
|W ∗(G)|
|W (G)| and, since W (G) 6= W ∗(G), we get

∣∣∣∣T
(

G

W ∗(G)

)∣∣∣∣ <

∣∣∣∣T
(

G

W (G)

)∣∣∣∣. Now, by Lemma 2-8 of [2],

∣∣∣∣Hom

(
T

(
G

W ∗(G)

)
, W (G)

)∣∣∣∣ <

∣∣∣∣Hom

(
T

(
G

W (G)

)
,W ∗(G)

)∣∣∣∣ ,

which is a contradiction.

To determine a group that its marginal automorphism is nilpotent, we need
the following lemma of [3].

Lemma 3.14 ([3]) Let G he a purely non-abelian group, and let α be an auto-
morphism of G such that αn = 1 for some positive integer n. If M is a torsion
central subgroup of G such that [G,α] ≤ M , then [G,α] ≤ Mπ, where π is the set
of prime divisors of n.

Lemma 3.15 Let G be a purely non-abelian group and ∅ 6= W ⊆ F such that
W ∗(G) ≤ Z(G). If [G,AutW ∗(G)] is torsion. Then every torsion subgroup of
AutW ∗(G) is the direct product of its Sylow subgroups.

Proof. Let T = [G,AutW ∗(G)] that is an abelian torsion group so T is the
direct sum of the primary components of G. Let α ∈ AutW ∗(G) and g ∈ G and
α∗ : G −→ T be a map where g −→ g−1α(g). Since W ∗(G) ≤ Z(G), the map
α∗ is a homomorphism. We define αp : G −→ G such that αp(g) = gπpα

∗(g)
which πp : T −→ Tp be the natural projection. It is strightforward to see that
αp ∈ AutW ∗(G). Let θ : AutW ∗(G) −→AutW ∗(G) defined by θ(α) = αp for each
α ∈ AutW ∗(G), now θ is a homomorphism: for if α, β ∈ AutW ∗(G) and g ∈ G,
then

αpβp(g) = αp

(
gπp(β

∗(g))
)

= gπp(β
∗(g))πp

(
α∗

(
gπpβ

∗(g)
))

= gπp(β
∗(g))πp(α

∗(g))πp

(
α∗

(
πpβ

∗(g)
))

= gπp(α
∗(g))πp(β

∗(g))πp

(
α∗

(
β∗(g)

))

= gπp(α
∗(g))πp

(
β∗(g)α∗

(
β∗(g)

))

= gπp(α
∗(g))πp

(
α
(
β∗(g)

))
= gπp

(
g−1α(g)α

(
g−1β(g))

)

= gπp

(
g−1αβ(g)

)
= gπp(αβ)∗(g) = (αβ)p(g).
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Let A be a torsion subgroup of AutW ∗(G) so θ(A) = Ap is also torsion and
since [G,Ap] ∈ Tp, with use of Lemma 3.14, Ap is a p-group. Let group C is
generated by Ap’s and prove C is an abelian group. Let p, q are distinct primes
and show [Ap, Aq] = 1

αp(αq(g)) = αp(gg−1αq(g)) = αp(g)αp

(
g−1αq(g)

)
= gg−1αp(g)αp

(
g−1αq(g)

)
.

Since g−1αq(g) ∈ Tq ≤ W ∗(G) ≤ Z(G) and [Tq, Ap] = [Tp, Aq] = 1 so αp(αq(g)) =
gαp

(
g−1αq(g)

)
g−1αp(g) = αq(g)g−1αp(g) = αq(g)αq

(
g−1αp(g)

)
= αq(αp(g)).

Now, C is a torsion abelian group so it is direct product of its Sylow sub-
groups. If we show A is contained in C, the proof is complete.

Let γ ∈ A so γ has finite order n let p1, ..., pr be prime divisors of n, hence
by Lemma 3.14, [G, γ] ≤ Tpi

for 1 ≤ i ≤ r so [G, γ] ≤ Tp1 × ...×Tpr . Let g be any
element of G with use of definition of maps γpi

and γ∗ we have

γ(g) = gg−1γ(g) = gγ∗(g) = gπp1(γ
∗(g))πp2(γ

∗(g))...πpr(γ
∗(g))

= γpr(γpr−1(...γp1(g))).

Therefore, γ = γpr

(
γPr−1(...(γp1))

) ∈ C, which implies A ≤ C.

Lemma 3.16 Let G be a purely non-abelian group and ∅ 6= W ⊆ F such that

W ∗(G) or
G

W (G)
is torsion and W ∗(G) ≤ Z(G). Then every torsion subgroup

of AutW ∗(G) is the direct product of its Sylow subgroups and the set π(AutW ∗G)
is contained in π(W ∗(G)). In particular, every finite subgroup of AutW ∗(G) is
nilpotent.

Proof. By use of Lemma 3.15, it is enough to show that T = [G,AutW ∗(G)] is
torsion. We first assume that W ∗(G) is torsion. Then T ≤ W ∗(G) is torsion.

Now, suppose that
G

W (G)
is torsion. Let α ∈ AutW ∗(G) and define the map

f : G −→ [G,α], it is clearly that f is an epimorphism with CG(α) as its kernel

so
G

CG(α)
' [G,α]. Let

G

CG(α)
is torsion-free and gCG(α) be any non trivial

element of it, i.e., g /∈ CG(α) since by Lemma 2.5, W (G) ≤ CG(α), gCG(α) is

nontrival element of
G

W (G)
so there exist n ∈ N such that gn ∈ W (G) ≤ CG(α)

then
(
gCG(α)

)n
= 1 that it is a contradiction. Hence

G

CG(α)
' [G,α] is torsion

and since α be arbitrary element of AutW ∗(G) so T is torsion.
Now, if α be a marginal automorphism of order p, then by Lemma 3.14,

[G,α] ∈ Tp so 1 6= Tp ≤ W ∗(G) and p ∈ π(W ∗(G)).
Since every finite subgroup of AutW ∗(G) is the direct product of its Sylow

subgroups, so it is nilpotent.

As a consequence of Lemma 3.16, we obtain the following corollary.
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Corollary 3.17 Let G be a purely non-abelian p-group (p prime) and ∅ 6= W ⊆ F
such that W ∗(G) ≤ Z(G). Then every torsion subgroup of AutW ∗(G) is a p-group.

Proof of Theorem 1.4. Let W ∗(G) is torsion. Since W ∗(G) is characte-
ristic in G, there is a homomorphism AutW ∗(G) −→ Aut W ∗(G) with kernel
CAutW∗(G)

W ∗(G), that by Theorem 2.8, its kernel is an abelian group of finite ex-
ponent. Hence, AutW ∗(G) is an abelian-by-finite group of finite exponent which
its Sylow subgroups by Lemma 6-34 of [10] are nilpotent. Now, use of Lemma
3.16, implies that AutW ∗(G) is nilpotent group.

Suppose now that
G

W (G)
is finite, so there is a homomorphism

ψ : AutW ∗(G) −→ Aut

(
G

W (G)

)

α −→ α∗

α∗(gW (G)) = α(g)W (G)

Since α is an automorphism, α∗ is epimorphism and if gW (G) ∈ kerα∗ then
α(g) ∈ W (G) but W (G) is fully-invariant subgroup G so g ∈ W (G) and α∗ is
one-to-one. Therefore, ψ is well-define. It is clear that ψ is homomorphism with

kernel CAutW∗(G)

(
G

W (G)

)
. The result with use of Lemma 2.8 is obtained in the

previous case.
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