FUZZY INTERIOR HYPERIDEALS
IN ORDERED SEMIHYPERGROUPS

Nuchanat Tipachot
Bundit Pibaljommee

Department of Mathematics
Faculty of Science
Khon Kaen University
Khon Kaen 40002
Thailand

Centre of Excellence in Mathematics
CHE, Si Ayuttaya Rd. Bangkok 10400
Thailand

e-mails: pam_nuchanat@hotmail.com
banpib@kku.ac.th

Abstract. We introduce the notions of an interior hyperideal and a fuzzy interior hyperideal of an ordered semihypergroup. Then, we present a characterization of an interior hyperideal in terms of fuzzy interior hyperideals. The notion of an intra-regular ordered semihypergroup is introduced. Then, we show that fuzzy interior hyperideals and fuzzy hyperideals coincide in regular ordered semihypergroups and intra-regular ordered semihypergroups. Finally, we give the concept of a simple ordered semihypergroup and characterize simple ordered semihypergroups by means of fuzzy hyperideals and fuzzy interior hyperideals.

Keywords: ordered semihypergroup, interior hyperideal, fuzzy interior hyperideal, regular ordered semihypergroup, intra-regular ordered semihypergroup, simple ordered semihypergroup.

AMS Mathematics Subject Classification: 06F05, 20N20.

1. Introduction

The notion of algebraic hyperstructures were introduced first by Marty [7] in 1934 as generalizations of algebraic structures and applied to non-commutative groups, so called hypergroups. In 2011, Heidari and Davvaz [4] defined a semihypergroup with a partially order relation called an ordered semihypergroup. Then, Changhai and Davvaz [1] investigated properties of hyperideals in an ordered semihypergroup. After Zadeh [12] defined the notion of a fuzzy set in 1965, Rosenfeld

1Corresponding author. email: banpib@kku.ac.th
applied fuzzification to groups called fuzzy subgroups and then, many researchers considered fuzzification on many algebraic structures, for example, on rings, semigroups, semirings, near-rings, ordered semigroups, semihypergroups and ordered semihypergroups. In [6], the notion of a fuzzy interior ideal of an ordered semigroup was introduced by Kehayopulu and Tsingelis and it was shown that fuzzy interior ideals and fuzzy ideals coincide in a regular ordered semigroup and in an intra-regular ordered semigroup. Then Pibaljommee, Wannatong and Davvaz [9] introduced the notions of fuzzy hyperideals, fuzzy bi-hyperideals and fuzzy quasi-hyperideals of an ordered semihypergroup and proved that in regular ordered semihypergroups, fuzzy bi-hyperideals and fuzzy quasi-hyperideals coincide. Later, Pibaljommee and Davvaz [8] characterized left and right simple ordered semihypergroups, completely regular ordered semihypergroups and strongly regular ordered semihypergroups by means of their fuzzy bi-hyperideals.

In this paper, we generalized the notion of fuzzy interior ideals of an ordered semigroup introduced by Kehayopulu and Tsingelis in [6] to fuzzy interior hyperideals of an ordered semihypergroup.

2. Preliminaries

A hypergroupoid consists of a non-empty set H and a mapping $\circ : H \times H \rightarrow \mathcal{P}^*(H)$ called a hyperoperation, where $\mathcal{P}^*(H)$ denotes the set of all non-empty subsets of H (see, e.g., [2], [3], [11]). We denote by $a \circ b$ the image of the pair (a, b) in $H \times H$.

A hypergroupoid (H, \circ) is called a semihypergroup if it satisfies the associative property, namely,

$$(a \circ b) \circ c = a \circ (b \circ c).$$

For any non-empty subsets A, B of H, we denote

$$A \circ B := \bigcup_{a \in A, b \in B} a \circ b.$$

Instead of $\{a\} \circ A$ and $B \circ \{a\}$, we write $a \circ A$ and $B \circ a$, respectively.

Now, we recall the notion of an ordered semihypergroup defined in [4].

Definition 2.1. Let H be a non-empty set and \leq be an ordered relation on H. The tri-tuple (H, \circ, \leq) is called an ordered semihypergroup if the following conditions are satisfied.

1. (H, \circ) is a semihypergroup.
2. (H, \leq) is a partially ordered set.
3. For every $a, b, c \in H$, $a \leq b$ implies $a \circ c \leq b \circ c$ and $c \circ a \leq c \circ b$, where $a \circ c \leq b \circ c$ means that for every $x \in a \circ c$ there exists $y \in b \circ c$ such that $x \leq y$.
A non-empty subset A of an ordered semihypergroup (H, \circ, \leq) is called a sub-semihypergroup of H if (A, \circ, \leq) is an ordered semihypergroup.

We note that for every $a, b, c, d, e, f \in H$ with $a \circ b \leq c \circ d$ and $e \leq f$, we obtain

$$a \circ b \circ e \leq c \circ d \circ f.$$

For $K \subseteq H$, we denote

$$(K) := \{a \in H \mid a \leq k \text{ for some } k \in K\}.$$

Definition 2.2. [4] A non-empty subset A of an ordered semihypergroup (H, \circ, \leq) is called a right (resp. left) hyperideal of H if

1. $A \circ H \subseteq A$ (resp. $H \circ A \subseteq A$),
2. for every $a \in H, b \in A$ and $a \leq b$ implies $a \in A$.

If A is both a right hyperideal and a left hyperideal of H, then A is called a hyperideal (or two-sided hyperideal) of H.

Definition 2.3. A subsemihypergroup A of an ordered semihypergroup (H, \circ, \leq) is called an interior hyperideal of H if

1. $H \circ A \circ H \subseteq A$,
2. for every $a \in H, b \in A$ and $a \leq b$ implies $a \in A$.

Example 1. Let $H = \{a, b, c, d\}$. Define a hyperoperation \circ on H by the following table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>${a, b}$</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>a</td>
<td>${a, b}$</td>
<td>${a, b, c}$</td>
</tr>
</tbody>
</table>

We define an order relation \leq as follows:

$\leq := \{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, d), (c, d)\}.$
The covering relation “≺” and the figure of H:

\[\preceq = \{(a, b), (a, c), (b, d), (c, d)\}, \]

Now, (H, \circ, \leq) is an ordered semihypergroup.

It is easy to see that $\{a\}, \{a, b\}, \{a, b, c\}$ and H are all hyperideals. Moreover, $\{a, c\}$ is an interior hyperideal but not a hyperideal of H.

A fuzzy subset [12] of an ordered semihypergroup (H, \circ, \leq) is a function $\mu : H \to [0, 1]$. If μ satisfies the condition $\min\{\mu(a), \mu(b)\} \leq \inf_{c \in a \circ b} \{\mu(c)\}$ for all $a, b \in H$, then μ is called a fuzzy subsemihypergroup of H.

Definition 2.4. [9] Let (H, \circ, \leq) be an ordered semihypergroup. A fuzzy subset $\mu : H \to [0, 1]$ is called a fuzzy right (resp. left) hyperideal of H if

1. for every $a, b \in H$, $a \leq b$ implies $\mu(b) \leq \mu(a)$,

2. for every $a, b \in H$, $\mu(a) \leq \inf_{c \in a \circ b} \{\mu(c)\}$ (resp. $\mu(b) \leq \inf_{c \in a \circ b} \{\mu(c)\}$).

If μ is both a fuzzy right hyperideal and a fuzzy left hyperideal of H, then μ is called a fuzzy hyperideal of H.

Example 2. [9] Let $H = \{a, b, c, d, e\}$. Define a hyperoperation \circ on H by the following table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a, b, d}$</td>
<td>a</td>
<td>${a, b, d}$</td>
<td>${a, b, d}$</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>${a, b, d}$</td>
<td>${a, b, d}$</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>${a, b, d}$</td>
<td>${a, c}$</td>
<td>${a, b, d}$</td>
<td>${a, b, c, d, e}$</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>${a, b, d}$</td>
<td>a</td>
<td>${a, b, d}$</td>
<td>${a, b, d}$</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>${a, b, d}$</td>
<td>${a, c}$</td>
<td>${a, b, d}$</td>
<td>${a, b, c, d, e}$</td>
</tr>
</tbody>
</table>

We define an order relation \leq as follows:

\[\leq := \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (a, d), (a, e), (b, d), (b, e), (c, e), (d, e)\}. \]
We give the covering relation "≺" and the figure of H:

$$≺ = \{(a, c), (a, d), (b, d), (c, e), (d, e)\},$$

Now, (H, \circ, \leq) is an ordered semihypergroup [9]. We define two fuzzy subsets μ and λ of H as follows:

$$\mu(x) := \begin{cases} 0.7 & \text{if } x = a, b, d \\ 0.3 & \text{if } x = c, e \end{cases}$$
and

$$\lambda(x) := \begin{cases} 0.9 & \text{if } x = a \\ 0.8 & \text{if } x = c \\ 0.5 & \text{if } x = b, d, e \end{cases}$$

We can see that μ is a fuzzy hyperideal and λ is a fuzzy left hyperideal of H.

For any fuzzy subset μ of an ordered semihypergroup (H, \circ, \leq) and $t \in (0, 1]$, the set

$$\mu_t = \{a \in H \mid \mu(a) \geq t\}$$

is called a level subset of μ.

Theorem 2.5. [9] Let (H, \circ, \leq) be an ordered semihypergroup and μ be a fuzzy subset of H. Then, μ is a fuzzy hyperideal of H if and only if for every $t \in [0, 1]$, the non-empty level subset μ_t is a hyperideal of H.

Let (H, \circ, \leq) be an ordered semihypergroup and $\emptyset \neq I \subseteq H$. Then the characteristic function $\mathcal{X}_I : H \to [0, 1]$ of I is defined by

$$\mathcal{X}_I := \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{if } x \notin I \end{cases}$$

Lemma 2.6. [9] Let (H, \circ, \leq) be an ordered semihypergroup and $\emptyset \neq I \subseteq H$. Then, I is a hyperideal of H if and only if the characteristic function \mathcal{X}_I is a fuzzy hyperideal of H.
3. Fuzzy interior hyperideals

In this section, we define the concept of a fuzzy interior hyperideal of an ordered semihypergroup and the concept of an intra-regular ordered semihypergroup. Then we show that every fuzzy hyperideal is a fuzzy interior hyperideal. Moreover, in regular ordered semihypergroups and intra-regular ordered semihypergroups fuzzy hyperideals and fuzzy interior hyperideals coincide.

Definition 3.1. Let \((H, \circ, \leq)\) be an ordered semihypergroup. A fuzzy subsemihypergroup \(\mu : H \to [0, 1]\) is called a fuzzy interior hyperideal of \(H\) if the following assertions are satisfied:

1. for every \(a, b \in H\), \(a \leq b\) implies \(\mu(b) \leq \mu(a)\),
2. for every \(a, b, d \in H\), \(\mu(a) \leq \inf_{c \in \text{level}} \{\mu(c)\}\).

Theorem 3.2. A fuzzy subsemihypergroup \(\mu\) of an ordered semihypergroup \((H, \circ, \leq)\) is a fuzzy interior hyperideal of \(H\) if and only if for every \(t \in [0, 1]\), the non-empty level subset \(\mu_t\) is an interior hyperideal of \(H\).

Proof. Assume that \(\mu\) is a fuzzy interior hyperideal of \(H\). Let \(t \in [0, 1]\). Let \(a \in H \circ \mu_t \circ H\). Then \(a \in x \circ c \circ y\) for some \(x, y \in H\), \(c \in \mu_t\). By assumption, \(\inf_{a \in \text{level}} \{\mu(a)\} \geq \mu(c) \geq t\), we have \(\mu(a) \geq t\). It follows that \(H \circ \mu_t \circ H \subseteq \mu_t\). Let \(x, y \in H\) be such that \(x \leq y\). If \(y \in \mu_t\), then \(\mu(y) \geq t\). Since \(\mu\) is a fuzzy interior hyperideal of \(H\), we have \(\mu(x) \geq \mu(y) \geq t\). It follows that \(x \in \mu_t\). Therefore, \(\mu_t\) is an interior hyperideal of \(H\).

Assume that \(\mu_t\) is an interior hyperideal of \(H\) for every \(t \in (0, 1]\). Let \(x, y \in H\) such that \(x \leq y\). If \(\mu(y) := t\), then \(y \in \mu_t\). Since \(\mu_t\) is an interior hyperideal of \(H\) and \(x \leq y\), we have \(x \in \mu_t\). So, \(\mu(x) \geq t = \mu(y)\). Next, we show that \(\mu(a) \leq \inf_{c \in \text{level}} \{\mu(c)\}\) for every \(a, x, y \in H\). Choose \(\mu(a) := s\), then \(a \in \mu_s\). Since \(\mu_s\) is an interior hyperideal of \(H\), we get \(x \circ a \circ y \subseteq \mu_s\). Then for every \(c \in x \circ a \circ y\), we have \(\mu(c) \geq s\) and so \(\mu(a) = s \leq \inf_{c \in \text{level}} \{\mu(c)\}\). Therefore, \(\mu\) is a fuzzy interior hyperideal of \(H\).

Example 3. Consider the ordered semihypergroup \((H, \circ, \leq)\) given in Example 1 and define a fuzzy subset \(\mu : H \to [0, 1]\) by:

\[
\mu(x) := \begin{cases}
0.7 & \text{if } x = a \\
0.5 & \text{if } x = c \\
0.4 & \text{if } x = b \\
0.3 & \text{if } x = d.
\end{cases}
\]

Now, we have \(\{a\}, \{a, c\}, \{a, b, c\}\) and \(H\) are all non-empty level subsets of \(H\) which are interior hyperideals. By Theorem 3.2, \(\mu\) is a fuzzy interior hyperideal of \(H\).
The following result can be directly proved using Theorem 3.2.

Corollary 3.3. Let \((H, \circ, \leq)\) be an ordered semihypergroup and \(\emptyset \neq I \subseteq H\). Then, \(I\) is an interior hyperideal of \(H\) if and only if the characteristic function \(X_I\) is a fuzzy interior hyperideal of \(H\).

Theorem 3.4. Let \((H, \circ, \leq)\) be an ordered semihypergroup. Then, every fuzzy hyperideal of \(H\) is a fuzzy interior hyperideal of \(H\).

Proof. Assume that \(\mu\) is a fuzzy hyperideal of \(H\). Let \(a, b, c \in H\). Since \(\mu\) is a fuzzy left hyperideal of \(H\) and \(\mu\) is a fuzzy right hyperideal of \(H\), we have

\[
\inf_{e \in \text{co}a \circ b} \{\mu(e)\} \geq \inf_{s \in \text{co}b} \{\mu(s)\} \geq \mu(a).
\]

This implies that \(\mu\) is a fuzzy interior hyperideal of \(H\).

Definition 3.5. [9] An ordered semihypergroup \((H, \circ, \leq)\) is called *regular* if for each \(a \in H\) there exists \(x \in H\) such that \(a \leq a \circ x \circ a\).

Theorem 3.6. Let \((H, \circ, \leq)\) be a regular ordered semihypergroup and \(\mu\) be a fuzzy interior hyperideal of \(H\). Then, \(\mu\) is a fuzzy hyperideal of \(H\).

Proof. Assume that \(\mu\) is a fuzzy interior hyperideal of \(H\). Let \(a, b \in H\). Since \(H\) is a regular ordered semihypergroup, there exists \(x \in H\) such that \(a \leq a \circ x \circ a\). Then \(a \circ b \leq a \circ x \circ a \circ b\), that is, for every \(c \in a \circ b\) there exists \(e \in a \circ x \circ a \circ b\) such that \(c \leq e\). Since \(\mu\) is a fuzzy interior hyperideal of \(H\), we have \(\inf_{e \in a \circ b} \{\mu(e)\} \geq \mu(a)\) and \(\inf_{s \in a \circ b} \{\mu(s)\} \geq \mu(a)\) for every \(y \in a \circ x\). Thus,

\[
\inf_{e \in a \circ b} \{\mu(e)\} \geq \mu(e) \geq \inf_{s \in a \circ b} \{\mu(s)\} \geq \mu(a).
\]

This implies that \(\mu\) is a fuzzy right hyperideal of \(H\). In a similar way, we can prove that \(\mu\) is a fuzzy left hyperideal of \(H\).

Corollary 3.7. Let \((H, \circ, \leq)\) be a regular ordered semihypergroup and \(\mu\) be a fuzzy subset of \(H\). Then, \(\mu\) is a fuzzy hyperideal of \(H\) if and only if \(\mu\) is a fuzzy interior hyperideal of \(H\).

Proof. It is an immediate consequence of Theorem 3.4 and Theorem 3.6.

Definition 3.8. An ordered semihypergroup \((H, \circ, \leq)\) is called intra-regular if for each \(a \in H\) there exist \(x, y \in H\) such that \(a \leq x \circ a^2 \circ y\).

Example 4. Let \(H = \{a, b, c, d, e\}\). Define a hyperoperation \(\circ\) on \(H\) by the following table:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>{a, e}</td>
<td>{b, e}</td>
<td>{a, b, c, e}</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>(b)</td>
<td>{b, e}</td>
<td>{a, e}</td>
<td>{a, b, c, e}</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>(c)</td>
<td>{a, b, c, e}</td>
</tr>
<tr>
<td>(d)</td>
<td>{a, b, c, e}</td>
</tr>
<tr>
<td>(e)</td>
<td>(e)</td>
<td>(e)</td>
<td>{a, b, c, e}</td>
<td>(d)</td>
<td>(e)</td>
</tr>
</tbody>
</table>
We define an order relation \(\leq \) as follows:

\[
\leq := \{(a, a), (b, b), (c, c), (d, d), (e, e), (e, a), (e, b), (e, c), (d, c)\}.
\]

We give the covering relation “\(\prec \)” and the figure of \(H \):

\[
\prec := \{(e, a), (e, b), (e, c), (d, c)\},
\]

Now, \((H, \circ, \leq)\) is an ordered semihypergroup [8].

We can show that \((H, \circ, \leq)\) is an intra-regular ordered semihypergroup.

Theorem 3.9. Let \((H, \circ, \leq)\) be an intra-regular ordered semihypergroup and \(\mu\) be a fuzzy interior hyperideal of \(H\). Then, \(\mu\) is a fuzzy hyperideal of \(H\).

Proof. Assume that \(\mu\) is a fuzzy interior hyperideal of \(H\). Let \(a, b \in H\). Since \(H\) is an intra-regular ordered semihypergroup, there exist \(x, y \in H\) such that \(a \leq x \circ a^2 \circ y\). Then \(a \circ b \leq x \circ a^2 \circ y \circ b\), that is, for every \(d \in a \circ b\) there exists \(c \in x \circ a^2 \circ y \circ b\) such that \(d \leq c\). Since \(\mu\) is a fuzzy interior hyperideal of \(H\), we have \(\inf_{d \in a \circ b} \{\mu(d)\} \geq \mu(c)\) and \(\inf_{s \in x \circ a \circ b} \{\mu(s)\} \geq \mu(a)\) for every \(h \in a \circ y \circ b\).

Therefore,

\[
\inf_{d \in a \circ b} \{\mu(d)\} \geq \mu(c) \geq \inf_{s \in x \circ a \circ b} \{\mu(s)\} \geq \mu(a).
\]

Hence, \(\mu\) is a fuzzy right hyperideal of \(H\). In a similar way, we can prove that \(\mu\) is a fuzzy left hyperideal of \(H\).

As a consequence of Theorem 3.4 and Theorem 3.9, we have the following result.

Corollary 3.10. Let \((H, \circ, \leq)\) be an intra-regular ordered semihypergroup and \(\mu\) be a fuzzy subset of \(H\). Then, \(\mu\) is a fuzzy hyperideal of \(H\) if and only if \(\mu\) is a fuzzy interior hyperideal of \(H\).
4. Simple ordered semihypergroups

In this section, we give a characterization of simple ordered semihypergroups by means of fuzzy hyperideals and fuzzy interior hyperideals. First, we apply the concept of a simple semihypergroup defined in [5] to define the concept of a simple ordered semihypergroup.

Definition 4.1. An ordered semihypergroup (H, \circ, \leq) is called *simple* if it has no proper hyperideal.

Example 5. Let $H = \{a, b, c\}$. Define a hyperoperation \circ on H by the following table:

<table>
<thead>
<tr>
<th>\circ</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>${a, b}$</td>
<td>${a, c}$</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>${a, b}$</td>
<td>${a, c}$</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>${a, b}$</td>
<td>c</td>
</tr>
</tbody>
</table>

We define an order relation \leq as follows:

$\leq := \{(a, a), (b, b), (c, c), (a, b)\}$.

We give the covering relation “\prec” and the figure of H:

Now, (H, \circ, \leq) is an ordered semihypergroup [1]. It is easy to see that (H, \circ, \leq) is simple.

Let (H, \circ, \leq) be an ordered semihypergroup, $a \in H$ and μ be a fuzzy subset of H. Define the set I_a as follows:

$I_a = \{b \in H \mid \mu(b) \geq \mu(a)\}$.

By Theorem 2.5, we obtain the following theorem.

Theorem 4.2. Let (H, \circ, \leq) be an ordered semihypergroup and μ be a fuzzy hyper-ideal of H. Then,
(1) I_a is a right hyperideal of H for every $a \in H$,

(2) I_a is a left hyperideal of H for every $a \in H$,

(3) I_a is a hyperideal of H for every $a \in H$.

Theorem 4.3. An ordered semihypergroup (H, \circ, \leq) is a simple ordered semihypergroup if and only if every fuzzy hyperideal of H is a constant function.

Proof. Assume that H is a simple ordered semihypergroup. Let μ be a fuzzy hyperideal of H and $a, b \in H$. By Theorem 4.2, we obtain I_a is a hyperideal of H. By assumption, this implies that $I_a = H$. Then $b \in I_a$, that is, $\mu(b) \geq \mu(a)$. On the other hand, we get $\mu(a) \geq \mu(b)$. Therefore, $\mu(a) = \mu(b)$.

Conversely, we assume that for every fuzzy hyperideal of H is a constant function. Let I be a hyperideal of H and $x \in H$. By Lemma 2.6, we obtain the characteristic function X_I is a fuzzy hyperideal of H. By assumption, X_I is a constant function, that is, $X_I(x) = X_I(b)$ for every $b \in H$. Let $a \in I$. Then $X_I(x) = X_I(a) = 1$, and so $x \in I$. Therefore, $H \subseteq I$.

Lemma 4.4. An ordered semihypergroup (H, \circ, \leq) is a simple ordered semihypergroup if and only if for every $a \in H$, $H = (H \circ a \circ H]$.

Proof. Assume that H is a simple ordered semihypergroup. We show that for every $a \in H$, $(H \circ a \circ H]$ is a hyperideal of H. Let $x \in H$ and $y \in (H \circ a \circ H]$. Then, we can write $y \leq k$ for some $k \in H \circ a \circ H$, so $x \circ y \leq x \circ k$. Since $x \circ k \subseteq H \circ a \circ H$, we have $x \circ y \subseteq (H \circ a \circ H]$. Next, let $x \in H$ and $y \in (H \circ a \circ H]$ be such that $x \leq y$. Then, we can write $x \leq y \leq k$ for some $k \in H \circ a \circ H$ so $x \in (H \circ a \circ H]$. Therefore, $(H \circ a \circ H]$ is a left hyperideal of H. In a similar way, we can prove that $(H \circ a \circ H]$ is a right hyperideal of H. Hence, $(H \circ a \circ H]$ is a hyperideal of H.

Conversely, let I be a hyperideal of H and $a \in I$. Then,

$$H = (H \circ a \circ H] \subseteq (H \circ I \circ H] \subseteq I.$$

This shows that H is simple.

Theorem 4.5. Let (H, \circ, \leq) be an intra-regular ordered semihypergroup. Then, H is a simple ordered semihypergroup.

Proof. Let $a \in H$. Then $a \leq x \circ a^2 \circ y = (x \circ a) \circ a \circ y$ for some $x, y \in H$. This follows that $a \in (H \circ a \circ H]$. By Lemma 4.4, H is simple.

Theorem 4.6. Let (H, \circ, \leq) be an ordered semihypergroup. Then, H is a simple ordered semihypergroup if and only if every fuzzy interior hyperideal of H is a constant function.

Proof. Assume that H is a simple ordered semihypergroup. Let μ be a fuzzy interior hyperideal of H and $a, b \in H$. By Lemma 4.4, we have $H = (H \circ b \circ H]$. So, $a \in (H \circ b \circ H]$. Then there exist $x, y \in H$ such that $a \leq x \circ b \circ y$, i.e., there
exists \(e \in x \circ b \circ y \) such that \(a \leq e \). Since \(\mu \) is a fuzzy interior hyperideal of \(H \), we have \(\mu(a) \geq \mu(e) \) and \(\inf_{s \in x \circ b \circ y} \{ \mu(s) \} \geq \mu(b) \). Thus,
\[
\mu(a) \geq \mu(e) \geq \inf_{s \in x \circ b \circ y} \{ \mu(s) \} \geq \mu(b).
\]
Hence, \(\mu(a) \geq \mu(b) \). In a similar way, we can prove that \(\mu(b) \geq \mu(a) \). Therefore, \(\mu(a) = \mu(b) \).

Conversely, assume that every fuzzy interior hyperideal of \(H \) is a constant function. Let \(\mu \) be a fuzzy hyperideal of \(H \). By Theorem 3.4, \(\mu \) is a fuzzy interior hyperideal of \(H \). By assumption, \(\mu \) is a constant function. By Theorem 4.3, \(H \) is a simple ordered semihypergroup.

By Theorem 4.5 and Theorem 4.6, we have the following corollary.

Corollary 4.7. Let \((H, \circ, \leq)\) be an intra-regular ordered semihypergroup. Then, every fuzzy interior hyperideal of \(H \) is a constant function.

As a consequence of Theorem 4.3, Lemma 4.4 and Theorem 4.6, we present characterizations of a simple ordered semihypergroup as the following theorem.

Theorem 4.8. Let \((H, \circ, \leq)\) be an ordered semihypergroup. Then, the following statements are equivalent:

1. \(H \) is a simple ordered semihypergroup,
2. \(H = (H \circ a \circ H) \) for every \(a \in H \),
3. every fuzzy hyperideal of \(H \) is a constant function,
4. every fuzzy interior hyperideal of \(H \) is a constant function.

Acknowledgements. This work has been supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

References

Accepted: 11.05.2016