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1. Introduction

Fractional calculus goes back to the beginning of the theory of differential cal-
culus. Fractional calculus has become new mathematical method for solution of
diverse problems in mathematics, sciences and engineering as it is generalization
of classical calculus to derivatives and integrals of fractional non-integer order.
The applications of fractional calculus has just emerged in last two decades, due
to progress in the area of chaos that revealed subtle relationship with fractional
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calculus concepts. Apparently, mathematical models involving fractional order
derivatives has became a powerful and widely used tool for better modeling and
control of processes in many areas of science and engineering as it reflects study
of intrinsic dissipative processes that are complicated in nature, particularly for
systems where memory or hereditary properties plays a significant role. Large
amount of research oriented studies were developed concerning the applications of
fractional calculus in the field of physics. Fractional model for electrical circuits
such as RL, RC, RLC have already been proposed. Recently, Gómez et al. [3]
considered Caputo derivatives and Numerical Laplace transform to get the so-
lution of RL and RC circuits. Further, they also analysed RLC circuit in time
domain and found solution in terms of Mittag-Leffler function. Shah et. al [8]
has obtained analytic solution of RL electrical circuit described by a fractional
differential equation of the order 0 < α ≤ 1 and used the Laplace transform of
the fractional derivative in the Caputo sense. In order to stimulate more inte-
rest in subject and to show its utility, this paper is devoted to new and recent
application of fractional calculus i.e. RLC electrical circuit considering the se-
cond order fractional differential equation with parameters α ∈ (1, 2], β ∈ (0, 1]
and obtained analytic solution in terms of Mittag-Leffler function using integral
transform method.

2. Used integral transforms and special functions

Definition. In 1903, the Swedish mathematician Gósta Mittag-Leffler introduced
the function

Eα (z) =
∞∑

k=0

zk

Γ (αk + 1)
, α > 0.(1)

The Mittag-Leffler function in two parameters Eα,β (z) was introduced by Agarwal
[4] and reported by Goenflo et al. [6] in their book,

Eα,β (z) =
∞∑

k=0

zk

Γ (αk + β)
, α > 0, β > 0.(2)

Its k-th derivative is given by,

E
(k)
α,β (z) =

∞∑
j=0

(j + k)!zj

j!Γ (αj + αk + β)
, k = 0, 1, 2, 3, . . .(3)

The Mittag-Leffler type function [7] is defined by,

Ek (z, y; α, β) = zkα+β−1E
(k)
α,β (yzα) k = 0, 1, 2, 3, . . .(4)

Definition [1]. Let f(t) be an arbitrary function defined on the interval
0 ≤ t < ∞. Then,

F (s) = f̄(s) =

∫ ∞

0

e−stf (t) dt(5)
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is the Laplace transform of f(t), provided that the integral exists.
For existence of integral (5), the function f(t) must be piecewise continuous

and of exponential order α, original function f(t) can be restored from the Laplace
transform F (s) with the help of inverse Laplace transform,

f(t) = L−1{F (s); t} =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, c = Re(s).(6)

Definition. The Caputo’s definition of fractional derivative is given by

C
0 Dα

t f (t) =
1

Γ (n− α)

∫ t

0

fn (τ)

(t− τ)α−n+1dτ,(7)

where α ∈ R is order of fractional derivative, n − 1 < α ≤ n and n ∈ N =
{1, 2, 3, . . . }, fn (τ) = dn

dtn
f (τ) and Γ(.) is Euler Gamma function.

Laplace transform of fractional derivative [1], [7].

The Laplace transform of Caputo fractional derivative has the form

L{
C
0 Dp

t f (t)
}

= spF (s)−
n−1∑

k=0

sp−k−1f (k) (0) , (n− 1 < p ≤ n) .(8)

where f (k) is k-th order derivative.

Convolution theorem [1]. If L{f(t)} = f̄(s) and L{g(t)} = g(s), then

L{f (t) ∗ g (t)} = L{f (t)}L {g (t)} = f̄ (s) ḡ (s) ,(9)

or, equivalently,

L−1
{
f̄ (s) ḡ (s)

}
= f (t) ∗ g (t) ,(10)

where f(t) ∗ g(t) is called the convolution of f(t) and g(t), and is defined by the
integral

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ.(11)

The integral in (11) is often referred to as the convolution integral and is denoted
simply by (f ∗ g)(t).

Laplace transform of Mittag-Leffler function [7].

A two parameter function of Mittag-Leffler type is defined by series expansion,

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (α > 0, β > 0).(12)
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Laplace transform of Mittag-Leffler function is given by [7],

L
[
zkα+β−1E

(k)
α,β(±azα)

]
=

k! sα−β

(sα ∓ a)k+1
k = 0, 1, 2, 3, . . . .(13)

3. Mathematical model for RLC electrical circuit

The integrated process of translating real world problem into mathematical prob-
lem is termed as mathematical modeling. It includes mathematical concepts such
as function, variables, constants, inequality, etc. taken from different branches of
mathematics. Here, we formulate the model for electrical circuit which are widely
used in branch of physics and engineering sciences.

The oscillating electrical circuit in which resistor (R), inductor (L) and ca-
pacitor (C) are connected with voltage (E) is known as RLC circuit. There
are number of ways of connecting these elements across voltage supply, we con-
sider electrical circuit where these elements are connected in series with voltage
as shown in figure (1). Here, the capacitance (C), the inductance (L) and the
resistor (R) are considered as positive constants.

Figure 1: RLC Circuit

Nomenclature

E(t) – The voltage of the power source (measured in volts = V)
I(t) – The current in the circuit at time t (measured in amperes = A)

R – The resistance of the resistor (measured in ohms = V/A)
L – The inductance of the inductor (measured in henry = H )
C – The capacitance of the capacitor (measured in farads = F = C/V )

4. Formulation of fractional differential equation model and its solution

Considering the RLC circuit, the constitutive equations associated with three
elements, i.e., resistor, inductor and capacitor are:

• The voltage drop across inductor, i.e., UL(t) = d
dt

I(t).

• The voltage drop across resistor, i.e., UR(t) = RI(t).

• The voltage drop across capacitor, i.e., UC(t) = 1
C

∫ t

0
I(ξ)dξ.
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As per Kirchhoff’s voltage law, around any loop in a circuit, the voltage rises must
equal to the voltage drops. We have,

UL(t) + UR(t) + UC(t) = E(t),(14)

or

LI ′ + RI +
1

C

∫
Idt = E (t) .(15)

to get rid of integral, we differentiate (15) with respect to t, which yields non-
homogeneous second order ordinary differential equation,

LI ′′ + RI ′ +
1

C
I = E(t),(16)

In this paper, we develop model for RLC circuit in the form of fractional
differential equation as,

LDαI (t) + RDβI (t) +
1

C
I (t) = E (t) ,(17)

where DαI(t) = dαI
dtα

and DβI(t) = dβI
dtβ

, 1 < α ≤ 2, 0 < β ≤ 1, when lim
α→2

dαI
dtα

= d2I
dt2

and lim
β→1

dβI
dtβ

= dI
dt

.

Taking the Laplace transform on both sides of (17) by considering the initial
condition I(0) = A and I ′(0) = B, and further using (8), we get,

L{LDαI(t)}+ L{
R DβI(t)

}
+ L

{
1

C
I(t)

}
= L{E (t)} .

Using (8), we have,

(18)

L{sαI(s)−sα−1I(0)−sα−2I ′(0)}+R{sβI(s)−sβ−1I(0)}+
1

C
{I(s)}=E(s)

⇒ L
{
sαI (s)−sα−1A−sα−2B

}
+R

{
sβI (s)−sβ−1B

}
+

1

C
{I (s)}=E (s)

⇒ I (s) =
E (s){

Lsα+Rsβ + 1
C

} + LA
sα−1

{
Lsα + Rsβ + 1

C

}

+ LB
sα−2

{
Lsα + Rsβ + 1

C

} + RB
sβ−1

{
Lsα + Rsβ+ 1

C

}

Solution of (18) is obtained by taking inverse Laplace transform and using (4),
(13), we get,
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(19)

I (t) = C

∫ t

0

E (t− u)
∞∑

k=0

(−1)k

k!

1

(LC)k+1
Ek

(
u,
−R

L
; α− β, α + βk

)
du

+
∞∑

k=0

(−1)k

k!

ALC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 1

)

+
∞∑

k=0

(−1)k

k!

BLC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 2

)

+
∞∑

k=0

(−1)k

k!

RAC

(LC)k+1
Ek

(
t,−R

L
; α− β, β(k − 1) + α + 1

)
,

where 1 < α ≤ 2 and 0 < β ≤ 1 also α− β > 0.

Some cases for different values of E(t) are discussed below.

Case I. When constant electromotive force is applied, i.e., E (t) = E0, then (19)
takes the following form,

(20)

I (t) = CE0

∫ t

0

∞∑

k=0

(−1)k

k!

1

(LC)k+1
Ek

(
u,−R

L
; α− β, α + βk

)
du

+
∞∑

k=0

(−1)k

k!

ALC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 1

)

+
∞∑

k=0

(−1)k

k!

BLC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 2

)

+
∞∑

k=0

(−1)k

k!

RAC

(LC)k+1
Ek

(
t,−R

L
; α− β, β(k − 1) + α + 1

)
.

Case II. When periodic electromotive force is applied, i.e., E (t) = E0 cos ωt,
where E0 and ω are constants, then (19) yields,

(21)

I (t) = CE0

∫ t

0

cos ω(t− u)
∞∑

k=0

(−1)k

k!

1

(LC)k+1
Ek

(
u,−R

L
; α−β, α+βk

)
du

+
∞∑

k=0

(−1)k

k!

ALC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 1

)

+
∞∑

k=0

(−1)k

k!

BLC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 2

)

+
∞∑

k=0

(−1)k

k!

RAC

(LC)k+1
Ek

(
t,−R

L
; α− β, β(k − 1) + α + 1

)
.

Case III. When periodic electromotive force is applied, i.e. E (t) = E0 sin ωt,
where E0 and ω are constants, then (19) reduces to



analytic solution for rlc circuit of non-integer order 825

(22)

I (t) = CE0

∫ t

0

sin ω(t− u)
∞∑

k=0

(−1)k

k!

1

(LC)k+1
Ek

(
u,−R

L
; α− β, α+βk

)
du

+
∞∑

k=0

(−1)k

k!

ALC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 1

)

+
∞∑

k=0

(−1)k

k!

BLC

(LC)k+1
Ek

(
t,−R

L
; α− β, βk + 2

)

+
∞∑

k=0

(−1)k

k!

RAC

(LC)k+1
Ek

(
t,−R

L
; α− β, β(k − 1) + α + 1

)
.

Some special cases of Equation (17). When we take β = 1, (17) reduces to
the form,

L DαI(t) + R
dI

dt
+

1

C
I(t) = E (t) , 1 < α ≤ 2.(23)

On further simplification yields,

(24)

I (t) = C

∫ t

0

E (t− u)
∞∑

k=0

(−1)k

k!

1

(LC)k+1
Ek

(
u,−R

L
; α− 1, α + k

)
du

+
∞∑

k=0

(−1)k

k!
ALC

(LC)k+1 Ek

(
t,−R

L
; α− 1, k + 1

)

+
∞∑

k=0

(−1)k

k!

BLC

(LC)k+1
Ek

(
t,−R

L
; α− 1, k + 2

)

+
∞∑

k=0

(−1)k

k!

RAC

(LC)k+1
Ek

(
t,−R

L
; α− 1, α + k

)
,

where 1 < α ≤ 2 ⇒ α− 1 > 0.
Similarly, on setting α = 2 in (17) with 1 < α ≤ 2, 0 < β ≤ 1, this reduces

to following form,

L
d2I

dt2
+ R DβI(t) +

1

C
I(t) = E (t) .(25)

Solution of this equation can also be obtained by aforesaid method, which gives,

(26)

I (t) = C

∫ t

0

E (t−u)
∞∑

k=0

(−1)k

k!

1

(LC)k+1
Ek

(
u,−R

L
; 2− β, 2+βk

)
du

+
∞∑

k=0

(−1)k

k!

ALC

(LC)k+1
Ek

(
t,−R

L
; 2− β, βk + 1

)

+
∞∑

k=0

(−1)k

k!

BLC

(LC)k+1
Ek

(
t,−R

L
; 2− β, 2 + βk

)

+
∞∑

k=0

(−1)k

k!

RAC

(LC)k+1
Ek

(
t,−R

L
; 2− β, β(k − 1) + 3

)
.
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4. Conclusion

Fractional calculus has been recognized as advantageous mathematical tool in
modeling and control of dynamical systems. We have obtained the analytic so-
lution of the second order fractional differential equation associated with a RLC
electrical circuit in time domain using Caputo derivative in terms of Mittag-Leffler
type function which can be implemented for computational study of behaviour of
current.
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