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1. Introduction

Let (X, p) be a metric space and a = p(z,y), b = p(y,z) and ¢ = p(z,z) be
the sides of Azyz with vertices x,y and z in the plane. Intuitively, the area of
Axyz defines a d-metric d on X, while the perimeter of Azyz defines a G-metric
G on X. The pair (X,d) then defines a 2-metric space and (X, ), a G-metric
space. These two notions were introduced by Gahler [8] and Mustafa and Sims
[23] respectively as natural generalizations of a metric.

To begin with, we have

LCorresponding author.
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Definition 1.1. Let X be a nonempty set and d : X x X x X — [0, 00) such that

(2m1) Given a pair of distinct elements z,y € X, there exists a z € X such
that d(z,y,2) > 0, and d(z,y, z) = 0 whenever at least two of z,y and
z are equal in X,

(2m2) d(z,y,z) = d(z,2,y) = d(y,z,2) = d(z,2,y) = d(y, 2,2) = d(z,y,2)
for all z,y,2z € X,

(2m3) d(z,y,z) < d(z,y,w) + d(z,w, z) + d(w,y, z) for all x,y,z,w € X.

Then d is called a 2-metric on X and the pair (X, d), a 2-metric space, and (2m2)
is usually known as the aziom of symmetry under a permutation on x,y and z. In
view of the fact that the area of a triangle face of a tetrahedron does not exceed
the sum of the areas of the remaining faces, (2m3) is referred to as the tetrahedron
inequality.

Definition 1.2. The topology induced by a 2-metric consists of all open spheres
with two centres of the form B, (z,y) = {z € X : G(z,y,2) < r,r > 0}, and is
called a 2-metric topology.

Remark 1.1. Given any metric space which consists of more than two points,
there always exists a 2-metric compatible with the topology of the space. But the
converse is not true. That is one can find a 2-metric space which does not have a
countable basis associated with one of its arguments [8].

Remark 1.2. In a metric space (X, p), the metric p is always a continuous func-
tion of both z and y. In a 2-metric space (X, d), d may not be continuous in all
the three variables x, y and z, though it is continuous function in any one of them.
A 2-metric d is said to be continuous [24] if it is continuous in any two and hence
in all of x, y and z.

Definition 1.3. A sequence (z,)2%, C X is said be to 2-Cauchy if d(z,, Tpir, 2)
— 0 as n — oo for each integer k£ > 1 and all z € X.

Definition 1.4. A sequence (z,)2%; C X is said to be 2-convergent with limit
p € X if d(z,,p,2) — 0 as n — oo for all z € X and is denoted by x,, — p as
n — oo.

Definition 1.5. A 2-metric space X is said to be complete if every 2-Cauchy
sequence in it is 2-convergent with limit in it [24].

Remark 1.3. It is well-known that every convergent sequence is Cauchy in a
metric space. But a 2-convergent sequence may fail to be 2-Cauchy, as shown in
[24]. However, every 2-convergent sequence is 2-Cauchy whenever the 2-metric d
is continuous.

In view of Remarks 1.1-1.3, it is appropriate to state that there is no relation
between a metric and 2-metric, unlike the claim by Gahler [8] that 2-metric space
is a natural generalization of a metric. For more about fixed point theorems in
2-metric spaces, one can refer to [10], [15], [16], [25], [26], [29], [31], [32], [34]
and [35].
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Definition 1.6. Let X be a nonempty set and G : X x X x X — R such that

(Gl) G(z,y,2z) >0 for all z,y,z € X with G(z,y,2) =0ifx =y = z,

(G2) G(z,x,y) >0 for all x,y € X with = # v,

(G3) G(z,x,y) < G(x,y,z) for all x,y,z € X with z # y,

(G4) G(z,y,2) = G(z,2,y) = Gy, x,2) = G(z,2,y) = Gy, 2, %) = G(z,y,x)

for all x,y,z € X
(Gh) G(z,y,2) < G(z,w,w) + G(w,y, z) for all x,y,z,w € X

Then the pair (X, G) is called a G-metric space with G-metric G on X. Axioms
(G4) and (Gb) are referred to as the symmetry and the rectangle inequality (of G)
respectively.

Given a G-metric space (X, G), define
(1.1) pc(z,y) = G(x,y,y) + G(z,z,y) for all z,y,z € X.

Then it is seen in [23] that pg is a metric on X, and that the family of all G-balls
{Bg(z,r) : x € X,r > 0} is the base topology, called the G-metric topology 7(G)
on X, where Bg(z,7) ={y € X : G(z,y,y) < r}. Further, it was shown that the
G-metric topology coincides with the metric topology induced by the metric pg,
which allows us to readily transform many concepts from metric spaces into the
setting of G-metric space.

Definition 1.7. A sequence (z,)°, in a G-metric space (X,G) is said to be
G-convergent with limit p € X if it converges to p in the G-metric topology, 7(G).

It is also known from [23] that G(z,y, z) is jointly continuous in all the three
variables x,y and z.

Definition 1.8. A sequence (x,)2%; in a G-metric space (X, G) is said to be G-
Cauchy if for every € > 0 there is a positive integer N such that G(z,, T, z,) < €
for all I,m,n > N.

By Corollary 1 of Proposition 9 of [23], it follows that every G-convergent
sequence in a G-metric space (X, @) is G-Cauchy.

Definition 1.9. A G-metric space (X, G) is said to be G-complete (or complete)
if every G-Cauchy sequence in X converges in it.

Definition 1.10. [The authors, [28]] A fixed point p of f on a G-metric space
(X, G) is a G-contractive fixed point of it if the orbital sequence

Of(z) =z, fo, ..., [z, ...

at each x € X converges to p.
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_ 0 ifr=y==z
Example 1.1. Let X = [0, 00) with G(z,y, 2) = _
max{z,y,z} otherwise.

0 if0§x<%,

Define fzr = { for all x € X, where 0 < ¢ < 1. Then,

gr otherwise,

we see that 0 is the unique fixed point of f and for each x € X, the f-orbit
Os(z) = z,qz,¢*x, ..., q", z, ... converges to 0. That is, 0 is a G-contractive fixed
point of f.

An extensive research has been done in recent years in G-metric spaces. To
mention a few, we have Abbas and Rhoades [1], Aydi et al [4], Choudary et al
[5], Jleli & Samet [11], Karapinar & Paul [12], Meenakshi et al [17], Mahanta &
Mohanta [18], Mustafa [19], Mustafa et al [22], Shatanawi [30] and others cited in
references.

Many fixed point theorems established in the literature of 2-metric and G-
metric structures followed the usual iterative procedure to obtain a fixed point.
For the first time, the authors presented an elegant proofs of some fixed point
theorems including the contraction mapping theorem in 2-metric space and G-
metric space (See [27], [28]). In this paper, we present elegant proofs of some
fixed point theorems in 2-metric space and G-metric space. In this sequel, the
unique fixed points obtained are contractive fixed points in these spaces.

3. Main results

We begin with the infimum property of real numbers, as stated below:
Lemma 3.1. Let S C R be nonempty and bounded below. Then o = inf S exists.
An immediate consequence of Lemma 3.1 is:

Lemma 3.2. Let « be the infimum of S C R. Then there exists a sequence (p,)>
m S with lim z,, = a.

n—oo

We have

Theorem 3.1. Let f be a self-map on a 2-metric space (X,d) such that

(3.1) d(fz, fy,2) < ad(zx, fz,2z) + Bd(y, fy, z) +vd(x,y, 2) for all x,y,z € X,

where o, B and v are nonnegative real numbers with at least one of them positive
and o + 0+ v < 1. If X is 2-complete, then f will have a unique fized point p,
which will also be a 2-contractive fized point of f.

Proof. Note that if « = f = 7 = 0, then from (3.1) with y = fz, we get
d(fx, f?x,z) <0 for all z € X so that f?x = fx or that each fx is a fixed point
of f. Given x € X with fx # x, by (2m1), there exists a point z € X such that
d(z, fx,z) > 0. Therefore, we define S = {d(z, fx,z) > 0:x,z € X}. In view of
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Lemma 3.1, inf S = a > 0 exists. If possible suppose that a > 0. Then (3.1) with
y = fx gives

d(fz, f*w,z) < ad(z, fr,2) + fd(fz, fPe, 2) +d(z, fz,2)

r (1 —B)d(fx, f2x,2) < (o +7)d(x, fz, 2) so that d(fx, f?z,2) < cd(z, fx,2),
where ¢ = % Now a+ [+~ < 1 implies that ¢ < 1 so that from (3.1), it follows

that d(fx, f?z,2) < a. Since d(fx, f?z,z) € S, this shows that a cannot be a
lower bound of S, which is a contradiction. Therefore, inf S = a = 0.

Hence, by Lemma 3.2, we can choose a sequence w1, o, ..., T,,... of points
in X such that
(3.2) lim d(x,, fr,,z) =0 for each z € X.

n,—00

To prove that (z,,)5°, is 2-Cauchy, in this case, we use (2m2), (2m3) and (3.1)
repeatedly to get

(Tny Tty fn) + d(Tg, fTn, 2) + d(fXn, Tk, 2)
(T [T, Tar) + ATy [0, 2) + [d( 20, oy [Tnak)
+d(fn, fTnir, 2) + d(fTnik: Tntr, 2)]

= d(Tn, fTn, Tryr) + d(@n, fTn, 2) + d(fTn, fTnik, Tnyr)
+d(fxn, frnik, 2) + Ad(Tnik, [Tk, 2)

< d(p, [T, Tpyk) + d(Tp, fTn, 2)

+ad(n, frn, k) + BAd(Tniks fTniks Tnik)
+YA( Ty Trs ke, o)

+ad(zy, fr,, 2) + Bd(Tniks fnik, 2)
(X, Ttk 2)] + A Tngkes [Tk, 2)]

d(l‘n, Tntk, Z) S d
<d

so that for all n,k > 1 and all z € X, we have

(1 = y)d(xn, Tpik, 2) < d(Tn, [T, Tpik) + Bd(Tnik, [Tnik, Tnok)
V[T, T, Tpare) }
+ald(x,, fr,, 2) + Bd(Tnik, [Tk, 2)
ATk, [Tnaks 2)-

Proceeding the limit as n — oo in this and then using (3.2), we see that

(1 —7) lim d(xn, Tpik, 2) =0or lim d(x,, Tpig, 2) =0

n,—00 n,—00

for all £ > 1 and all z € X, proving that (z,) 52, is a Cauchy sequence in X.

n=1
Since X is 2-complete, (z,,) °°, is 2-convergent with

(3.3) lim d(z,,p,z) =p forall z € X.

n,—00
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To prove that fp = p, again by (2m2) and (2m3), (3.1), we see that

o, p,xn)+d(fp, 20, 2)+d(z,,p, 2)
s Dy [D)+A(fD, T, 2)+d(20, D, 2)

d(fp,p, ) < d( )
d( )

< d(zn, p, fp)HA(fP, T, f20)+d(fD, [0, 2)+d(f2n, 20, 2)|+d(20, p, 2)
d( )
d( )

8

T, Dy [D)HA(f 0, [0, ) +d(f2n, [0, 2)+d(20, f2n, 2)+d(xn, p, 2)
T, D, [D)+|ad(xy, fan, x,)+0d(p, [, 20)+yd(T0, P, )]
+ad(@n, frn, 2)+B8d(p, fp, 2)+yd(zs, p, 2)]
+d(zp, fr,, 2)+d(x,, p, 2).

As n — oo, this together with (3.3), we obtain that d(fp,p,z) <0 for all z € X
or fp=p. That is p is a fixed point of f.

Uniqueness. Let ¢ be another fixed point of f so thatfq = ¢. Then, from (3.1),
we get

d(p,q,z = d(fp, fq,z) < Bld(p, fp,2z) +d(q, fq,2)] or (1—a—B—7)d(p,q,2) <0

for all z € X and hence p = q. That is, the fixed point of f is unique.
Further, all the f-orbits converge to the fixed point p.
In fact, taking y = p = fp in (3.1) and simplifying, it follows that

I
IS
—~
—~
3

8
—
S

=
&

d(f"z,p,2)

IA A

I
Q
—
e
3
L
8
—
S
8
I\

Il
Q
—
s
3
L
8
—
S
8
N

or

) d(f"'a, [, z2) + <L> d(f"'x, [z, p).

(3.4) d(f"x,p,z) < ( et

l—n
Again by (3.1), we have
d(f"t, fre,2) < ad(f*a, [P 2) + BA(f T e, fra, 2)yd(F P f T e 2)

or
o+

1-p

d(f"'w, frr,2) < ( ) d(f" 2w, [, 2),

which, by induction gives

(3.5) d(f" ', frx,2) < ( )"— d(z, fz,z) for all z € X.
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In particular,

n—1
(3.6) arorap) < () die o)
Inserting (3.5) and (3.6) in (3.4), it follows that

n—1
d(frz,p,z) < <‘i‘fz) (‘fj;) d(z, f, 2)

n—1

+(1j7) (?jg) d(z, fx,p) for all z € X.
Then, applying the limit as n — oo and using the choice of &+ 4~ < 1 in this,
finally we get

d(f"z,p,z) — 0 for all z,z € X,

that is p is a 2-contractive fixed point of f. .

Writing v = 0 and « = 8 = k in Theorem (3.1), we get Kannan’s type result
as follows:

Corollary 3.1. Let f be a self-map on a 2-metric space (X,d) such that
(3.7) d(fx, fy,z) < kld(z, fx,z) + d(y, fy, z)] for all z,y,z € X
where 0 < k < % If X is 2-complete, then f will have a unique fixed point.

From this definition of a G-metric space, it immediately follows that

(3.8) If x,y € X are such that G(x,y,y) = 0, then z = y.
and that
(3.9) G(r,y,y) < 2G(x,z,y) for all x,y € X.

Lemma 3.3. [Mustafa and Sims [23]] The following statements are equivalent in
a G-metric space (X,G):

(a) (x,)22, C X is G-convergent with limit p € X,

n=1

(b) lim G(z,,z,,p) =0,

(¢) lim G(x,,p,p) =0.

n—oo

The authors [28] presented an analytical proof of the following result of
Mustafa et al [21]:

Theorem 3.2. Suppose that (X, G) is a complete G-metric space and f, a self-map
on X satisfying
G(fz, fy, fz) < aG(z, fz, fx) + bG(y, fy, fy) + cG(z, [z [z)

(3.10)
+eG(x,y,2) forall z,y,z € X,

where a, b, ¢ and e are nonnegative real numbers with a +b+ c+e < 1. Then, f
will have a unique fixed point p and f is continuous at p.
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Then, writing a = b = c = q and e = 0 in Theorem 3.2, we get

Corollary 3.2. Suppose that (X,G) is a complete G-metric space and f, a self-
map on X satisfying

G(fx, fy, fy) < qlG(z, fo, fx) + Gy, fy, fy) + G(z, fz, fz)]

(3.11)
forall z,y,z € X,

where 0 < g < % Then f wnll have a unique fixed point p and f is continuous at p.
Recently, Vats et al [33] established the following theorem:

Theorem 3.3. Suppose that (X, G) is a complete G-metric space and f, a self-map
on X satisfying

G(fz, [y, fz) <k max{G(z, fz, fx), G(z, fy, [y),
G(z, fz, f2),G(y. fy. fy). Gy, fz, fx),
Gy, [z [2),G(z, fz [2),G(z, fz, fx),
G(z, fy, fy)} for all z,y,z € X,

(3.12)

where 0 < k < % Then f will have a unique fixed point p and f is continuous at p.

It may be noted that condition (3.12) is partially weaker than (3.11). In fact,
since the arithmetic average of three real numbers cannot exceed their maximum,
(3.11) can be written as

G(fz. fy, fy) < 3¢ | S0 J0) + Gy, J;y,fy) + Gz, fz, f2)

< K max{G(z, fz, fz),G(y, fy, fy), G(2, [z, [2)}
< K max{G(z, fz, fx),G(x, fy, fy),

G(z, [z, [2), Gy, [y, [y), Gy, fx, fz),

Gy, [z f2),G(z, [z [2),G(z fx, fr), G(z, fy, [y)},
which is (3.12) with 0 < &’ = 3¢ < 1. In other words, under the restricted range

[0,1) for &/, (3.11) implies (3.12). Thus, Theorem 3.3 is a partial generalization
of Theorem 3.2.

(3.13)

Remark 3.4. If £ = 0, then with z = y = fz, (3.12) or (3.11) gives
G(fx, f2x, f?x) = 0 or f?x = fx for each x € X. That is, every fz is a fixed
point of f or the fixed point is not unique. Therefore, the choice of £ = 0 is
excluded n this paper.

We shall give an analytical proof of Theorem 3.3, which does not need itera-
tions to obtain a fixed point p of f. Then, we shall establish that p is, in fact, a
G-contractive fixed point of f.
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Proof. Let S = {G(x, fz, fr) : x € X}. Then, S being a nonempty set of
nonnegative numbers, which is bounded below, has an infimum, say a > 0, by
Lemma 3.1.

If possible, let @ > 0. From (3.12) with y = fx and z = fz, we have

which implies
G(fx, [z, fPr) < kmax{G(x, fz, fz),G(z, f*z, [*2), G(fz, [*z, f*2)}.
But by the rectangle inequality (G5),
G(z, f?x, f*x) < G(fx, f2x, f22) + G(x, fu, fz).
Using this in the previous inequality, we get

G(fx, fz, f2x) < kG (fr, fPx, fP2) + G(x, f, f2)]

or

(3.14) G(fx, f2x, f2) < (%) G(z, fx, fx) for all z € X.

Since 0 < k < %, we see that ﬂ < 1. So, from (3.14), it would follow that
G(fx, f2x, f>x) < a, where G(fz, f>z, f2x) € S. This implies that a cannot be a
lower bound of S, contradicting the choice of a.

Therefore, inf S = a = 0.

By Lemma 3.2, we can choose the points z1, s, ..., x,, ... in X such that
G(zp, frn, fr,) € Sforn=1,23,...

and

(3.15) lim G(z,, fr,, fr,) =0.

n—oo

Now, repeatedly using the rectangle inequality (G5) and (3.12), we see that

G(xp, fon, fon) + G(frn, Tm, Tm)
G(@n, fn, frn) + [G(frn, fm, fom) + G(fTm, Tm, Tm)]
G(Tn, fn, fn) + G(f2n, fm, fom) + 2G(Tm, [Tm, f2m)

G(xna ‘/ETNA xm)

IANIAIA
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Now
G(frn, frm, frm) < kmax{G(zn, frn, fxn), G(@n, fTm, [Tm), G(Tn, [Tm, fTm),
G(@m, [T, f2m), G(@m, [T, f20), G(@m, [Tm, fom),
G(@ms [Ty fm), G(@my [Tn, [20), G(@my [T, fTm)}
= kmax {G(xn, fTn, fr,), G(Zn, fTm, fTm),
G(@m, [Tm, f2m), G(@m, fTn, fru)}
< kmax{G(xy, [Ty, fr,) + G(Tm, Tpn, Tp),
G(Tmy fTm, fxm) + G(Xn, T, ) }
< kmax{G(xy, fTn, fr,) + 2G(Tpn, Tm, Tm)],
G(Tm, fTm, fxm) + G(Xn, T, Tm) }
= k|G (zpn, frn, fr,) + G(@m, fTm, frm)] + 2G (2, T, T

or

1+k

G(Tp, Ty T) < <1 — 2k:) G(zp, frn, fr,) + ( 24+ k

1—2k

> G(xm, [T, fTm).

Employing the limit as m,n — oo in this and using (3.15), we get

lim G(x,, Tm, Tm) =0,

proving that (x,)>, is G-Cauchy.
Since X is GG-complete, we can find a point p € X such that
(3.16) lim z, = p.

n—oo

Again using (G5) and in (3.12), we have

(3.9)
(3.17) G(p, [p. [p) < G(p, fan, fxn) + G(fn, fp, fD)
' < G(p, Ty, 2n) + G(2n, fan, fo,)] + G(fxn, fp, fD).

Also
G(fn, fp, fp) < kmax{G(zn, frn, frn), G(2n, 0, fD), G(xn, f0, D),
G(p, fp, fp). G(p, frn, f2n), G(p, [, fD),
G(p, fp. fp): G(p, frn, f2n), G(p, [, fP)}
(3.18) = kmax{G(zn, [Ty, f2n), G(zn, [p, fD),
G, fp: fp), G(p, fn, frn)}
< kmax{G(zn, fn, f2n), G(zn, [P, [P), G(p, [, D),
G(zp, frn, fr,) + G(p,Tn, Tn)}-
From (3.17) and (3.18), we get
G(p, fp, [p) < G(p,p, 2n) + G(T0, f2n, f7,)

+ kmax {G(z,, frn, fr,),G(xa, fo, [D), G(p, [0, [D),
G, [Tn, f2n) + G(D, T, 20) }-
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Proceeding the limit as n — oo in this, and then using (3.15) and (3.16),

G(p, fp, fp) < [0+ 0+ kmax{0,G(p, fp, fp), G(p, fp, fp), [0+ 0]}]

which implies that (1 — 8)d(p, fp, fp) <0 or fp=p.
That is, p is a fixed point of f.

Uniqueness. Suppose ¢ is another fixed point of f so that f¢g = ¢. Then from
(3.12) with x = p and y = z = ¢, we have

G(p.q.9) = G(fp, 4. fa)
< kmax{G(p, fp, [p), G(p, fq, f2), G(p, [q, [),
G(q, fq, f9), G(q, fp, [p), G(q, fq, fa),
G(q, fa, f4),G(q, fp, [p),G(q, fa, fa)}
= kmax{0,G(p,q,9),G(p,4,9),0,G(q,p,p),0,0,G(q,p, p),0}

= kmax{G(p,q,q),G(¢,p,p)}
< 2kG(p,q,q),

which implies that (1 — 2k)G(p, q,q) < 0 or p = ¢. That is p is unique fixed point
of f. The G-continuity of f at p is obtained as in [33]. .

Remark 3.5. An exciting feature of Theorem 3.3 is that p is a G-contractive
fixed point of f, whenever 0 < k < % In fact, we write y = z = p in (3.12) and
then use (G5) to obtain

G(frx, fp, fp) =< kmax {G(f" ', fx, fx), G(f* "z, fp, fp), G(f" =, fp, fp),
G(p, fp, fp),d(p, f* ', f*~x), G(p, fp, p),
G(p, fp, fp), G(p, f* ‘o, '), G(p, fp, fp)}
= kmax{G(f* "z, fz, f"z), G(f"'z,p,p),0,
G(p, f"z, frz),0,G(p, "z, frz)}
= kmax{G(f" 'z, [z, f*2), G(f"'2,p,p),G(p, "z, frx)}
= k{Gp, frx, frx) + G(f" 2, p,p)}
< k{2G(f"x,p,p) + G(f"'z,p,p)}.
or
G(f"z,p,p) < c-G(f" 'z,p,p),
k

where —— = ¢. By induction, we have

1-2k
G(f"x,p.p) < "G(fz,p,p),

which as n — oo implies that G(f"x, p, p) — 0 for each x € X, since ¢ < 1. Thus
p is a G-contractive fixed point of f.

Taking z = y in Theorem 3.3, we have
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Corollary 3.3. Suppose that (X,G) is a complete G-metric space and f, a self-
map on X satisfying

G(fz, fy, fy) < k max{G(z, fx, fz),G(z, fy, fy),

(3.19)
Gy, fy, fy), Gy, fx, fx)} for all z,y,z € X,

where 0 < k < % Then f will have a unique fized point p and f is continuous at p.
Proof. We set
(3.20) pc(z,y) = max{(G(z,y,y), G(z,z,y)} for all z,y € X,

where the exchange of x and y yields the symmetry of ps. It can be seen that pg
defines a metric on X.

Now, (3.19) can be written as

G(fz, fy, [y)

(3.21) <2k maX{G(x’ fz, fx);_ Gz, z, f:C)’ G(:C,fy,fy);_ G(x,x, fy)7

Gy, fr, fx) + Gy, y, fx) Gy, fy, fy) + Gy, y, fy) }
2 ’ 2 ‘

Interchanging the roles of z and y in this, we get

G(fy, fz, fr)
(3.22) <2k maX{G(y, fy,fy);L G(y,v, fy)’ G(y,f$,fx)2—|— Gy, v, fx)’
G(z, fy, fy) + G(z, z, fy) G(z, fx, fxr) + G(zx, z, fx)}
2 ’ 5 .

Taking the maximum of (3.21) and (3.22), and then using (3.20), it follows that

pa(z,y) < 2kmax { Gl fo, fx); Gla,@, fx) Gl [y, fy)2+ Gl fy)

Gly, fx, f2) + Gy, y, f2) Gy, [y, fy) + Gy, 9, Y) }
2 ’ 2
< 2k max {PG(l’y fl’),pg(.’l?, fy)va(yv fx)va(y7 fy>} for all xr,y € X7

which is a special case of Ciric’s quasi-contraction, and a unique fixed point follows
from [7] for complete metric space. In general, if any two of the three variables in
the the contraction type condition (3.12) are the same, a unique fixed point can
be obtained from Ciric’s result in a complete metric space [7]. ]

Writing z = fy in Theorem 3.3, we have
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Corollary 3.4. Suppose that (X,G) is a complete G-metric space and f, a self-
map on X satisfying

G(fx, fy, f?y) < k max{G(z, fz, fx),G(z, fy, fy),

G(z, f>y, f*y), Gy, fy, fy),G(y, fz, fz),

Gy, f*y, [*y), G(fy, f*y, *y), G(fy, fz, f2)},
forall z,y,z € X,

(3.23)

where 0 < k < % Then f will have a unique fized point p and f is continuous at p.

Remark 3.6. Write

(3.24)  pg(z,y) = max{(G(z, fz, f*y), Gy, fy, f*x)} for all z,y € X.

It is interesting to remark that x = y does not imply that pg(z,y) = 0. In fact,
from (3.24) with y = z, we get pg(x,x) = G(x, fz, f2r), which will be positive
for each x € X with fo # x. That is, pg is not a metric on X. In other words,
Corollary 3.4 cannot be characterized in terms of metric space to determine a
fixed point of f.

With an altered form of the condition (3.12), we now prove

Theorem 3.4. Suppose that (X, G) is a complete G-metric space and f, a self-map
on X satisfying

G(fz, fy, fz) <k max{G(z,z, fx),G(x,x, fy), Gz, z, f2),
(3.25) Gy, fy), Gy, y, fz),G(y,y, f2),G(z, 2, f2),
G(z,z, fx),G(z, 2, fy)} for all z,y,z € X,

where 0 < k < % Then f will have a unique fixed point p and f is continuous at
p. Further if 0 < k < 1/3, then p will be its G-contractive fixed point.

Proof. Let a > 0 be the infimum of the set
S ={G(z,z, fr):z € X},

in view of Lemma 3.1.
If possible, let a > 0. From (3.25) with y = z and z = fx, we have

G(fz, fx, f>r) <k max {G(x,x, fz),G(z,x, fr),G(z, x, f*2),
G(x,z, fr), Gz, z, fr), Gz, z, f*x),G(fx, fr, fx),
G(fx, fz, fx),G(z, fz, fx)},

which implies

G(fx, fx, f2r) < kmax{G(z,z, fr),G(z, x, f*x),G(fz, fr, fz)}.
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But, by rectangle inequality,
G(z,x, f2r) < G(x,x, fr) + G(fx, fz, fx).
Using this in the previous inequality,
G(fz, fx, fx) < k[G(x,z, fr) + G(fz, fr, f>z)] for all 7 € X.

or

(3.26) d(fz, fz, f2r) < <£) G(z,z, fx) for all z € X.

Since £ < 1, from (3.26), it would follow that G(fz, fz, f*z) < a for some

x € X. This contradicts the choice of a. Therefore, a = inf S = 0.
By Lemma 3.2, we can choose the points 1, xs, ..., x,, ... in X such that

G(zp, Tp, fr,) € S forn=1,23, ..

and
(3.27) lim G(xp,, xy, fz,) = 0.

n—oo

Now repeatedly using the rectangle inequality (G5) and (3.25), we see that

G(Tm, Ty ) < G( Ty [, fTm) + G(fTm, fTm, Tn)
< G(@m, T f2m) + [G(fTm, fTm, f2n)
(3.28) +G(frn, 2, Tn)]
< G(@m; T, fom) + G(fam, fTm, [2n)
+2G (2, fn, fx,).

Now,

G(frm, frm, fr,) < kmax{G(zm, Tm, fTm), G(Tm, T, [Tm),
G(Tmy Ty f20), G(Tny Ty [T0), G( Xy Ty [Tm),
G(Tm, Ty f20), G(Tp, Ty, f2),
G(Tp, T,y frm), G(Tp, T, fm)}

which can be written as

G(fTm, [Tm, frn) < kmax{G(Tm, Tm, fTm), G(Tm, T, fT0),

G(Tn, Tn, frn), G(Tp, T, frm)}

< kmax{[G(Tm, Tm, Tn) + G(Tp, Tn, f,)],
(G (2, Ty ) + G(Ty Ty f2m)]}

< kmax{[G(Zm, Tm, Tn) + G(Xp, Tp, f1,)],
2G (2, T, Tn) + G( Ty Trns fTm)]}

= k[2G (2, Ty Tn) + G20, Ty )]
+G (T, Ty fm)]-

(3.29)
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Substituting (3.29) in (3.28), we get
G(@m, Ty Tn) < G(@m, Ty fT) + 2G (T, T, f2)
FRI2G (s T ) + G (s T Fm) + G T, F0)]
or

1+ Ek
1 -2k

2+k
1 -2k

G s ) < ( )Gum,xm,fxm) + ( ) )

Employing the limit as m,n — oo in this and using (3.27), we get

lim G(zp,, Tm,x,) =0,

n,Mm—00

o0
n—

proving that (z,,)°°; is G-Cauchy.

Since X is G-complete, we can find a point p € X such that

(3.30) lim z, = p.

n—oo

Again, by repeated application of rectangle inequality (G5), from (G4) and (3.25),
we have

G(p.p, fp)

[G(p,p, #n) + G(@n, Tn, fn)] + G(fTn, fon, [P).

Now,

G(fxn, frn, fp) < kmax{G(z,,,Tn, fr,), G(Tn,, Tn, fT,),
G(@ns, T, [P), G(Tn, , T, fT0),
G(@n,, T, [2n), G(Tn, , Tn, /D),
G(p,p, p), G(p,p, frn), G(p, ps frn)}
= kmax{G(z,, Tn, fr,), G(Tpn, T, fD),
G(p,p, [p), G(p.p, fzn)}
< kmax{G(zn, Tn, fT), G(Tn, Tn, fP), G(p, p, D),
[G(p, D, 20) + G(@n, Tn, f2n)]}-

Substituting (3.32) in (3.31), we get

G(p,p, [p) < G(p,p,wn) + G(2, ¥, f,) + kmax {G(wn, fn, f1,),
G<xn7 :Cna fp)7 G(p7p7 fp>7 [G(papa xn) + G(In, .Z’n, fl'n)}}

Proceeding the limit as n — oo in this, we get

G(p,p, fp) < [0+ 0+ kmax{0,G(p,p, fr), G(p,p, fp), [0+ 0]}],

which implies that

(3.32)

(1=Fk)G(p,p, fp) <0or fp=np.
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That is, p is a fixed point of f. It can be easily established as in the proof of
Theorem 3.3 and Remark 3.5 that the fixed point is unique, which will also be a
G-contractive fixed point of f. u

Restricting the the terms in 3.12, we have

Corollary 3.5. Let (X, G) is a complete G-metric space satisfying,

G(fz, fy, fz) S k[G(z, fy, fy) + Gy, [z f2) + G(z, fz, fx)],

(3.33)
forall x,y,z € X.

Then f has a unique fixed point.
While, restricting the terms in (3.25), we have

Corollary 3.6. Let (X, G) is a complete G-metric space satisfying,

G(fx, fy, fz) < k[G(z, 2, fy) + G(y,y, f2) + G(2, 2, fx)],

(3.34)
for all x,y,z € X.

Then f has a unique fixed point.
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