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Abstract. The purpose of this paper is to obtain the approximation of the arbitrary
order weakly singular integral using Block-Pulse functions. The obtained results can be
used to solve the numerical solution of higher order linear and nonlinear weakly singular
Volterra integral equation of the second kind. Furthermore, the initial equations are
transformed into a system of algebraic equations. Finally, some examples are given to
demonstrate the validity and applicability of this approach, results of these examples
show that this new method is an efficient algorithm.
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1. Introduction

Many engineering and scientific problems can be reduced into integral equa-
tions. These integral equations are always singular, some are even supersingular.
Especially, all of the natural boundary integral equations can result to singular
integral equations [10], [19], [18]. Due to the singularity of the kernel, many
quadrature rules for the singular integrals are less accurate than their counter-
parts for Riemann integrals. The weakly singular integral in many equations can
be observed [8], [16], [4], [9], [1], [11], [12]. The weakly singular Volterra integral
equations are also found in a lot of physical, chemical, and biological problems.
For example, reaction-diffusion problems, crystal growth etc [5], [7], [13]. There-
fore, it is necessary to study the weakly singular integral.
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As the Block-Pulse functions have many good properties [2], [14], they are
used to get the quadrature formula of the arbitrary order weakly singular in-
tegral in this paper. The numerical examples show that the precision is very
high. Therefore, this method and operational matrix of the Block-Pulse functions
can be used to solve a class of higher order linear and nonlinear weakly singular
Volterra integral equation. In this work, the operational matrix of the Block-Pulse
functions are obtained using the operational matrix of Legendre wavelet. Finally,
the equation is translated into a linear or nonlinear system of algebraic equations
which are easier to get the solutions.

In this study, considering the following linear weakly singular Volterra integral
equation of the second kind:

n∑
i=0

ai(t)y
(i)(t) + λ

∫ t

0

(t− s)−αy(s)ds = f(t).(1.1)

where ai(t), f(t) are continuous functions on [0, 1] and y(i)(t) stands for the i
th-order derivative of y(t). λ is a real constants.

The numerical solutions of the nonlinear weakly singular Volterra integral
equation of the second kind can also got using this method:

n∑
i=0

ai(t)y
(i)(t) + λ

∫ t

0

(t− s)−α[y(s)]pds = f(t).(1.2)

2. The quadrature formula of the arbitrary order weakly singular
integral

The Block-Pulse functions and some properties are introduced in this part. The
set of these functions, over interval [0, T ), is defined as [14]:

(2.1) bi(x) =

{
1, iT

m
≤ x < (i+1)T

m
;

0, otherwise.

where i = 0, 1, 2, · · ·m− 1, with a positive integer value for m. In this paper, it is
assumed that T = 1. The useful properties of the Block-Pulse functions:

1. Disjointness:

(2.2) bi(x)bj(x) =

{
bi(x), i = j;

0, i 6= j.

2. Orthogonality:

(2.3)

∫ 1

0

bi(x)bj(x)dx =

{
1/m, i = j;

0, i 6= j.
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3. Completeness: For any f ∈ L2([0, 1]), the sequence {bi} is complete if
∫

bif = 0
results in f = 0 almost everywhere. Because of completeness of {bi(x)}, Parsevals

identity holds, i.e. we have
∫ 1

0
f 2(x)dx =

∞∑
i=0

f 2
i ‖bi(x)‖2, for every real bounded

function f(x) ∈ L2([0, 1]) and

fi = m

∫ 1

0

bi(x)f(x)dx.(2.4)

Arbitrary order weakly singular integral is shows as following formula:

I(t) =

∫ t

0

g(s)

(t− s)α ds, 0 ≤ t ≤ 1, 0 < α < 1.(2.5)

where g(s) ∈ L2([0, 1]).
From the orthogonality property of the Block-Pulse functions, it is possible

to expand functions into their Block-Pulse series, so it can be written as:

g(s) ∼=
m−1∑
i=0

cibi(s) = cT Bm(s).(2.6)

where c = (c0, c1, · · · , cm−1)
T , Bm(s) = (b0(s), b1(s), · · · , bm−1(s))

T .
Since equation (2.6) is substituted into equation (2.5), then, we have:

I(t) =

∫ t

0

g(s)

(t− s)α ds = cT

∫ t

0

Bm(s)

(t− s)α ds = cT D(t)(2.7)

where

D(t) =

∫ t

0

Bm(s)

(t− s)α ds.(2.8)

Combining equation (2.1) and equation (2.8), we can obtain

D(t) =

∫ t

0

Bm(s)

(t− s)α ds(2.9)

=

∫ 1/m

0

Bm(s)

(t− s)α ds +

∫ 2/m

1/m

Bm(s)

(t− s)α ds + · · ·+
∫ t

i/m

Bm(s)

(t− s)α ds

=




− (t−1/m)1−α−t1−α

1−α

0
0
0
0
...
0




+




0

− (t−2/m)1−α−(t−1/m)1−α

1−α

0
0
...
...
0




+ · · ·+




0
0
...

(t−i/m)1−α

1−α

0
...
0




=

(
−(t− 1

m
)1−α−t1−α

1−α
− (t− 2

m
)1−α−(t− 1

m
)1−α1−α

· · ·
(t− i

m
)1−α1−α

0
· · · 0

)T
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where D(0) = (0, 0, ..., 0)T .
Let t = k/m, k ∈ 1, 2, ..., m− 1. The following results can be obtained by

using equation (2.10)

D

(
k

m

)
=

(
−( k

m
− 1

m
)1−α − ( k

m
)1−α

1− α
,−( k

m
− 2

m
)1−α − ( k

m
− 1

m
)1−α

1− α
, ...,

( k
m
− i

m
)1−α

1− α
, 0, ..., 0

)T

.

At this time, i = k − 1.
Then, combining equation (2.7) and equation (2.10), the numerical solution

of equation (2.5) can be obtained.

3. Applied method

Consider the following linear weakly singular Volterra integral equation:

n∑
i=0

ai(t)y
(i)(t) + λ

∫ t

0

(t− s)−αy(s)ds = f(t),(3.1)

under the initial conditions

y(n−1)(0) = yn−1, ..., y(0) = y0, 0 ≤ t ≤ 1, 0 < α < 1.(3.2)

where ai(t), f(t) are continuous functions on [0, 1] and y(i)(t) ∈ L2([0, 1]) stands for
the i th-order derivative of y(t). λ and yk(k = 0, 1, 2, ..., n− 1) are real constants.

Before solving equation (3.1), the operational matrix of Block-Pulse functions
can be given using the operational matrix of Legendre wavelet.

It is generally known that the Legendre wavelet in the interval [0, 1) can be
defined as [15]:

(3.3) ψ(k)
nm(x) =

{√
2m + 12

k
2 Pm(2k+1x− 2n + 1), x ∈ [n−1

2k , n
2k );

0, otherwise.

Pm is said Legendre polynomial.
Set P is the Legendre wavelet operational matrix of integration, where

P =
1

2k




L F F · · · F
O L F · · · F
...

. . . . . . . . .
...

O O O L F
O O O O L




m×m

,

F =




2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




M×M
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and

L=




1 1√
3

0 0 · · · 0 0 0

− 1√
3

0
√

3
3
√

5
0 ... 0 0 0

0 −
√

3
3
√

5
0

√
5

5
√

7
... 0 0 0

0 0 −
√

7
5
√

5
0 · · · 0 0 0

...
...

...
... ...

. . . . . .
...

0 0 0 0 ... −
√

2M−3
(2M−3)

√
2M−5

0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 ... 0 −
√

2M−1
(2M−3)

√
2M−5

0




M×M

where m = 2k−1M .

Let ti =
i−1

2
2k−1M

, i = 1, 2, ..., 2k−1M , the Legendre wavelet matrix [14] can be
obtained:

Φm×m = [Ψ(t1), Ψ(t2), ..., Ψ(t2k−1M)](3.4)

where
Ψ(t) = [ψ

(k)
1,0(t), ..., ψ

(k)
1,M−1(t), ..., ψ

(k)

2k−1,0
(t), ..., ψ

(k)

2k−1,M−1
(t)]T .

There is a relation between the Block-Pulse functions and Legendre wavelet,
we have found:

Ψ(t) = Φm×mBm(t).(3.5)

From Equation (3.5), we have
∫ t

0

Bm(s)ds =

∫ t

0

Φ−1
m×mΨ(s)ds = Φ−1

m×m

∫ t

0

Ψ(s)ds(3.6)

= Φ−1
m×mPΨ(t) = Φ−1

m×mPΦm×mBm(t).

Let Q = Φ−1
m×mPΦm×m, Q is called the Block-Pulse operational matrix of integra-

tion, namely
∫ t

0

Bm(s)ds = QBm(t).(3.7)

Since y(n)(t) ∈ L2([0, 1]) it is supposed that

y(n)(t) ∼=
m−1∑
i=0

dibi(t) = dT Bm(t).(3.8)

Then

y(n−1)(t) =

∫ t

0

y(n)(s)ds + y(n−1)(0) = dT QBm(t) + y(n−1)(0)(3.9)

= [dT Q + AT y(n−1)(0)]Bm(t)
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y(n−2)(t) =

∫ t

0

y(n−1)(s)ds + y(n−2)(0)(3.10)

= [dT Q2 + AT y(n−1)(0)Q + AT y(n−1)(0)]Bm(t)

...

y(t) =

∫ t

0

y′(s)ds + y(0) = [dT Qn + AT y(n−1)(0)Qn−1(3.11)

+ · · ·+ AT y′(0)Q + AT y(0)]Bm(t),

and, ∀i ∈ {0, 1, 2, ..., n},

y(i)(t) = [dT Qn−i + AT y(n−1)(0)Qn−i−1 + · · ·+ AT y(i)(0)]Bm(t)(3.12)

where A = m
∫ 1

0
Bm(t)dt.

Substituting equation (3.12), equation (3.11) and equation (2.7) into equation
(3.1), we have

dT

(
n∑

i=0

ai(t)Q
n−iBm(t) + λQnD(t)

)

= f(t)−
n∑

i=0

ai(t)(A
T y(n−1)(0)Qn−i−1 + · · ·+ AT y(i)(0))Bm(t)

−λ(AT y(n−1)(0)Qn−1 + · · ·+ AT y(0))D(t)

(3.13)

Discreting equation (3.13) by taking step ∆ = 1
m

of t, a linear system of algebraic
equations can be easily obtained. Then dT can be obtained. y(t) can be obtained
by using equation (3.11).

Consider the following nonlinear weakly singular Volterra integral equation:

n∑
i=0

ai(t)y
(i)(t) + λ

∫ t

0

(t− s)−α[y(s)]pds = f(t)(3.14)

under the initial conditions equation (3.2).

Let βT = dT Qn + AT y(n−1)(0)Qn−1 + · · ·+ AT y′(0)Q + AT y(0), namely

β = (β0, β1, · · · , βm−1)
T .

Equation (3.11) can be translated into:

f(t) = βT Bm(t).(3.15)

According to the properties of the Block-Pulse functions, we have

[f(t)]p = [βp]T Bm(t)(3.16)

where βp = (βp
0 , β

p
1 , · · · , βp

m−1)
T .
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Substituting equation (3.12), equation (3.16) and equation (2.7) into equation
(3.14), we have:

βT

n∑
i=0

ai(t)Q
−iBm(t) + λ[βp]T D(t)

= f(t) +
n∑

i=0

ai(t)(A
T y(i−1)Q−1 + · · ·+ AT y(0)Q−i)Bm(t)

(3.17)

when p = 1, equation (3.17) is equation (3.13).
Discreting equation (3.17) by taking step ∆ = 1

m
of t, a linear system of

algebraic equations can be easily obtained. Then β can be obtained. y(t) can be
obtained by using equation (3.15).

4. Numerical examples

Example 1. Consider the weakly singular integral [17]:

I1(t) =

∫ t

0

sn

√
t− s

ds(3.18)

The exact solution is √
πt(

1
2
+n)Γ(n + 1)

Γ(n + 3
2
)

.

Taking m = 16, m = 32, and making use of MATLAB2011a, Fig.1 and Fig.2 are
comparison of the approximations with the exact.
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Figure 1: m = 16, n = 5
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Figure 2: m = 16, n = 5

Example 2. Consider the weakly singular integral [6]:

I2(t) =

∫ t

0

y(s)√
t− s

ds, 0 ≤ t < 1,(3.19)

where

y(s) =
22r−1

π
r
(Γ(r))2

Γ(2r)
sr−1/2.
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The exact solution is xr. Making use of MATLAB2011a, Fig.3 and Fig.4 are
comparison of the approximations solution with the exact in this paper.

From the above results, the approximations are in good agreement with exact
solution, and the value of is bigger, the precision is higher.
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Figure 3: m = 16, r = 6
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Figure 4: m = 32, r = 6

Example 3. Consider the weakly singular Volterra integral equation [3]:

y(t) +

∫ t

0

y(s)(t− s)−1/2ds =
1

2
πt +

√
t, 0 ≤ t < 1.(3.20)

The exact solution is
√

t. Table 1 can be obtained through taking m = 16, 32, 64,
and applying the above method in solving numerical solution of this problem.

Table 1: The exact solution and absolute error for different of m.

t m = 16 m = 32 m = 64 m = 128 Exact solution
0 0.0000 0.0000 0.0000 0.0000 0.0000

1/8 2.23e-002 1.66e-002 7.54e-003 4.24e-004 0.3536
2/8 2.58e-002 1.28e-002 6.89e-003 4.78e-004 0.5000
3/8 2.25e-002 1.09e-002 6.03e-003 6.34e-004 0.6124
4/8 1.99e-002 9.71e-003 9.25e-004 8.69e-005 0.7071
5/8 1.81e-002 8.82e-003 8.37e-004 7.36e-005 0.7906
6/8 1.67e-002 8.22e-003 8.04e-004 6.85e-005 0.8660
7/8 1.56e-002 7.62e-003 7.57e-004 5.33e-005 0.9354

Example 4. Consider the weakly singular Volterra integral equation [3]:

y(t) +

∫ t

0

y(s)(t− s)−1/2ds = 1, 0 ≤ t < 1.(3.21)

The exact solution is y(t) = exp(πt)erfc(
√

πt). The numerical solution and
exact solution, shown in Table 2, can be obtained through taking m = 16, 32, 64,
and applying the above method in solving numerical solution of this problem by
MATLAB2011a.

As can be seen in Table 1 and Table 2, a good approximation with the exact
solution using above method is achieved. Besides, with the increase of m, the
errors become smaller and smaller.
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Table 2: The numerical solution and exact solution for different of m.

t m = 16 m = 32 m = 64 m = 128 Exact solution
0 1.0000 1.0000 1.0000 1.0000 1.0000

1/8 0.5429 0.5389 0.5558 0.5560 0.5561
2/8 0.4411 0.4504 0.4605 0.4607 0.4608
3/8 0.3903 0.3980 0.4052 0.4052 0.4053
4/8 0.3556 0.3615 0.3670 0.3671 0.3671
5/8 0.3292 0.3340 0.3385 0.3385 0.3385
6/8 0.3083 0.3122 0.3160 0.3130 0.3160
7/8 0.2910 0.2943 0.2975 0.2975 0.2975

5. Conclusion

This paper uses the Block-Pulse functions and their good properties to solve the
arbitrary order weakly singular integral. The numerical solution of higher order
linear and nonlinear weakly singular Volterra integral equation of the second kind
can be obtained using this method and the Block-Pulse functions operational
matrix of integration. Furthermore, this equation is transformed into a system of
algebraic equations which is easily to be solved. Numerical examples show that
this new method is an efficient algorithm.
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