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Abstract. Motivated by Ko et al. (2010), who propose a new equity-linked product
called “maturity guarantee with dynamic withdrawal benefit” (MGDWB), we consider
the pricing of this product under a Vasicek stochastic interest rates framework. The
explicit pricing formulas for the dynamic withdrawal benefit (DWB) payment stream
and the maturity guarantee can be obtained when the DWB payment level is set to be
a function of zero-coupon bond.

Keywords: maturity guarantee; dynamic withdrawal benefit; forward neutral measure.

Mathematics Subject Classification: 60G51, 60J25.

1. Introduction

Both individual and institutional investors have a basic need for protection against
downside risk. The dynamic guaranteed fund has been one of the most popular
investment funds in the insurance industry, recently. The fund, introduced by
Gerber and his co-workers, provides a dynamic guarantee for an equity index
linked portfolio to its investors with a necessary payment so that the upgraded
fund unit value does not fall below a guaranteed level during the protection period.
See Gerber and Pafumi (2000), Gerber and Shiu (1998, 2003), Tiong (2000) and
Imai and Boyle (2001).

Researches on the dynamic guaranteed fund mainly focus on the modelling of
the price of underlying assets and the design of the guarantees. See, for example,
Gerber et al. (2013) investigate the valuation of variable annuities with guaranteed
minimum death benefits under a jump-diffusion model. Gerber et al. (2015) con-
sider the problem of valuing guaranteed minimum death benefits under a discrete
model. Inspired by dynamic guaranteed fund and motivated by the importance
of “withdrawal benefits” in enhancing sales of variable annuities, Ko et al. (2010)
propose a new equity-linked product, which is called “maturity guarantee with
dynamic withdrawal benefit” (MGDWB).
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This new equity-linked product has two payoff features. Consider a customer
paying a single premium for investing in a mutual fund or stock index. As the
customer’s account value attains a barrier, amounts over the barrier are auto-
matically withdrawn from the account and paid to the customer. This payoff
feature is called dynamic withdrawal benefit (DWB), which is a function of mar-
ket conditions, so that it can well protect the insurers issuing variable annuities
with DWB. Furthermore, the customer is provided with a guarantee that at the
contract maturity date T , he will have at least a predetermined amount K. When
the DWB payment level is set to be a constant or an exponential function of time
and the interest-free rate is assumed to be constant, Ko et al. (2010) price such
MGDWB contracts.

However, since equity-indexed annuities are usually of long maturity, the
assumption of constant interest rate may not be quite adequate. In this paper,
we will price a MGDWB contract in the presence of a stochastic term structure
of interest rates. Assume the customer holds the contract to maturity T. Denote
the time-t account value without and with DWB payments by F (t) and F̂ (t),
respectively. In Ko et al. (2010), the relation between the two processes is given by

(1.1) F̂ (t) = F (t) min

{
1, min

0≤s≤t

B

F (s)

}
,

where B ≥ K is a constant. Obviously, the barrier B is not necessarily chosen to
be a constant. See, for example, Gerber and Pafumi (2000) consider a stronger
protection, where the guaranteed value of a fund unit at time t is Keγt, for some
γ > 0. In fact, γ can be explained as a guaranteed rate of return. In this paper,
we extend the protection level to a stochastic level and consider the price of a
MGDWB contract under a stochastic interest rate environment. However, in
general, it is not easy to obtain the explicit formula for the price of the MGDWB
contract under a stochastic interest rate environment. In this paper, we aim at
providing a model in which the closed form formula for the price of the MGDWB
contract can be obtained under a stochastic interest rate environment.

Bernard et al. (2006) propose a stochastic level with the guaranteed rate
matching the return of a government bond and derive the fair value of a par-
ticipating life insur- ance contract under a Vasicek interest rate environment.
Therefore, following Bernard et al. (2006), we consider the relation between the
two processes as follows:

(1.2) F̂ (t) = F (t) min

{
1, min

0≤s≤t

BP (s, T )/P (0, T )

F (s)

}
,

where P (s, T ) is the zero-coupon bond price with expiry date T at s. Assume
P (0, T ) < 1 so that B/P (0, T ) ≥ K. In fact, in (1.2), the barrier is chosen as a

stochastic process given by BP (s,T )
P (0,T )

. As explained in Bernard et al. (2006), the pro-

tection is equivalent to buying B/P (0, T ) government zero-coupon bonds having
an initial value equal to P (0, T ) at time 0, since the guaranteed value of a fund unit
at time t is equal to the value at time t of K/P (0, T ) zero-coupon bonds maturing
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at time T. Therefore, comparing with the protection Beγt, which can be regarded
as having a fixed guaranteed rate of return, the protection BP (s, T )/P (0, T ) can
be regarded as having a guaranteed rate matching the return of a zero-coupon
bond.

Let {Ω,=, {=t}0≤t≤T , Q} be a filtered complete probability space, where Q is
the risk neutral measure and {=t}0≤t≤T is a filtration satisfying the usual condi-
tions of right continuity and completeness. Throughout the paper, it is assumed
that all random variables and stochastic processes are well defined on this proba-
bility space and =T−measurable. We assume that the fund process {F (t)} follows
a geometric Brownian motion under the risk-neutral probability measure Q:

(1.3)
dF (t)

F (t)
= rtdt + σdWQ(t).

It is assumed the short-term interest rate dynamics obey the relationship under Q:

drt = (aθ − art)dt + γdZQ
1 (t), a > 0, γ > 0.

Vasicek (1977) has showed the zero-coupon bond price with expiry date T at a
fixed time t, P (t, T ), is a function of T and can be expressed as

(1.4) P (t, T ) = EQ[e−
∫ T

t rsds|=t] = eA(t,T )−B(t,T )rt,

where

(1.5)





A(t, T ) =
(B(t, T )− T + t)

a2

(
a2θ − γ2

2

)
− B2(t, T )γ2

4a
,

B(t, T ) =
1− e−a(T−t)

a
.

The zero-coupon bond price with expiry date T, P (t, T ), follows the stochastic
diffusions

dP (t, T )

P (t, T )
= rtdt− σP (t, T )dZQ

1 (t),

where σP (t, T ) = γ
a
(1−e−a(T−t)). ZQ

1 (t) and WQ(t) are two Q−standard Brownian
motions with a correlation coefficient equal to ρ.

Consider a Brownian motion ZQ
2 independent from ZQ

1 , therefore, the Brow-
nian motion WQ can be expressed as

dWQ(t) = ρdZQ
1 (t) +

√
1− ρ2dZQ

2 (t).

Then the dynamics of the fund in equation (A.8) can be rewritten as:

dF (t)

F (t)
= rtdt + σ

(
ρdZQ

1 (t) +
√

1− ρ2dZQ
2 (t)

)
.
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Denote by QT the T−forward-neutral measure. It is defined through its Radon-
Nikodym derivative

dQT

dQ
= e−

∫ T
0 σP (s,T )dZQ

1 (s)− 1
2

∫ T
0 σ2

P (s,T )ds.

From Girsanov theorem the process ZQ
1 defined by dZQT

1 = dZQ
1 + σP (t, T )dt is a

QT−Brownian motion.
Therefore, under the T−forward-neutral measure QT , the short-term interest

rate dynamics obey the relationship

drt = a(θt − rt)dt + γdZQT
1 (t),

where θt = θ − γ2/a2(1− e−a(T−t)).

We also define ZQT
2 such that ZQT

1 and ZQT
2 are noncorrelated QT−Brownian

motions. Under the T−forward-neutral measure QT , the dynamics of F (t) and
P (t, T ) follow the stochastic differential equations

dF (t)

F (t)
= (rt − ρσσP (t, T ))dt + σ

(
ρdZQT

1 (t) +
√

1− ρ2dZQT
2 (t)

)

and

dP (t, T )

P (t, T )
= (rt + σ2

P (t, T ))dt− σP (t, T )dZQT
1 (t).

By some calculations, we have

(1.6)

BP (s, T )

F (s)P (0, T )
=

B

F0

exp

{
−

∫ s

0

(σP (u, T )+ρσ)dZQT
1 (u)−

∫ s

0

σ
√

1−ρ2dZQT
2 (u)

+
1

2

∫ s

0

((σP (u, T ) + ρσ)2 + σ2(1− ρ2))du

}
.

Define the martingale H as

Hs =

∫ s

0

(σP (u, T ) + ρσ)dZQT
1 (u) +

∫ s

0

σ
√

1− ρ2dZQT
2 (u).

Note that the quadratic variation of H is

(1.7)

ξ(s) =

∫ s

0

((σP (u, T ) + ρσ)2 + σ2(1− ρ2))du =

(
σ2 +

γ2

a2
+

2ρσγ

a

)
s

−
(

2ρσγ

a2
+

2γ2

a3

)
(e−a(T−s) − e−aT ) +

γ2

2a3
(e−2a(T−s) − e−2aT ).

Due to Dubins-Schwarz theorem, there exists a QT−Brownian motion B such that

Hs = Bξ(s).
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Therefore, (1.6) becomes

(1.8)
BP (s, T )

F (s)P (0, T )
=

B

F0

e−Bξ(s)+
1
2
ξ(s),

from (1.8), F (T ) can be expressed as

F (T ) =
F0

P (0, T )
eBξ(T )− 1

2
ξ(T ).

2. Contract valuation

Denote V W (B, T ) by the value of the DWB payment stream between time 0 and
T at time 0, denote V P (K,B, T ) by the value of the European put option with
payoff (K− F̂ (T ))+ at time 0. For simplicity, we assume the cost of the put option
is to be paid at the beginning of the contract, and 0 < K ≤ F0 ≤ B. Because the
customer pays F0 +V P (K, B, T ), so by the fundamental theorem of asset pricing,
we have

F0 = V W (B, T ) + EQ[e−
∫ T
0 rsdsF̂ (T )],(2.1)

V P (K, B, T ) = EQ[e−
∫ T
0 rsds(K − F̂ (T ))+].(2.2)

Moving toward forward-neutral world, we obtain

EQ[e−
∫ T
0 rsdsF̂ (T )] = P (0, T )EQT [F̂ (T )],(2.3)

EQ[e−
∫ T
0 rsds(K − F̂ (T ))+] = P (0, T )EQT [(K − F̂ (T ))+].(2.4)

From (1.8), one obtains

F̂ (T ) = F (T ) min

{
1, min

0≤s≤T

B

F0

e−Bξ(s)+
1
2
ξ(s)

}

= F (T ) min

{
1,

B

F0

e−max0≤s≤ξ(T )(Bs− 1
2
s)

}
(2.5)

=
F0

P (0, T )
eBξ(T )−1/2ξ(T ) min

{
1,

B

F0

e−max0≤s≤ξ(T )(Bs− 1
2
s)

}
.

For simplicity, we write X = Bξ(T ) − 1
2
ξ(T ),M = max0≤s≤ξ(T )(Bs − 1

2
s). Then,

from (2.1), (2.3) and (2.5), we obtain

(2.6)
V W (B, T ) = F0 − P (0, T )EQT [F̂ (T )]

= F0 − F0E
QT [eX1{M < b}]−BEQT [eXe−M1{M > b}],

where b = ln B
F0

> 0, 1{C} is the indicator of a set C. To simplify the above

expression, we define a new probability Q through Radon-Nikodym derivative

dQ

dQT

= eX = e
∫ T
0 (σP (u,T )+ρσ)dZ

QT
1 (u)+

∫ T
0 σ
√

1−ρ2dZ
QT
2 − 1

2
ξ(T ).
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From Girsanov theorem, we can construct two Q− standard Brownian motions

ZQ
1 and ZQ

2 defined by

dZQ
1 = dZQT

1 −
∫ s

0

(σP (u, T ) + ρσ)du,

dZQ
2 = dZQT

2 −
∫ s

0

σ
√

1− ρ2du.

Then, under Q, F (T ) is expressed as

F (T ) =
F0

P (0, T )
e

∫ T
0 (σP (s,T )+ρσ)dZQ

1 (u)+
∫ T
0 σ
√

1−ρ2dZQ
2 (u)+ 1

2
ξ(T ).(2.7)

Similar to deriving Eq. (1.8), under Q Eq. (2.7) can be expressed as

F (T ) =
F0

P (0, T )
eBξ(T )+

1
2
ξ(T ),

where B is a Q−standard Brownian motion. Define X = Bξ(T ) + 1
2
ξ(T ) and

M = max
0≤s≤ξ(T )

(
Bs + 1

2
s
)
. Note EQT [eX ] = 1, then

(2.8)

EQT [eX1{M < b}] = EQT [eX ]Q(M < b) = Q(M < b)

= Φ

(
b− 1/2ξ(T )√

ξ(T )

)
− B

F0

Φ

(
−b− 1/2ξ(T )√

ξ(T )

)

and

(2.9) EQT [eX−M1{M > b}] = EQT [eX ]EQ[e−M1{M > b}] = EQ[e−M1{M > b}].

Note the expectation EQ[eaM1{M > b}], for a 6= −1, has been given by Huang

and Shiu (2001) and Lee (2003). To evaluate the expectation EQ[e−M1{M > b}],
first we give the following lemma.

Lemma 2.1 Let X(t) = µt + σW (t), M(t) = max
0≤s≤t

X(s), where W (t) is a

Q−standard Brownian motion. Then, we have

(2.10) Q(X(t) < k, M(t) > d)) = e
2µd

σ2 Q(X(t) ≤ k − 2d), b ≥ 0, k ≤ b.

Proof. The proof of (2.10) can be found in Gerber and Shiu (2000) and Huang
and Shiu (2001). From (2.10), we obtain

(2.11)
Q(M ≤ m) = Q(X ≤ m)−Q(X ≤ m, M ≥ m)

= Q(X ≤ m)− emQ(X ≤ −m),
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Using (2.11), we have

(2.12)

EQ[e−M1{M > b}] =

∫ ∞

b

e−mdQ(X ≤ m)−
∫ ∞

b

e−md(emQ(X ≤ −m))

=

∫ ∞

b

2√
2πξ(T )

e−
(m+1/2ξ(T ))2

2ξ(T ) dm−
∫ ∞

b

Q(X ≤ −m)dm

= 2Φ

(
−b + 1/2ξ(T )√

ξ(T )

)
−

∫ ∞

b

Q(X ≤ −m)dm.

Integrating the integral in (2.12) by parts, we obtain

(2.13)

∫ ∞

b

Q(X ≤ −m)dm

= − bΦ

(
−b + 1/2ξ(T )√

ξ(T )

)
+

∫ ∞

b

m√
2πξ(T )

e−
(m+1/2ξ(T ))2

2ξ(T ) dm

= − (b + 1/2ξ(T ))Φ

(
−b + 1/2ξ(T )√

ξ(T )

)
+

√
ξ(T )

2π
e−

(b+1/2ξ(T ))2

2ξ(T ) .

Substituting (2.13) into (2.12), we have

(2.14)

EQ[e−M1{M > b}] = (2 + b + 1/2ξ(T ))Φ

(
−b + 1/2ξ(T )√

ξ(T )

)

−
√

ξ(T )

2π
e−

(b+1/2ξ(T ))2

2ξ(T ) .

Substituting (2.8)-(2.14) into (2.6), we give the explicit expression for V W (B, T )

(2.15)

V W (B, T ) = F0Φ

(
−b− 1/2ξ(T )√

ξ(T )

)

− B

(
1 + ln

B

F0

+
ξ(T )

2

)
Φ

(
−b + 1/2ξ(T )√

ξ(T )

)
+ B

√
ξ(T )

2π
e−

(b+1/2ξ(T ))2

2ξ(T ) .

Remark 2.1.

(1) From (1.7), we can easily obtain ξ(T ) → +∞, when T → +∞, hence
V W (B,∞) = F0.

(2) When B is infinity, then no withdrawal benefit payments will ever be made.
Thus, V W (∞, T ) = 0 and it is easy to check it from (2.6) and (2.8)-(2.14).

Now, we present the evaluation of the put option price V P (B, K, T ). We can
rewrite Eq. (2.2) by using the T−forward-neutral equivalent martingale measure
QT according to:

(2.16) V P (B, K, T ) = P (0, T )EQT [(K − F̂ (T ))+].
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With c = ln KP (0,T )
F0

< 0, we divide the expectation EQT [(K − F̂ (T ))+] into two
parts:

(2.17)

EQT [(K − F̂ (T ))+]

= EQT [(K − F̂ (T ))+1{M < b}] + EQT [(K − F̂ (T ))+1{M > b}]

= EQT

[(
K − F0

P (0, T )
eX

)
1{M < b, X < c}

]

+ EQT

[(
K − B

P (0, T )
eX−M

)
1{M > b, M −X > b− c}

]
.

The first term on the right hand side of (2.17) can be calculated as follows:

(2.18)

EQT

[(
K − F0

P (0, T )
eX

)
1{M < b, X < c}

]

= KQT (M < b,X < c)− F0

P (0, T )
EQT [eX ]Q(M < b, X < c)

= K[QT (X < c)−QT (M ≥ b,X < c)]

− F0

P (0, T )
[Q(X < c)−Q(M ≥ b, X < c)]

= K

[
Φ

(
c + 1/2ξ(T )√

ξ(T )

)
− F0

B
Φ

(
c− 2b + 1/2ξ(T )√

ξ(T )

)]

− F0

P (0, T )

[
Φ

(
c− 1/2ξ(T )√

ξ(T )

)
− B

F0

Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)]
,

where the last equality follows from (2.10). The second term on the right hand
side of (2.17) is

(2.19)

EQT

[(
K − B

P (0, T )
eX−M

)
1{M > b, M −X > b− c}

]

= KQT (M > b, M −X > b− c)

− B

P (0, T )
EQT

[
eX−M1{M > b,M −X > b− c}]

=
B

P (0, T )

[
Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)
+

F0K

B
Φ

(
c− 2b + 1/2ξ(T )√

ξ(T )

)]

− B

P (0, T )

[
(2 + 2b− c + 1/2ξ(T ))Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

−
√

ξ(T )

2π
e−

(2b−c+1/2ξ(T ))2

2ξ(T )

]
,

where the proof of the expressions for the probability QT (M > b, M −X > b− c)
and the expectation EQT [eX−M1{M > b, M −X > b− c}] are given by (A.6) and
(A.8) in the Appendix.
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Substituting (2.17)-(2.19) into (2.16) yields that

(2.20)

V P (B,K, T ) =KP (0, T )Φ

(
c + 1/2ξ(T )√

ξ(T )

)
− F0Φ

(
c− 1/2ξ(T )√

ξ(T )

)

+ B

(
ln

KP (0, T )F0

B2
− ξ(T )

2

)
Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

+ B

√
ξ(T )

2π
e−

(2b−c+1/2ξ(T ))2

2ξ(T ) .

Remark 2.2.

(1) It follows from (1.4), (1.5) that, if a2θ > γ2

2
, then P (0, T ) → 0 when T →∞,

so we have V P (B, K,∞) = 0.

(2) When K = 0, it can be directly obtained from (2.16) V P (B, 0, T ) = 0.

(3) When B is infinity, then no withdrawal benefit payments will ever be made.
Thus, V W (∞, K, T ) must be the Black-Scholes price of the European
K−strike put option on F (t) exercisable at T and it can be expressed as

V P (∞, K, T ) = P (0, T )KΦ

(
c + 1/2ξ(T )√

ξ(T )

)
− F0Φ

(
c− 1/2ξ(T )√

ξ(T )

)
.

In fact, V P (∞, K, T ) is exactly given by the first two terms on the right
hand side of (2.20). Hence, (2.20) can also be written as

V P (B,K, T )− V P (∞, K, T )

= B

(
ln

KP (0, T )F0

B2
− ξ(T )

2

)
Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

+ B

√
ξ(T )

2π
e−

(2b−c+1/2ξ(T ))2

2ξ(T ) .

Since the left hand side of (2.20) is positive, its right hand side is also
positive, which is not immediately obvious.

(4) Differentiating (2.15) with respect to F0 and simplifying, we obtain the
hedge-ratio formula,

∂

∂F0

V W (B, T ) = Φ

(
−b− 1/2ξ(T )√

ξ(T )

)
+

B

F0

Φ

(
−b + 1/2ξ(T )√

ξ(T )

)
.

Differentiating (2.20) with respect to F0 and simplifying, we have

∂

∂F0

V P (B, K, T ) = − Φ

(
c− 1/2ξ(T )√

ξ(T )

)
+

B

F0

Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)
.
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It is interesting to note that both derivatives can be quickly obtained if we
pretend that b, c are not functions of F0 when performing the differentiation.
(Similarly, differentiating the Black-Scholes formula with respect to the stock
price, while pretending that d1 and d2 are constant, immediately yields the
formula for the option’s delta.)

3. Numerical analysis

In this section, we make some numerical analysis on the value of the DWB payment
stream V W (B, T ) and the value of the European put option V P (K, B, T ). The
price of the zero-coupon bond P (0, T ) is considered as a function of T and hence
it is can be calculated from equation (1.6). Let F0 = 100, r0 = 0.05, a = 0.4,
σ = 0.1, γ = 0.008, ρ = 0.2, θ = 0.04.
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Figure 1: V W (B, T ) as a function
of T for different B
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Figure 2: V P (K, B, T ) as a function
of T for different K, B = 120.

Figure 1 plots V W (B, T ) as a function of T for different B. From Figure 1
we see, V W (B, T ) is a decreasing function of B. That is to say, the withdrawal
benefit payments will decrease with B increasing. Figure 2 plots V P (B,K, T ) as
a function of T for different K given B = 120. It is easy to see from Figure 2,
V P (B, K, T ) is an increasing function of K. That is because V P (B, K, T ) is the
price of put option with strike K.

4. Reflected Brownian motion

In this section, we derive the pricing formulas (2.15) and (2.20) by using the theory
of Reflected Brownian motion.

(4.1) ln
BP (t, T )

P (0, T )F̂ (t)
= −

(
Bξ(t) − 1

2
ξ(t)

)
+max

{
b, max

0≤s≤t

{
Bξ(s) − 1

2
ξ(s)

}}
.

The process {ln BP (t,T )

P (0,T )F̂ (t)
} is a reflected Brownian motion starting at ln B

F (0)
= b,

with reflecting barrier at 0. Let Y = ln B

P (0,T )F̂ (T )
, then from Formula (91), Section
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5.7 in Cox and Miller (1965) it follows that the probability density function of the
random variable Y under QT is

p(x; b, T ) = n

(
x; b +

1

2
ξ(T ), ξ(T )

)
+ e−bn

(
x;−b +

1

2
ξ(T ), ξ(T )

)

− exΦ

(
−x + b + 1/2ξ(T )√

ξ(T )

)
, x > 0,(4.2)

where n(x; µ, σ2) is the probability density function of the normal random variable
with mean µ and variance σ2, and Φ(x) is the standard normal distribution. This
result corresponds to formula (2.5) in Ko et al. (2010). To obtain the pricing
formulas (2.15) and (2.20), we also need the following formulas given in Gerber
and Pafumi (2000) and Ko et al. (2010),

(4.3)

∫ ∞

a

ecxn(x; µ, σ2)dx = eµc+1/2σ2c2Φ

(−a + µ + cσ2

σ

)
,

where a and c are arbitrary real numbers and

(4.4)

∫ ∞

a

ecxΦ

(
−x− µ

σ

)
dx =

1

c
eµc+1/2σ2c2Φ

(−a + µ + cσ2

σ

)

− 1

c
eacΦ

(−a + µ

σ

)
,

where c is an arbitrary number other than zero. By using (4.2)-(4.4), we obtain

(4.5)

V W (B, T ) = F0 − P (0, T )EQT [F̂ (T )] = F0 −BEQT [e−Y ]

= F0 −B

[
e−bΦ

(
b− 1/2ξ(T )√

ξ(T )

)
+ Φ

(
−b + 1/2ξ(T )√

ξ(T )

)

−
∫ ∞

0

Φ

(
−y − b− 1/2ξ(T )√

ξ(T )

)
dy

]

= F0Φ

(
−b + 1/2ξ(T )√

ξ(T )

)
−BΦ

(
−b + 1/2ξ(T )√

ξ(T )

)

+B

∫ ∞

0

Φ

(
−y − b− 1/2ξ(T )√

ξ(T )

)
dy.

Integrating the integral in (4.5) by parts, we obtain
∫ ∞

0

Φ(
−y − b− 1/2ξ(T )√

ξ(T )
)dy =

∫ ∞

0

y√
2πξ(T )

e−
(y+b+1/2ξ(T ))2

2ξ(T ) dy

= −(ln
B

F0

+ 1/2ξ(T ))Φ(−b + 1/2ξ(T )√
ξ(T )

) + B

√
ξ(T )

2π
e−

(b+1/2ξ(T ))2

2ξ(T ) .(4.6)
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Substituting (4.6) into (4.5), we have

V W (B, T ) = F0Φ(−b− 1/2ξ(T )√
ξ(T )

) + B

√
ξ(T )

2π
e−

(b+1/2ξ(T ))2

2ξ(T )

− B(1 + ln
B

F0

+
ξ(T )

2
)Φ(−b + 1/2ξ(T )√

ξ(T )
),(4.7)

which is the same as equation (2.15).

Similarly, we can obtain the explicit formula for pricing the put option.

(4.8)

V P (B,K, T ) = P (0, T )EQT [(K − F̂ (T ))+]

= P (0, T )EQT

[(
K − B

P (0, T )
e−Y

)+
]

= P (0, T )EQT

[(
K − B

P (0, T )
e−Y

)
1{Y ≥ b− c}

]

= P (0, T )KQT (Y ≥ b− c)−BEQT [e−Y 1{Y ≥ b− c}]

= KP (0, T )Φ

(
c + 1/2ξ(T )√

ξ(T )

)
+ BΦ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

−B

[
e−bΦ

(
c− 1/2ξ(T )√

ξ(T )

)
+ Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

−
∫ ∞

b−c

Φ

(
−y + b + 1/2ξ(T )√

ξ(T )

)
dy

]

= KP (0, T )Φ

(
c + 1/2ξ(T )√

ξ(T )

)
− F0Φ

(
c− 1/2ξ(T )√

ξ(T )

)

+B

∫ ∞

b−c

Φ

(
−y + b + 1/2ξ(T )√

ξ(T )

)
dy.

Integrating the integral in (4.8) by parts, we obtain

(4.9)

∫ ∞

b−c

Φ

(
−y + b + 1/2ξ(T )√

ξ(T )

)
dy = −(b− c)Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

+

∫ ∞

b−c

y√
2πξ(T )

e−
(y+b+1/2ξ(T ))2

2ξ(T ) dy

= −(2b + 1/2ξ(T )− c)Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

+

√
ξ(T )

2π
e−

(2b−c+1/2ξ(T ))2

2ξ(T ) .
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Substituting (4.9) into (4.8) gives

(4.10)

V P (B, K, T ) = KP (0, T )Φ

(
c+1/2ξ(T )√

ξ(T )

)
− F0Φ

(
c−1/2ξ(T )√

ξ(T )

)

+B

(
ln

KP (0, T )F0

B2
− ξ(T )

2

)
Φ

(
c− 2b− 1/2ξ(T )√

ξ(T )

)

+B

√
ξ(T )

2π
e−

(2b−c+1/2ξ(T ))2

2ξ(T ) .

Obviously, equation (4.10) is the same with (2.20).

5. Conclusions

This article considers the pricing of the maturity guarantee with dynamic with-
drawal benefit contract under a Vasicek stochastic interest rates framework. Be-
cause the DWB payment barrier is chosen to be a function of zero-coupon bond,
so the closed-form formulas for the value of the DWB payment stream and the
value of the European put option can be obtained by a probabilistic method or
by using the theory of reflected Brownian motion.

Appendix

From (2.10), we have

(A.1) QT (M > y, X < x) = e−yΦ

(
x− 2y + 1/2s√

s

)
,

where x ≤ y, and s = ξ(T ). Differentiating (A.1), we obtain the joint density
function of (M,X)

(A.2) QT (M ∈ dy,X ∈ dx) =
1√
2πs

e
(x+1/2s)2+4y2−4xy

2s
4y − 2x

s
dxdy, x ≤ y.

From equation (A.2), we have

(A.3)

EQT [1{M > b, M −X > b− c}]

=

∫ ∞

b

∫ y−b+c

−∞

1√
2πs

e−
(x+1/2s)2+4y2−4xy

2s
4y − 2x

s
dxdy

=

∫ ∞

b

∫ y−b+c

−∞

1√
2πs

e−
(x+1/2s−2y)2

2s e−y

(
4y − 2x− s

s
+ 1

)
dxdy

=

∫ ∞

b

∫ y−b+c

−∞

4y − 2x− s

s
√

2πs
e−ye−

(x+1/2s−2y)2

2s dxdy

+

∫ ∞

b

Φ

(
−y + b− c− 1/2s√

s

)
dy

=

∫ ∞

b

e−yI1dy +

∫ ∞

b

e−yΦ

(
−y + b− c− 1/2s√

s

)
dy.
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Integrating I1 by parts yields

I1 =
2√
2πs

e−
(y+b−c−1/2s)2

2s .(A.4)

Substituting (A.4) into (A.3), we have

EQT [1{M > b,M −X > b− c}]

=

∫ ∞

b

2e−y

√
2πs

e−
(y+b−c−1/2s)2

2s dy +

∫ ∞

b

e−yΦ

(
−y + b− c− 1/2s√

s

)
dy,(A.5)

Integrating the second integral in (A.5) by parts gives

EQT [1{M > b, M −X > b− c}]

=

∫ ∞

b

1√
2πs

eb−ce−
(y+b−c+1/2s)2

2s dy + e−bΦ

(
−2b− c− 1/2s√

s

)

= eb−cΦ

(
c− 2b− 1/2s√

s

)
+ e−bΦ

(
c− 2b + 1/2s√

s

)
.(A.6)

Similarly,

(A.7)

EQT [eX−M1{M > b, M −X > b− c}]

=

∫ ∞

b

∫ y−b+c

−∞
ex−y 1√

2πs
e−

(x+1/2s)2+4y2−4xy
2s

4y − 2x

s
dxdy

=

∫ ∞

b

∫ y−b+c

−∞

4y − 2x + s

s
√

2πs
e−

(x−1/2s−2y)2

2s dxdy

−
∫ ∞

b

Φ

(
−y + b− c + 1/2s√

s

)
dy

We integrate the above two integrals in (A.7) by parts

(A.8)

EQT [eX−M1{M > b, M −X > b− c}]

=

∫ ∞

b

2√
2πs

e−
(y+b−c+1/2s)2

2s dy + bΦ

(
c− 2b− 1/2s√

s

)

−
∫ ∞

b

y√
2πs

e−
(y+b−c+1/2s)2

2s dy

= (2 + 2b− c + 1/2s)Φ

(
c− 2b− 1/2s√

s

)

−
∫ ∞

b

(y + b− c + 1/2s)√
2πs

e−
(y+b−c+1/2s)2

2s dy

= (2 + 2b− c + 1/2s)Φ

(
c− 2b− 1/2s√

s

)
−

√
s

2π
e−

(2b−c+1/2s)2

2s ,

where the last equality is obtained by integrating by parts.
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