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Abstract. In this research article, seeking parameters dependent exact solutions, we
implement the new generalized (G′/G)-expansion to the (3+1)-dimensional Kadomtsev-
Petviashvili equation. The traveling wave solutions are expressed in terms of the hyper-
bolic functions, trigonometric functions, as well as rational functions. Herein, esta-
blished is therefore the fact that the new generalized (G′/G)-expansion method offers an
efficient and influential mathematical tool for constructing exact solutions of nonlinear
evolution equations (NLEEs). In mathematical physics, finding the exact solutions of
NLEEs reveals the salient features of the inner mechanism of possibly hidden complex
physical phenomena, modeled by the given equations. In consequence to our current
work and setup, not only does the new method appear to be straightforward and user-
friendly, but also, it turns out easily implementable by computer programmed and
symbolic algebra packages, yielding fast, albeit accurate results.
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1. Introduction

In recent years, scholars and researchers became highly interested in obtaining
exact solutions for nonlinear partial differential equations (NLEEs). NLEEs are
mathematical models of complex physical phenomena that may arise in engi-
neering, applied mathematics, chemistry, biology, mechanics, physics, the exact
solutions of which, when found, reveal the salient features of the hidden nonlinear
dynamics. Therefore, developing means to crack such models and extract the
exact solutions of NLEEs has become of utmost importance.

For the past three decades, searching for methods to solve NLEEs explicitly
has been a central targets of numerical mathematics. Many reputed such me-
thods have been developed. The list of methods include homogeneous balance [1],
[2], hyperbolic tangent expansion [3], [4], trial function [5], nonlinear transform
[6], theta function [7]–[9], inverse scattering transform [10], exp(−ϕ(ξ))-expansion
[11]–[14], Exp-function [15], [16], Hirota bilinear [17], Painleve expansion [18],
(G′/G)-expansion [19]–[25, 36], improved (G′/G)-expansion [26], [27], new gene-
ralized (G′/G)-expansion [28]–[35], and Sumudu transform method [37]–[46]. For
purpose, this paper aims to innovatively solve the (3+1)-dimensional Kadomtsev-
Petviashvili equation by using the new generalized (G′/G)-expansion to show its
suitability. The remainder of the paper is organized as follows: Section 2 is set for
the new expansion method description while Section 3 is reserved for the method
application to the (3+1)-dimensional Kadomtsev–Petviashvili equation. Results
comparisons discussions are provided in Section 4, followed by the conclusion in
Section 5. After acknowledgments, the paper culminates into a rich, albeit not
exhaustive, set of scholarly references for current and future interest.

2. The new generalized (G′/G)-expansion method

Let us consider a general nonlinear PDE in the form,

(1) P (u, ut, ux, utt, ut x, uxx, . . .) = 0,

where u = u(x, t)is an unknown, P is a polynomial in u(x, t)and its derivatives
including nonlinear terms are involved and the subscripts stand for the partial
derivatives.

Step 1: We combine the real variables x and t by a complex variable, ξ,

(2) u(x, t) = u(ξ), ξ = x± V t,

where, V is the speed of the traveling wave. The traveling wave transformation (2)
converts Eq.(1)into an ODE, for u = u(ξ), and with and superscripts indicating
differentiation with respect to ξ, we obtain the following polynomial Q of u and
it derivatives,

(3) Q(u, u′, u′′, u′′′, . . .) = 0.

Step 2: Accordingly, Eq. (3) can be integrated term by term once or more times,
to yield constant(s) of integration. The integral constant (s) may be set to zero
for simplicity.
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Step 3: Suppose the traveling wave solution of Eq. (3) can be expressed as
follows:

(4) u(ξ) =
N∑

i=0

ai(d + H)i +
N∑

i=1

bi(d + H)−i,

where, either aN or bN may be zero, but both aN and bNcould be zero at a time,
ai and bi (i = 1, 2, . . . , N) and d, are arbitrary constants to be determined, and
H(ξ) is given by

(5) H(ξ) = (G′/G)

where G = G(ξ) satisfies the following auxiliary nonlinear ordinary differential
equation:

(6) AG G′′ −BG G′ − E G2 − C (G′)2 = 0

where the prime stands for derivative with respect to ξ; A, B, C and E are real
parameters.

Step 4: To determine the positive integer N , taking the homogeneous balance
between the highest order nonlinear terms and the derivatives of the highest order
appearing in Eq. (3).

Step 5: Substituting Eq. (4) and Eq. (6) and Eq. (5) into Eq. (3) with the
value of N obtained in Step 4, we get polynomials in (d + H)Nand (d + H)−N ,
(N = 0, 1, 2, ...). We then collect coefficient a set of algebraic equations for d and V ,
ai and bi for (i = 0, 1, 2, ..., N).

Step 6: Suppose that the value of the constants ai and bi (i = 1, 2, ..., N), d and
V can be found. Since, the general solution of Eq. (6) is known to us, inserting
the values of ai and bi (i = 1, 2, ..., N), d and V into Eq. (4), we obtain more
general types and new exact traveling wave solutions of the NLEE (1). Using
Eq.(6) solution, we get the solutions of Eq. (5):

When B 6= 0, ψ = A− C and Ω = B2 + 4E(A− C) > 0,

(7) H(ξ) =

(
G′

G

)
=

B

2ψ
+

√
Ω

2ψ

C1 sinh
(√

Ω
2A

ξ
)

+ C2 cosh
(√

Ω
2A

ξ
)

C1 cosh
(√

Ω
2A

ξ
)

+ C2 sinh
(√

Ω
2A

ξ
)

when B 6= 0, ψ = A− C and Ω = B2 + 4E(A− C) < 0,

(8) H(ξ) =

(
G′

G

)
=

B

2ψ
+

√−Ω

2ψ

−C1 sin
(√−Ω

2A
ξ
)

+ C2 cos
(√−Ω

2A
ξ
)

C1 cos
(√−Ω

2A
ξ
)

+ C2 sin
(√−Ω

2A
ξ
)

when B 6= 0, ψ = A− C and Ω = B2 + 4E(A− C) = 0,

(9) H(ξ) =

(
G′

G

)
=

B

2ψ
+

C2

C1 + C2ξ
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when B = 0, ψ = A− C and ∆ = ψ E > 0,

(10) H(ξ) =

(
G′

G

)
=

√
∆

ψ

C1 sinh(
√

∆
A

ξ) + C2 cosh(
√

∆
A

ξ)

C1 cosh(
√

∆
A

ξ) + C2 sinh(
√

∆
A

ξ)

when B = 0, ψ = A− C and ∆ = ψ E < 0,

(11) H(ξ) =

(
G′

G

)
=

√−∆

ψ

−C1 sin(
√−∆

A
ξ) + C2 cos(

√−∆
A

ξ)

C1 cos(
√−∆

A
ξ) + C2 sin(

√−∆
A

ξ)

3. Application of the method

In this section, we use the new generalized (G′/G)-expansion method to look
for the solitary wave solutions to the (3+1)-dimensional Kadomtsev–Petviashvili
equation,

(12) (ut + 6 u ux + uux x x)x − 3 uy y − 3 uz z = 0.

Using the variable, u(ξ) = u(x, y, z, t), ξ = x+y+z−V t, we consider the resulting
ODE,

(13) (−V u′ + 6 u u′ + u′′′)′ − 6 u′′ = 0.

Then, integrating twice, and for K, the constant of integration to be determined,
we obtain,

(14) K − V u− 6u + 3 u2 + u′′ = 0.

Taking the homogeneous balance between u2 and u′′ in Eq. (14), we getN = 2.
Therefore, with, a0, a1, a2, b1, b2 and d constants to be determined, the solution of
Eq. (14) has the form,

(15) u(ξ) = a0 + a1(d + H) + a2(d + H)2 + b1(d + H)−1 + b2(d + H)−2,

Substituting Eqs. (15), (5) and (6) into Eq. (14), the left-hand side is converted
into polynomials in (d + H)N and (d + H)−N(N = 1, 2, . . .). We collect each
coefficient of these resulting polynomials to zero, yields a set of simultaneous
algebraic equations, (for simplicity which are not presented here) to be Maple
solved for a0, a1, a2, b1, b2, d, K and V .

Case 1: a0 = a0, a1 = 0, a2 = 0, d = d, b1 = 2
A2 (−2Edψ − EB + B2d + 2d3ψ2 −

3Bd2ψ), b2 = − 2
A2 (d

4ψ2 − 2Ed2ψ + E2 + 2Bd3ψ + B2d2 − 2BdE),

(16) V =
1

A2
(6a0A

2 − 6A2 + 12d2ψ2 + 12Bdψ − 8Eψ + B2),

K = 1
A4 (48Cd2EA2 − 72Bd3CA2 − 16BdEA2 + 2B3Ad− 48C3Ad4 + 16C3Ed2

+14C2B2d2 − 24C3Bd3 − 2B3Cd− 24a0A
3Cd2 + 12a0A

3Bd2 + 12a0A
2C2d2

+8a0A
2EC + 2CB2E − 2EB2A + 4E2C2 + 4A2E2 − 12a0A

2BdC + 12a0A
4d2

−8a0A
3E + a0A

2B2 + 32BAECd− 28B2Ad2C + 72BAC2d3 − 48C2Ad2E
−16C2BdE + 3a0A

4 + 12d4A4 + 12C4d4 − 8AE2C + 72C2d4A2 + 24Bd3A3

−16Ed2A3 − 48Cd4A3 + 14B2d2A2),
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where ψ = A− C, a0, A, B, C and E are free parameters.

Case 2: a1 = 2
A2 (Bψ + 2dψ2), a2 = −2ψ2

A2 , b1 = 0, b2 = 0, d = d, a0 = a0,

K = 1
A4 (48Cd2EA2−72Bd3CA2−16BdEA2+2B3Ad−48C3Ad4+16C3Ed2

+14C2B2d2−24C3Bd3−2B3Cd−24a0A
3Cd2 + 12a0A

3Bd2 + 12a0A
2C2d2

+8a0A
2EC + 2CB2E−2EB2A + 4E2C2 + 4A2E2−12a0A

2BdC + 12a0A
4d2

−8a0A
3E + a0A

2B2 + 32BAECd−28B2Ad2C+72BAC2d3−48C2Ad2E
−16C2BdE + 3a0A

4+12d4A4 + 12C4d4−8AE2C + 72C2d4A2+24Bd3A3

−16Ed2A3−48Cd4A3 + 14B2d2A2),

(17) V =
1

A2
(6a0A

2 − 6A2 + 12d2ψ2 + 12Bdψ − 8Eψ + B2).

where ψ = A− C, a0, A, B, C and E are free parameters.

Case 3: a1 = 0, b1 = 0, a2 = −2ψ2

A2 , d = − B
2ψ

, b2 = − 1
8A2ψ2 (16E2ψ2+8EB2ψ+B4),

V = 2
A2 (3a0A

2 − 3A2 −B2 − 4Eψ),

(18)
K =

1

A4
(3a2

0A
4 − 8a0A

3E + 8a0A
2EC − 2a0A

2B2 − 16A2E2

− 8EB2A + 32AE2C −B4 − 16E2C2 + 8CB2E).

where ψ = A− C, a0, A, B, C and E are free parameters.

For Case 1, substituting Eq. (16) into Eq. (15), along with Eq. (7) and
simplifying yields following travelling wave solutions (if C1 = 0 but C2 6= 0;
C2 = 0 but C1 6= 0) respectively:

u11(ξ) = a0 + b1

(
d +

B

2ψ
+

√
Ω

2ψ
coth

(√
Ω

2A
ξ

))−1

+ b2

(
d +

B

2ψ
+

√
Ω

2ψ
coth

(√
Ω

2A
ξ

))−2

.

u12(ξ) = a0 + b1

(
d +

B

2ψ
+

√
Ω

2ψ
tanh

(√
Ω

2A
ξ

))−1

+ b2

(
d +

B

2ψ
+

√
Ω

2ψ
tanh

(√
Ω

2A
ξ

))−2

,

where ξ = x− {
1

A2 (6a0A
2 − 6A2 + 12d2ψ2 + 12Bdψ − 8Eψ + B2)

}
t.

Substituting Eq. (16) into Eq. (15), along with Eq. (8) and simplifying, our
exact solutions become (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0) respectively:
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u13(ξ) = a0 + b1

(
d +

B

2ψ
+

√−Ω

2ψ
cot

(√−Ω

2A
ξ

))−1

+ b2

(
d +

B

2ψ
+

√−Ω

2ψ
cot

(√−Ω

2A
ξ

))−2

.

u14(ξ) = a0 + b1

(
d +

B

2ψ
−
√−Ω

2ψ
tan

(√−Ω

2A
ξ

))−1

+ b2

(
d +

B

2ψ
−
√−Ω

2ψ
tan

(√−Ω

2A
ξ

))−2

.

Substituting Eq. (16) into Eq. (15) together with Eq. (9) and simplifying, we
obtain

u15(ξ) = a0 + b1

(
d +

B

2ψ
+

C2

C1 + C2ξ

)−1

+ b2

(
d +

B

2ψ
+

C2

C1 + C2ξ

)−2

.

Substituting Eq. (16) into Eq. (15), along with Eq. (10) and simplifying, we
obtain following traveling wave but solutions (if C1 = 0 but C2 6= 0; C2 = 0 but
C1 6= 0) respectively:

u16(ξ) = a0 + b1

(
d +

√
∆

ψ
coth

(√
∆

A
ξ

))−1

+ b2

(
d +

√
∆

ψ
coth

(√
∆

A
ξ

))−2

.

u17(ξ) = a0 + b1

(
d +

√
∆

ψ
tanh

(√
∆

A
ξ

))−1

+ b2

(
d +

√
∆

ψ
tanh

(√
∆

A
ξ

))−2

.

Substituting Eq. (16) into Eq. (15), together with Eq. (11) and simplifying, our
obtained exact solutions become (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0)
respectively:

u18(ξ) = a0+b1

(
d +

√−∆

ψ
cot

(√−∆

A
ξ

))−1

+b2

(
(d +

√−∆

ψ
cot

(√−∆

A
ξ)

))−2

.

u19(ξ) = a0+b1

(
d−

√−∆

ψ
tan

(√−∆

A
ξ

))−1

+b

(
d−

√−∆

ψ
tan

(√−∆

A
ξ

))−2

.

Again for Case 2, substituting Eq. (17) into Eq. (15) along with Eq. (7) and
simplifying, the traveling wave solutions (if C1 = 0 but C2 6= 0; C2 = 0 but
C1 6= 0) respectively become:

u21(ξ) = a0 +
1

2A2

{
B2 − Ω coth2

(√
Ω

2A
ξ

)
+ 4dψ (B + dψ)

}
.

u22(ξ) = a0 +
1

2A2

{
B2 − Ω tanh2

(√
Ω

2A
ξ

)
+ 4dψ (B + dψ)

}
,
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where

ξ = x−
{

1

A2

(
6a0A

2 − 6A2 + 12d2ψ2 + 12Bdψ − 8Eψ + B2
)}

t.

Substituting Eq. (17) into Eq. (15), along with Eq. (8) and simplifying, yields
exact solutions (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0) respectively:

u23 = a0 +
1

2A2

{
B2 + Ω cot2

(√−Ω

2A
ξ

)
+ 4dψ (B + dψ)

}
.

u24(ξ) = a0 +
1

2A2

{
B2 + Ω tan2

(√−Ω

2A
ξ

)
+ 4dψ (B + dψ)

}
.

Substituting Eq. (17) into Eq. (15), along with Eq. (9) and simplifying, our
obtained solution becomes:

u25(ξ) = a0 +
1

2A2

{
B2 −

(
2 ψ C2

C1 + C2ξ

)2

+ 4 dψ (B + dψ)

}
,

Substituting Eq. (17) into Eq. (15), together with Eq. (10) and simplifying, yields
following traveling wave solutions (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0)
respectively:

u26(ξ) = a0+
2

A2

{
dψ(B + dψ) +

√
∆

(
B coth

(√
∆

A
ξ

)
−
√

∆ coth2

(√
∆

A
ξ

))}
.

u27(ξ) = a0+
2

A2

{
dψ (B + dψ) +

√
∆

(
B tanh

(√
∆

A
ξ

)
−
√

∆ tanh2

(√
∆

A
ξ

))}
.

Substituting Eq. (17) into Eq. (15), along with Eq. (11) and simplifying, our
exact solutions become (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0) respectively:

u28(ξ) = a0+
2

A2

{
dψ (B + dψ) +

√
∆

(
iB cot

(√−∆

A
ξ

)
+
√

∆ cot2

(√−∆

A
ξ

))}
.

u29(ξ) = a0+
2

A2

{
dψ(B + dψ)−

√
∆

(
iB tan

(√−∆

A
ξ

)
−
√

∆ tan2

(√−∆

A
ξ

))}
,

Finally, for Case 3, substituting Eq. (18) into Eq. (15), together with Eq. (7)
and simplifying, yields following traveling wave solutions (if C1 = 0 but C2 6= 0;
C2 = 0 but C1 6= 0) respectively:

u31(ξ) = a0 − Ω

2A2
coth2

(√
Ω

2A
ξ

)
+

4b2ψ
2

Ω
tanh2

(√
Ω

2A
ξ

)
.

u32(ξ) = a0 − Ω

2A2
tanh2

(√
Ω

2A
ξ

)
+

4b2ψ
2

Ω
coth2

(√
Ω

2A
ξ

)
.
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where

ξ = x−
{

2

A2
(3a0A

2 − 3A2 −B2 − 4Eψ)

}
t.

Substituting Eq. (18) into Eq. (15), along with Eq. (8) and simplifying, we obtain
following solutions (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0) respectively:

u3 3(ξ) = a0 +
Ω

2A2
cot2

(√−Ω

2A
ξ

)
− 4b2ψ

2

Ω
tan2

(√−Ω

2A
ξ

)
.

u3 4(ξ) = a0 +
Ω

2A2
tan2

(√−Ω

2A
ξ

)
− 4b2ψ

2

Ω
cot2

(√−Ω

2A
ξ

)
.

Substituting Eq. (18) into Eq. (15), along with Eq. (9) and simplifying, we get

u3 5(ξ) = a0 − 2ψ2

A2

(
C2

C1 + C2ξ

)2

+ b2

(
C2

C1 + C2ξ

)−2

.

Substituting Eq. (18) into Eq. (15), along with Eq. (10) and simplifying, yields
following exact traveling wave solutions (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0)
respectively:

u3 6(ξ) = a0− 2ψ2

A2

(
−B

2ψ
+

√
∆

ψ
coth(

√
∆

A
ξ)

)2

+b2

(
−B

2ψ
+

√
∆

ψ
coth(

√
∆

A
ξ)

)−2

.

u3 7(ξ) = a0−2ψ2

A2

(
−B

2ψ
+

√
∆

ψ
tanh(

√
∆

A
ξ)

)2

+b2

(
−B

2ψ
+

√
∆

ψ
tanh(

√
∆

A
ξ)

)−2

.

Substituting Eq. (18) into Eq. (15), along with Eq. (11) and simplifying, our
obtained exact solutions become (if C1 = 0 but C2 6= 0; C2 = 0 but C1 6= 0)
respectively:

u38(ξ) = a0 − 2ψ2

A2

(−B

2ψ
+

√−∆

ψ
cot

(√−∆

A
ξ

))2

+ b2

(−B

2ψ
+

√−∆

ψ
cot

(√−∆

A
ξ

))−2

.

u39(ξ) = a0 − 2ψ2

A2

(−B

2ψ
−
√−∆

ψ
tan

(√−∆

A
ξ

))2

+ b

(−B

2ψ
−
√−∆

ψ
tan

(√−∆

A
ξ

))−2

.

4. Discussion

Comparison of the new with the basic (G′/G)-expansion is given below followed
by the advantages. In Ref. [24], Song and Ge used the linear ordinary differential
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equation as auxiliary equation and traveling wave solutions presented in the form
u(ξ) =

∑m
i=0 ai(G

′/G)i, where am 6= 0. It is notable to point out that several of
our solutions are coincided with already published results, if parameters are given
particular values which verify our solutions. Furthermore, in Ref. [24], Song and
Ge investigated the (3+1)-dimensional Kadomtsev–Petviashvili equation to find
exact solutions via the basic (G′/G)-expansion method and achieved only three
solutions (A1)-(A6) in the Appendix. In contrast we give a set of twenty seven
solutions for the (3+1)-dimensional Kadomtsev–Petviashvili equation.

This reveals the immediate advantage of the new approach over the basic
(G′/G)-expansion method, since it provides a large quantity of new exact solutions
with some free parameters. The extra solutions of course yield more significance
into the understanding of the physical phenomena studied. On top of the enriched
physical significance, the NLEEs closed form solutions assist the numerical solvers
to compare the correctness of their results and help them in convergence and
stability analysis studies.

5. Conclusion and future work

The new generalized (G′/G)-expansion method is innovatively and lucratively
used to establish traveling wave solutions of the (3+1)-dimensional Kadomtsev–
Petviashvili equation. Comparing with the other methods in the literature, the
new generalized (G′/G)-expansion method appears to be easier and faster, by
means of the symbolic algebra packages. This article confirms that the method
is direct, brief and effective. The method can be used for treating many other
NLEEs of mathematical physics. Treading in this direction we plan to use the
Sumudu transform to study the equations and compare its solutions to the those
already obtained herein and in the literature. We plan to use a numerico-analytical
hybrid approach based on the new generalized expansion, and Sumudu transform
methods [37]–[46].

Appendix: Song and Ge’s solutions [24]

Song and Ge [24] obtained the following exact (3+1)-dimensional Kadomtsev–
Petviashvili solutions by using the basic (G′/G)-expansion method:

When λ2 − 4µ > 0,

(A.1) u1 = −1
2
(λ2 − 4µ)

(
C1 sinh

(
1
2

√
λ2−4µξ

)
+C2 cosh

(
1
2

√
λ2−4µξ

)

C1 cosh
(

1
2

√
λ2−4µξ

)
+C2 sinh

(
1
2

√
λ2−4µξ

)
)2

+ λ2

2
−2µ,

and

(A.2) u2 = −1
2
(λ2−4µ)

(
C1 sinh

(
1
2

√
λ2−4µξ

)
+C2 cosh

(
1
2

√
λ2−4µξ

)

C1 cosh
(

1
2

√
λ2−4µξ

)
+C2 sinh

(
1
2

√
λ2−4µξ

)
)2

− 1
6
(2λ2+4µ) + λ2

2
,

where ξ = x + y + z − (−6 + λ2 − 4µ)t and C1, C2 are arbitrary constants.

For C2 6= 0, C2
1 < C2

2 , the above solutions (A.1) turns into

u1 = −1
2
(λ2 − 4µ) tanh2

(√
λ2−4µξ

2
+ ξ0

)
+ λ2

2
− 2µ.
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and the solution (A.2) turns into

u2 = −1
2
(λ2 − 4µ) tanh2

(√
λ2−4µξ

2
+ ξ0

)
− 1

6
(2λ2 + 4µ) + λ2

2
, ξ0 = tanh−1

(
C1

C2

)
,

when λ2 − 4µ < 0,

(A.3) u3 = −1
2
(4µ− λ2)

(
−C1 sin

(
1
2

√
4µ−λ2ξ

)
+C2 cos

(
1
2

√
4µ−λ2ξ

)

C1 cos
(

1
2

√
4µ−λ2ξ

)
+C2 sin

(
1
2

√
4µ−λ2ξ

)
)2

+ λ2

2
− 2µ,

and

(A.4) u4 = −1
2
(4µ−λ2)

(
−C1 sin

(
1
2

√
4µ−λ2ξ

)
+C2 cos

(
1
2

√
4µ−λ2ξ

)

C1 cos
(

1
2

√
4µ−λ2ξ

)
+C2 sin

(
1
2

√
4µ−λ2ξ

)
)2

− 1
6
(2λ2+4µ) + λ2

2
,

where ξ = x + y + z − (−6− λ2 + 4µ)t and C1, C2 are arbitrary constants.

For C2 6= 0, C2
1 < C2

2 , solutions (A.3) and (A.4), respectively, turn into

u3 = −1
2
(4µ− λ2) cot2

(√
λ2−4µξ

2
+ ξ0

)
+ λ2

2
− 2µ,

and

u4 = −1
2
(4µ− λ2) cot2

(√
4µ−λ2ξ

2
+ ξ0

)
− 1

6
(2λ2 + 4µ) + λ2

2
, ξ0 = tanh−1

(
C1

C2

)
.

when λ2 − 4µ = 0,

(A.5) u5 =
−2C2

2

(C1+C2ξ)2
+ λ2

2
− 2µ,

where ξ = x + y + z + 6t and C1, C2 are arbitrary constants.

(A.6) u6 =
−2C2

2

(C1+C2ξ)2
− 1

6
(2λ2 + 4µ) + λ2

2
,

where ξ = x + y + z + 6t and C1, C2 are arbitrary constants.
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