SEPARATION AXIOMS BETWEEN T_0 AND T_1 ON LATTICES AND LATTICE MODULES

Gulsen Ulucak
Department of Mathematics
Gebze Technical University
P.K 141 41400, Gebze-Kocaeli
Turkey
e-mail: gulsenulucak@gtu.edu.tr

Unsal Tekir
Department of Mathematics
Marmara University
Ziverbey, 34722, Goztepe, Istanbul
Turkey
e-mail: utekir@marmara.edu.tr

Kursat Hakan Oral
Department of Mathematics
Yildiz Technical University
34720, Istanbul
Turkey
e-mail: khoral@yildiz.edu.tr

Abstract. In this study, we characterize the lattices and lattice modules whose prime spectrum satisfy some of the separation axioms between T_0 and T_1. This characterizations are the notion of pm–lattice, m–lattice, ε–lattice, etc. Similarly, this characterizations are the notion of PM–lattice module, μ–lattice module, ε–lattice module, etc.

Keywords: separation axioms, prime element, prime spectrum.

1. Introduction

A multiplicative lattice L is a complete lattice in which there is defined a commutative, associative multiplication which distributes over arbitrary joins and has compact greatest element 1_L (least element 0_L) as a multiplicative identity (zero). Multiplicative lattices have been studied extensively by E.W. Johnson, C.Jayaram, the current authors, and others, see, for example, [8]-[17]. An element a of a multiplicative lattice L is called compact if $a \leq \bigvee b_\alpha$ implies $a \leq b_{\alpha_1} \vee b_{\alpha_2} \vee ... \vee b_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, ..., \alpha_n\}$. Throughout this paper, L denotes multiplicative
lattice and \(L_* \) denotes the set of all compact elements of \(L \). An element \(a \in L \) is said to be proper if \(a < 1_L \). An element \(p < 1_L \) in \(L \) is said to be prime if \(ab \leq p \) implies \(a \leq p \) or \(b \leq p \). An element \(m < 1_L \) in \(L \) is said to be maximal if \(m < x \leq 1_L \) implies \(x = 1_L \). By a minimal prime element over an element \(n \) of \(L \) (or a prime element minimal over \(n \)), we mean a prime element which is minimal in the collection of all prime elements \(p \) with \(n \leq p \). Minimal prime elements over \(0_L \) are simply called the minimal prime elements. We define the dimension of \(L \), denoted with \(\dim(L) \), to be the maximal positive integer \(k \), if such exists, such that there exists a chain of prime different elements of \(L \) as \(p_0 < p_1 < \ldots < p_k \).

By a \(C \)-lattice we mean a (not necessarily modular) complete multiplicative lattice, with least element \(0_L \) and compact greatest element \(1_L \) (a multiplicative identity), which is generated under joins by multiplicatively closed subset \(C \) of compact elements. We note that in \(C \)-lattice, a finite product of compact elements is again compact. Since \(1_L \) is compact element, then maximal elements exist in \(L \). Further, if \(L \) is a \(C \)-lattice, then there is a minimal prime element of \(L \) (See, [15]). If \(\dim(L) = 0 \), then \(L \) is said to be zero-dimensional \(C \)-lattice. Note that \(L \) is a zero-dimensional lattice if and only if every prime element of \(L \) is maximal.

We denote by \(\sigma(L) \) the set of prime elements of \(L \). We put \(V(a) = \{ p \in \sigma(L) \mid a \leq p \} \) for any \(a \in L \). Then we introduce a topology on \(\sigma(L) \) such that \(\{ V(a) \mid a \in L \} \) is the family of all closed sets. With the above definition the following axioms are hold:

1. \(V(0_L) = \sigma(L) \) and \(V(1_L) = \emptyset \).
2. \(\bigcap_{\alpha} V(a_\alpha) = V(\bigvee a_\alpha) \) for any index set \(\Delta \).
3. \(V(a) \cup V(b) = V(a \land b) = V(ab) \) (See, [16]).

We define \(\zeta(L) = \{ V(a) \mid a \in L \} \) as it is family of all closed sets that satisfies (i), (ii) and (iii) conditions for \(L \). Then there is a topology on \(\sigma(L) \), say \(\tau \), and \(\tau \) is called the Zariski topology. Any open set in \(\sigma(L) \) is denoted \(\sigma(L) - V(a) \) such that \(a \in L \) since \(V(a) \) is closed set in \(\sigma(L) \). Let \(D_a = \sigma(L) - V(a) \) for \(a \in L \) (See, [7]).

Let \(M \) be a complete lattice. Recall that \(M \) is a lattice module over the multiplicative lattice \(L \), or simply an \(L \)-module in case there is a multiplication between elements of \(L \) and \(M \), denoted by \(lB \) for \(l \in L \) and \(B \in M \), which satisfies the following properties:

1. \((lb)B = l(bB) \);
2. \(\left(\bigvee_{\alpha} l_\alpha \right) \left(\bigvee_{\beta} B_\beta \right) = \bigvee_{\alpha,\beta} l_\alpha B_\beta \);
3. \(1_L B = B \);
4. \(0_L B = 0_M \).
for all \(l, l_\alpha, b \) in \(L \) and for all \(B, B_\beta \) in \(M \).

Let \(M \) be an L-module. The greatest element of \(M \) will be denoted by \(1_M \). An element \(N \in M \) is said to be proper if \(N < 1_M \). An element \(N < 1_M \) in \(M \) is said to be prime if \(aX \leq N \) implies \(X \leq N \) or \(a1_M \leq N \) for \(a \in L \), \(X \in M \). If \(N \) is a prime element of \(M \), then \((N : 1_M) \) is a prime element of \(L \) (See [10]). An element \(N < 1_M \) in \(M \) is said to be maximal if \(N < X \leq 1_M \) implies \(X = 1_M \). If \(1_M \) is a compact element of \(M \), then \(M \) has a maximal element by (See, [6]). If \(N \) and \(K \) belong to \(M \), \((N : K) \) is the join of all \(a \in L \) such that \(aK \leq N \). By a minimal prime element over an element \(N \) of \(M \) (or a prime element minimal over \(N \)), we mean a prime element which is minimal in the collection of all prime elements \(P \) with \(N \leq P \). Minimal prime elements over \(0_M \) are simply called the minimal prime elements. We define the dimension of \(M \), denoted with \(\text{dim}(M) \), to be the maximal positive integer \(k \), if such exists, such that there exists a chain of prime distinguished elements of \(L \) as \(P_0 < P_1 < \cdots < P_k \).

Let \(\sigma(M) \) be the set of all prime elements of \(M \). Next we define \(V(N) = \{P \in \sigma(M) \mid (N : 1_M) \leq (P : 1_M)\} \). Then the following axioms are hold:

(i) \(V(0_M) = \sigma(M) \) and \(V(1_M) = \emptyset \).

(ii) \(\bigcap_{\alpha \in \Delta} V(N_\alpha) = V\left(\bigvee_{\alpha \in \Delta} (N_\alpha : 1_M)1_M\right) \) for any index set \(\Delta \).

(iii) \(V(N) \cup V(K) = V(N \wedge K) \) (See, [7]).

We define \(\zeta(M) = \{V(N) \mid N \text{ is an element of } M\} \) as it is family of all closed sets that satisfies (i), (ii) and (iii) conditions for \(M \). Then there is a topology on \(\sigma(M) \), say \(\tau \), and \(\tau \) is called the Zariski topology. Any open set in \(\sigma(M) \) is denoted by \(\sigma(L) - V(N) \) such that \(N \in M \) since \(V(N) \) is closed set in \(\sigma(M) \). We define \(X_\alpha = \sigma(M) - V(a1_M) \) for each \(a \in L \) and it is clear that every \(X_\alpha \) is an open set in \(\sigma(M) \) (See, [7]).

For a topological space \((X, \tau)\) and \(x \in X \), define the kernel of \(x \), \(\overline{\{x\}} \), as the set \(\{y \in X \mid x \in \{y\}\} \). The set \(\overline{\{x\}} - \{x\} \) is called shell of \(x \) and it will be denoted in this work by \(\{x\} \). The closure of a subset \(A \) of a topological space \((X, \tau)\) is the intersection of the members of the family of all closed sets containing \(A \). The set \(A \) is called a point closure if \(A = \{p\} \) for some \(p \in X \). A point \(x \) is an accumulation point of a subset \(A \) of a topological space \((X, \tau)\) if every neighborhood of \(x \) contains points of \(A \) other than \(x \). Then it is true that each neighborhood of a point \(x \) intersects \(A \) if and only if \(x \) is either a point of \(A \) or an accumulation point of \(A \). The set of all accumulation points of a set \(A \) is called the derived set of \(A \) and it will be denoted by \(A' \). The closure of any set is the union of the set and the derived set of it (For more detail, see [5]).

With the Zariski topology on \(\sigma(L) \), since \(\{p\} = V(p) \) for \(p \in \sigma(L) \), it is clear that \(\{p\} - \{p\} = \{q \in \sigma(L) \mid p \in V(q) \text{ and } p \neq q\} \) and \(\{p\}' = V(p) - \{p\} = \{q \in \sigma(L) \mid p < q\} \). For this topology, \(\{p\} \) is a closed set if and only if \(p \) is a maximal element of \(L \) (See, [7]).
With the Zariski topology on \(\sigma(M) \), the above definitions and \(\overline{\{P\}} = V(P) = \{Q \in \sigma(M) : (P : 1_M) \leq (Q : 1_M)\} \) for \(P \in \sigma(M) \), it is clear that \(\overline{\{P\}} = \{Q \in \sigma(M) \mid P \in V(Q) \text{ and } P \neq Q\} \) and \(\overline{\{P\}'} = V(P) \setminus \{P\} = \{Q \in \sigma(M) \mid (P : 1_M) \leq (Q : 1_M) \text{ and } P \neq Q\} \) (see [7], Proposition 25).

An \(L \)-module \(M \) is called a multiplication lattice module if for every element \(N \in M \) there exists an element \(a \in L \) such that \(N = a1_M \). In this case, \(N = (N : 1_M)1_M \) (see [10] for more detail). If the set \(\{P\} \) is a closed in \(\sigma(M) \) then \(P \) is a maximal element of \(M \). The converse is also true, when \(M \) is a multiplication lattice \(L \)-module (See [7]).

Throughout this paper, we assume that \(1_L \) and \(1_M \) are compact element in \(L \) and \(M \), respectively.

2. Separation axioms between \(T_0 \) and \(T_1 \) on \(\sigma(L) \)

Definition 1 A topological space \((X, \tau)\) is:

1. \(T(\beta) \) if for any \(x \in X \), \(\{x\}' \) is empty or singleton.
2. \(T(\beta') \) if for any \(x \in X \), \(\overline{\{x\}} \) is empty or singleton.
3. \(T(\varepsilon) \) if for any \(x, y \in X \), \(x \neq y \), \(\{x\}' \cap \{y\}' \) is empty or singleton.
4. \(T_{UD} \) if for any \(x \in X \), \(\{x\}' \) is the union of disjoint closed sets.
5. \(T_D \) if for any \(x \in X \), \(\{x\}' \) is a closed set.
6. \(T_{DD} \) if it is \(T_D \) and for any \(x, y \in X \), \(x \neq y \), \(\{x\}' \cap \{y\}' = \emptyset \).
7. \(T_Y \) if for any \(x, y \in X \), \(x \neq y \), \(\overline{\{x\}} \cap \overline{\{y\}} \) is empty or singleton.
8. \(T_{YS} \) for any \(x, y \in X \), with \(x \neq y \), \(\overline{\{x\}} \cap \overline{\{y\}} \) is either empty or \(\{x\} \) or \(\{y\} \).

Definition 2 \(L \) is said to be \(pm \)-lattice if every prime element is contained a unique maximal element.

Proposition 1 \(\sigma(L) \) is a \(T(\beta) \)-space if and only if \(L \) is a \(pm \)-lattice and \(\dim(L) \leq 1 \).

Proof. (\(\Rightarrow \) : Let \(\sigma(L) \) be a \(T(\beta) \)-space. Assume that \(L \) is not a \(pm \)-lattice. Then there is a prime element \(p \) such that \(p < k \) and \(p < t \) with \(k \) and \(t \) two different maximal elements. So \(k, t \in V(p) \) and since \(p \neq k \) and \(p \neq t \), then \(k, t \in \{p\}' \), a contradiction.

Assume that \(\dim(L) \geq 2 \). Then there exist prime elements \(p, q, k \) such that \(p < q < k \). So \(q, k \in \{p\}' \), a contradiction.

(\(\Leftarrow \) : Let \(L \) be a \(pm \)-lattice and \(\dim(L) \leq 1 \). Suppose that \(\sigma(L) \) is not a \(T(\beta) \)-space. Then \(\{p\}' \neq \emptyset \) and \(\{p\}' \) is not singleton for some \(p \in \sigma(L) \). Thus there are two different prime elements \(k, t \) with \(k, t \in \{p\}' \). So \(p < k \) and \(p < t \). Since \(\dim(L) \leq 1 \), then \(k \) and \(t \) are maximal elements, a contradiction. \(\blacksquare \)
Definition 3 A lattice L is said to be m–lattice if every prime element contains a unique minimal prime element of L.

Proposition 2 Let L be a C–lattice. Then $\sigma(L)$ is a $T(\beta')$–space if and only if L is an m–lattice and $\dim(L) \leq 1$.

Proof. (\Rightarrow) : Let $\sigma(L)$ be a $T(\beta')$–space. Assume that L is not an m–lattice. Then there is a prime element p such that $u < p$ and $v < p$ with u and v two different minimal prime elements. Hence $p \in V(u)$ and $p \in V(v)$, that is, $p \in \{u\}$ and $p \in \{v\}$. Since $p \neq u$ and $p \neq v$, then $u, v \in \{p\} = \{p\} \setminus \{v\}$, a contradiction.

Assume that $\dim(L) \geq 2$. Then there exist prime elements p, q, k such that $p < q < k$. Thus $k \in V(p)$ and $k \in V(q)$, that is, $k \in \{p\}$ and $k \in \{q\}$. Therefore, $p, q \in \{k\}$, a contradiction.

(\Leftarrow) : Let L be a m–lattice and $\dim(L) \leq 1$. Suppose that $\sigma(L)$ is not a $T(\beta')$–space. Then $\{p\} \neq \emptyset$ and $\{p\}$ is not singleton for some $p \in \sigma(L)$. Thus there are two different prime elements k, t with $k, t \in \{p\}$. So $k < p$ and $t < p$. Since $\dim(L) \leq 1$, then k and t are minimal prime elements, a contradiction.

Definition 4 Let m, n be maximal elements of L and k, t be minimal prime elements of L. Then $\rho_<(m, n) = \{p \in \sigma(L) \mid p < m \land n\}$ and $\rho_>(k, t) = \{p \in \sigma(L) \mid k < p \land t < p\}$

Definition 5 A lattice L is called ε–lattice if $\rho_<(m, n)$ and $\rho_>(k, t)$ are empty or singleton for any different maximal elements m, n of L and different minimal prime elements k, t of L.

Proposition 3 Let L be a C–lattice. Then $\sigma(L)$ is a $T(\varepsilon)$–space if and only if L is an ε–lattice and $\dim(L) \leq 2$.

Proof. (\Rightarrow) : Let $\sigma(L)$ be a $T(\varepsilon)$–space. If L is not an ε–lattice, then $\rho_<(m, n)$ or $\rho_>(k, t)$ is neither empty nor singleton for any different maximal elements m, n of L and different minimal prime elements k, t of L. Assume that $\rho_<(m, n)$ is neither empty nor singleton. Then there are different prime elements p, q such that $p, q \in \rho_<(m, n)$. Thus $p < m \land n$ and $q < m \land n$, that is, $p < m$ and $p < n$, $q < m$ and $q < n$. Then $m, n \in \{p\}'$ and $m, n \in \{q\}'$. Hence $m, n \in \{p\}' \land \{q\}'$, a contradiction. Suppose that $\rho_>(k, t)$ is neither empty nor singleton. Then there exist different prime elements u, v such that $u, v \in \rho_>(k, t)$. Hence $k < u, t < u$ and $k < v, t < v$. Therefore, $u, v \in \{k\}'$ and $u, v \in \{t\}'$, a contradiction. If $\dim(L) \geq 3$, then there are $p, q, k, t \in \sigma(L)$ with $p < q < k < t$. So $k, t \in \{p\}' \land \{q\}'$, which is a contradiction.

(\Leftarrow) : Let L be a ε–lattice and $\dim(L) \leq 2$. Assume that $\sigma(L)$ is not a $T(\varepsilon)$–space. Then $\{p\}' \land \{q\}'$ is neither empty nor singleton for different prime elements p, q of L. Thus there are different prime elements k, t of L such that $k, t \in \{p\}' \land \{q\}'$. Thus we get $p < k, p < t$ and $q < k, q < t$. If p, q are minimal prime elements of L, then $k, t \in \rho_>(p, q)$, which is a contradiction. If p, q are not
minimal prime elements of L, then there exist minimal prime elements u, v of L such that $u < p$ and $v < q$. Then $u < p < k$, $u < p < t$ and $v < p < k$, $v < q < t$. Hence k, t are maximal elements of L since $\dim(L) \leq 2$. It is clear that $p < k \wedge t$ and $q < k \wedge t$. Indeed, if $p = k \wedge t$ or $q = k \wedge t$, then $k \leq p$ or $t \leq p$ or $k \leq q$ or $t \leq q$ as p, q are prime elements of L. This is contradict with k, t where are maximal elements of L. So we get $p < k \wedge t$ and $q < k \wedge t$. Hence $p, q \in \rho_{\subseteq}(k, t)$, a contradiction.

Definition 6 Let $p \in \sigma(L)$ be not maximal. Then L is called u–lattice if $a \lor b = 1_L$ for every elements a, b in $\{p\}'$.

Proposition 4 Let $\dim(L)$ be finite and L be a u–lattice. Then $\sigma(L)$ is a T_{UD}–space.

Proof. Let $p \in \sigma(L)$ and β be the set of minimal prime elements of $\{p\}'$. Assume that $x \in \{p\}'$. Then $p < x$. We have that there is a $q \in \beta$ such that $p < q \leq x$. So $x \in V(q)$. Thus $x \in \bigcup_{q \in \beta} V(q)$. Conversely, let $x \in \bigcup_{q \in \beta} V(q)$. Then $x \in V(q)$ for some $q \in \beta$. So $q \leq x$ and since $p < q$, then $p < x$. Hence $x \in \{p\}'$. Therefore $\{p\}' = \bigcup_{q \in \beta} V(q)$. Also $V(q_1) \cap V(q_2) = \emptyset$ for minimal prime elements q_1, q_2 with $p < q_1$ and $p < q_2$. Indeed, if $V(q_1) \cap V(q_2) \neq \emptyset$, then there is a $t \in \sigma(L)$ such that $t \in V(q_1) \cap V(q_2)$. Thus $q_1 \leq t$ and $q_2 \leq t$. Therefore, $q_1 \lor q_2 \leq t$. Hence $t = 1_L$, a contradiction.

Definition 7 A lattice L is called d–lattice if every prime non maximal element is different to the meet of the prime elements properly containing it.

Proposition 5 $\sigma(L)$ is a T_D–space if and only if L is a d–lattice.

Proof. (\Rightarrow) : Let $\sigma(L)$ be a T_D–space. If L is not a d–lattice, then there exists a prime non maximal element p such that p is the meet of the prime elements properly containing it, that is, $p = \bigwedge_{p < q} q$. Since $\sigma(L)$ is a T_D–space, then $\{p\}'$ is closed set. Then $\{p\}' = V(a)$ for $a \in L$. Since $a \leq q$ for every $q \in \{p\}'$, $a \leq \bigwedge_{q \in \{p\}'} q = p$. Thus $p \in V(a)$, a contradiction.

(\Leftarrow) : Let L be a d–lattice. If $p \in \sigma(L)$ is a maximal, then it is clear. Let $p \in \sigma(L)$ be a non maximal element. Since L is a d–lattice, then $p \neq \bigwedge_{p < q} q$. But $V(\bigwedge_{p < q} q) \subseteq V(p)$ since $p \leq \bigwedge_{p < q} q$. Since $p \notin V(\bigwedge_{p < q} q)$, then $V(\bigwedge_{p < q} q) \subseteq \{p\}'$. Now, let $k \in \{p\}'$. Then $p < k$ and so $\bigwedge_{p < q} q \leq k$, that is, $k \in V(\bigwedge_{p < q} q)$.

Definition 8 A lattice L is called y–lattice if any two different minimal prime element are contained in at most one maximal element.
Proposition 6 Let L be a C–lattice. $\sigma(L)$ is a T_Y–space if and only if L is a y–lattice and $\dim(L) \leq 1$.

Proof. (\Rightarrow) Let $\sigma(L)$ be a T_Y–space. Assume that L is not a y–lattice. Let p,q be minimal prime elements of L. Then there are two different maximal elements m,n of L containing p,q, that is, $p < m$, $p < n$ and $q < m$, $q < n$. Then $m,n \in V(p) = \{p\}$ and $m,n \in V(q) = \{q\}$. Thus $m,n \in \{p\} \cap \{q\}$, a contradiction. Suppose that $\dim(L) \geq 2$. Then there exist prime elements p,q,k such that $p < q < k$. So $q,k \in V(p) \cap V(q)$, that is, $q,k \in \{p\} \cap \{q\}$, a contradiction.

(\Leftarrow) Let L be a y–lattice and $\dim(L) \leq 1$. Assume that $\sigma(L)$ is not a T_Y–space. Then $\{p\} \cap \{q\}$ is neither empty nor singleton for two different minimal prime elements p,q. Thus we get $k,t \in \{p\} \cap \{q\}$. Then $p \leq k$, $p \leq t$ and $q \leq k$, $q \leq t$. Also $p \neq k$ and $p \neq t$. Indeed, if $p = k$ or $p = t$, then $p \in V(q) = \{q\}$. Thus $q < p$. We get that p is maximal since $\dim(L) \leq 1$. Thus $V(p) = \{p\}$ and so $\{p\} \cap \{q\} = \{p\}$, a contradiction. In a similar way, $q \neq k$ and $q \neq t$. Hence $p < k$, $p < t$ and $q < k$, $q < t$. Since $\dim(L) \leq 1$, then k and t are maximal elements, a contradiction.

Proposition 7 Let L be a C–lattice. $\sigma(L)$ is a T_{YS}–space if and only if L is an m–lattice and $\dim(L) \leq 1$.

Proof. (\Rightarrow) Let $\sigma(L)$ be a T_{YS}–space. Suppose that L is not an m–lattice. Let $p \in \sigma(L)$. Then there are two different minimal prime elements u,v such that $u < p$ and $v < p$. Thus $p \in V(u) = \{u\}$ and $p \in V(v) = \{v\}$ and so $p \in \{u\} \cap \{v\}$, a contradiction. Assume that $\dim(L) \geq 2$. Then there exist prime elements p,q,k such that $p < q < k$. Thus $k \in V(p) = \{p\}$ and $k \in V(q) = \{q\}$. Therefore, $k \in \{p\} \cap \{q\}$, a contradiction.

(\Leftarrow) Let L be an m–lattice and $\dim(L) \leq 1$. Let $p,q \in \sigma(L)$ with $p \neq q$. Assume that $\{p\} \cap \{q\} \neq \emptyset$ and $\{p\} \cap \{q\} \neq \{p\}$. Let $k \in \{p\} \cap \{q\}$. Then $k \neq p$ and $p < k$, $q \leq k$. Since $\dim(L) \leq 1$, then p is minimal prime element. Then $q = k$ because L is an m–lattice. Hence $\{p\} \cap \{q\} = \{q\}$.

3. Separation axioms between T_0 and T_1 on $\sigma(M)$

In this section, we will investigate the like of our studying on lattices for lattice modules.

Definition 9 An L–module M is said to be PM–lattice module if every prime element is contained a unique maximal element.

Proposition 8 Let M be an L–module. If $\sigma(M)$ is a $T(\beta)$–space, then the followings are hold:

a) M is a PM–lattice module.

b) $\dim(M) \leq 1$.
Proof. Let \(\sigma(M) \) be a \(T(\beta) \)-space.

a) Assume that \(M \) is not a \(PM \)-lattice module. Then there exists a prime element \(P \) such that \(P < N \) and \(P < K \) with \(N \) and \(K \) two different maximal elements. Since \((P : 1_M) \leq (N : 1_M) \), \((P : 1_M) \leq (K : 1_M) \) and \(P \neq N, P \neq K \), then \(N, K \in \{P\}' \), a contradiction.

b) If \(\dim(M) \geq 2 \), then there are prime elements \(P, N, K \) such that \(P < N < K \). So \((P : 1_M) \leq (N : 1_M) \leq (K : 1_M) \). Therefore \(N, K \in \{P\}' \), which is a false.

Definition 10 An \(L \)-module \(M \) is called \(\mu \)-lattice module if every prime element contains a unique minimal prime element.

Proposition 9 Let \(M \) be an \(L \)-module. Let \(\sigma(M) \) be a \(T(\beta') \)-space. Then the following statements are hold:

a) \(M \) is a \(\mu \)-lattice module.

b) \(\dim(M) \leq 1 \).

Proof. Let \(\sigma(M) \) be a \(T(\beta') \)-space.

a) If \(M \) is not a \(\mu \)-lattice module, then there is a prime element \(P \) such that \(K < P \) and \(T < P \) with \(K \) and \(T \) two different minimal prime elements. Then \((K : 1_M) \leq (P : 1_M) \) and \((T : 1_M) \leq (P : 1_M) \). Hence, \(P \in V(K) \) and \(P \in V(T) \). Then \(K, T \in \{P\} = \{\overline{P}\}\{P\} \), which is a contradiction.

b) If \(\dim(M) \geq 2 \), then there are prime elements \(P, N, K \) such that \(P < N < K \). Hence \((P : 1_M) \leq (N : 1_M) \leq (K : 1_M) \). Thus \(P, N \in \{K\} = \{\overline{K}\}\{K\} \), a contradiction.

Definition 11 Let \(M \) be an \(L \)-module. Let \(N, K \) be maximal elements of \(M \) and \(U, V \) be minimal prime elements of \(M \). Then

\[
\rho(N, K) = \{P \in \sigma(M) \mid (P : 1_M) \leq (N \land K : 1_M) \text{ and } P \neq N \land K\}
\]

\[
\delta(U, V) = \{P \in \sigma(M) \mid P \in \{U\}' \text{ and } P \in \{V\}'\}.
\]

Definition 12 An \(L \)-module \(M \) is a \(\varepsilon \)-lattice module if the set \(\rho(N, K) \) and \(\delta(U, V) \) are empty or singleton for any different maximal elements \(N, K \) and different minimal prime elements \(U, V \).

Let \(M \) be an \(L \)-module. We call \(M \) is a multiplication lattice \(L \)-module if for every element \(N \) of \(M \) there exists an element \(a \) of \(L \) such that \(N = a1_M \). In this case, we know that \(N = (N : 1_M)1_M \). (For more detail, see (10)).

Proposition 10 Let \(M \) be a multiplication lattice \(L \)-module. Then \(M \) is a \(\varepsilon \)-module and \(\dim(M) \leq 2 \) if and only if \(\sigma(M) \) is a \(T(\varepsilon) \)-space.
Proof. Let M be an ε–module and $\dim(M) \leq 2$. Suppose that $\sigma(M)$ is not a $T(\varepsilon)$–space. Then $\{P\}' \cap \{Q\}'$ is neither empty nor singleton for different prime elements P, Q of M. Thus there are different prime elements N, K of M such that $N, K \in \{P\}' \cap \{Q\}'$. Thus we get $(P : 1_M) \leq (N : 1_M), (P : 1_M) \leq (K : 1_M), P \neq N, K$ and $(Q : 1_M) \leq (N : 1_M), (Q : 1_M) \leq (K : 1_M), Q \neq N, K$.

Since M is a multiplication lattice L–module, we obtain $P < N, P < K$ and $Q < N, Q < K$. If P, Q are minimal prime elements, then $N, K \in \delta(P, Q)$, which is a contradiction. If P, Q are not minimal prime elements, then there are different minimal prime elements U, V such that $U < P$ and $V < Q$. Then we have $U < P < N, U < P < K$ and $V < Q < N, V < Q < K$. Thus N, K are maximal elements since $\dim(M) \leq 2$. It is clear that $P < N \land K$ and $Q < N \land K$.

Indeed, if $P = N \land K$ or $Q = N \land K$, $N \leq P$ or $K \leq P$ or $N \leq Q$ or $K \leq Q$ as P, Q are prime elements of M. This is contradict with N, K where are maximal elements of M. So we get $P < N \land K$ and $Q < N \land K$. Hence $P, Q \in \rho(N, K)$, a contradiction.

Conversely, let $\sigma(M)$ be a $T(\varepsilon)$–space. If M is not a ε–lattice module, then the set $\rho(N, K)$ or $\delta(U, V)$ is neither empty nor singleton for any different maximal elements N, K and different minimal prime elements U, V. If $\rho(N, K)$ is neither empty nor singleton, then there are $P, Q \in \sigma(M)$ such that $P, Q \in \rho(N, K)$, that is, $(P : 1_M) \leq (N \land K : 1_M), P \neq N \land K$ and $(Q : 1_M) \leq (N \land K : 1_M), Q \neq N \land K$. Since M is a multiplication lattice L–module, then $P < N \land K \leq N, P < N \land K \leq K$ and $Q < N \land K \leq N, Q < N \land K \leq K$. Thus $N \in \{P\}'$, $K \in \{P\}'$ and $N \in \{Q\}'$, $K \in \{Q\}'$. Thus, $N, K \in \{P\}' \cap \{Q\}'$, a contradiction. If $\delta(U, V)$ is neither empty nor singleton, then there are $S, T \in \sigma(M)$ such that $S, T \in \delta(U, V)$. Thus $S, T \in \{U\}'$ and $S, T \in \{V\}'$. Consequently, $S, T \in \{U\}' \cap \{V\}'$, a contradiction. If $\dim(M) \geq 3$, then there are prime elements P, Q, S, T such that $P < Q < S < T$. So $(P : 1_M) \leq (Q : 1_M) \leq (S : 1_M) \leq (T : 1_M)$. Thus, $S, T \in \{P\}' \cap \{Q\}'$, which is a contradiction.

Definition 13 An L–module M is a D–lattice module if every prime non-maximal element is not equal to the meet of the prime elements properly containing it.

Proposition 11 Let M be an L–module. If $\sigma(M)$ is a T_D–space, then M is a D–lattice module. The converse is also true when M is a multiplication lattice L–module.

Proof. Assume that $\sigma(M)$ is a T_D–space. Let $P \in \sigma(M)$ be a non-maximal element. Assume that $P = \bigwedge_{Q < P \in \sigma(M)} Q$. Since $\{P\}'$ is a closed set, there is an element K of M such that $\{P\}' = V(K)$. Then $(K : 1_M) \leq (Q : 1_M)$ for every $Q \in \{P\}' \Rightarrow (K : 1_M) \leq \bigwedge_{Q \in \{P\}'} (Q : 1_M) \Rightarrow (K : 1_M) \leq (\bigwedge_{Q \in \{P\}'} Q : 1_M) \leq (\bigwedge_{Q \in \sigma(M)} Q : 1_M) = (P : 1_M) \Rightarrow (K : 1_M) \leq (P : 1_M)$. Thus $P \in V(K) \Rightarrow P \in \{P\}'$.

which is a contradiction. Hence we get \(P \neq \bigwedge_{Q \in \sigma(M)} Q \).

Conversely, let \(M \) be a multiplication lattice \(L \)–module. If \(P \in \sigma(M) \) is maximal element, then \(V(P) = \{P\} \). Then \(\{P\}' = \emptyset \), that is, \(\{P\}' \) is a closed set. If \(P \) is prime non-maximal element, then \(P \) is not equal to the meet of the prime elements properly containing it, that is, \(P \neq \bigwedge_{Q \in \sigma(M)} P < Q \).

\(\bigwedge_{Q \in \sigma(M)} P < Q \).

Conversely, let \(M \) be a multiplication lattice \(L \)–module. If \(P \in \sigma(M) \) is maximal element, then \(V(P) = \{P\} \). Then \(\{P\}' = \emptyset \), that is, \(\{P\}' \) is a closed set. If \(P \) is prime non-maximal element, then \(P \) is not equal to the meet of the prime elements properly containing it, that is, \(P \neq \bigwedge_{Q \in \sigma(M)} P < Q \).

Since \(P < \bigwedge_{Q \in \sigma(M)} P < Q \), then \(V(\bigwedge_{Q \in \sigma(M)} P < Q) \subseteq V(P) \). Then \(P \in V(\bigwedge_{Q \in \sigma(M)} P < Q) \) but \(P \notin V(\bigwedge_{Q \in \sigma(M)} P < Q) \). Indeed, if \(P \in V(\bigwedge_{Q \in \sigma(M)} P < Q) \), then \((\bigwedge_{Q \in \sigma(M)} P < Q) : 1_M \leq (P : 1_M) \) and since \(M \) is a multiplication lattice \(L \)–module, then \(\bigwedge_{Q \in \sigma(M)} P < Q \leq P \), it is a contradiction. Hence \(V(\bigwedge_{Q \in \sigma(M)} P < Q) \subseteq \{P\}' \).

Conversely, let \(K \in \{P\}' \). Then \((P : 1_M) \leq (K : 1_M) \) and \(P \neq K \). Since \(M \) is a multiplication lattice \(L \)–module, then \(P < K \). Thus \(\bigwedge_{Q \in \sigma(M)} P < Q \leq K \) and so \(\{P\}' \subseteq V(\bigwedge_{Q \in \sigma(M)} P < Q) \). Consequently, \(\{P\}' = V(\bigwedge_{Q \in \sigma(M)} P < Q) \), that is, \(\{P\}' \) is a closed set.

Proposition 12 Let \(\sigma(M) \) be a \(T_{DD} \)–space. Then the following statements are hold:

a) \(M \) is a \(\mu \)–lattice module.

b) \(\dim(M) \leq 1 \).

Proof. Let \(\sigma(M) \) be a \(T_{DD} \)–space.

a) Assume that \(M \) is not a \(\mu \)–lattice module. Then there is a prime element \(P \) of \(M \) such that \(U < P \) and \(T < P \) with \(U \) and \(T \) two different minimal prime elements. So \((U : 1_M) \leq (P : 1_M) \) and \((T : 1_M) \leq (P : 1_M) \). Hence \(P \in \{U\}' \cap \{T\}' \), which is a contradiction.

b) Suppose that \(\dim(M) \geq 2 \). Then there are prime elements \(P,N,K \) such that \(P < N < K \). Hence \((P : 1_M) \leq (N : 1_M) \leq (K : 1_M) \). Thus \(K \in \{P\}' \cap \{N\}' \), a contradiction.

Definition 14 An \(L \)–module \(M \) is a \(Y \)–lattice module if any two distinct minimal prime elements are contained in at most one maximal element.
Proposition 13 Let M be an L–module. If $\sigma(M)$ is a T_Y–space, then M is a Y–lattice module and $\dim(M) \leq 1$. The converse is also true when M is a multiplication lattice L–module.

Proof. Let $\sigma(M)$ be a T_Y–space. Suppose that M is not a Y–lattice module. Let P, Q be two different minimal prime elements. Then there are two different maximal elements N, K such that $P < N, P < K$ and $Q < N, Q < K$. Then $(P : 1_M) \leq (N : 1_M)$, $(P : 1_M) \leq (K : 1_M)$ and $(Q : 1_M) \leq (N : 1_M)$, $(Q : 1_M) \leq (K : 1_M)$. Thus $N, K \in V(P) = \{P\}$ and $N, K \in V(Q) = \{Q\}$. Hence $N, K \in \{P\} \cap \{Q\}$, this is a contradiction. Let $\dim(M) \geq 2$. Then there are prime elements P, Q, T such that $P < Q < T$. Thus $(P : 1_M) \leq (Q : 1_M) \leq (T : 1_M)$. So $Q, T \in V(Q)$ and $Q, T \in V(P)$. Then $Q, T \in \{P\} \cap \{Q\}$, which is a false.

Conversely, let M be a multiplication lattice L–module. Let M be a Y–lattice module and $\dim(M) \leq 1$. Assume that $\sigma(M)$ is not a T_Y–space. Then $\{P\} \cap \{Q\} \neq \emptyset$ and $\{P\} \cap \{Q\}$ is not singleton for two different prime elements P, Q. So there are two prime elements N, K such that $N, K \in \{P\} \cap \{Q\}$ and so $(P : 1_M) \leq (N : 1_M), (P : 1_M) \leq (K : 1_M)$ and $(Q : 1_M) \leq (N : 1_M), (Q : 1_M) \leq (K : 1_M)$. Since M is a multiplication lattice L–module, $P \leq N, P \leq K$ and $Q \leq N, Q \leq K$. Also, $P \neq N$ and $P \neq K$. Indeed, if $P = N$ or $P = K$, then P is maximal as $\dim(M) \leq 1$. Hence $V(P) = \{P\} \neq \{P\}$ and so $\{P\} \cap \{Q\} = \{P\}$, a contradiction. In a similar way, $Q \neq N$ and $Q \neq K$. Then we get $P < N, P < K$ and $Q < N, Q < K$, so N and K are maximal elements, since $\dim(M) \leq 1$. But this contradicts with M which is a Y–lattice module.

Proposition 14 Let M be an L–module. If $\sigma(M)$ is a T_{YS}–space, then M is a μ–lattice module and $\dim(M) \leq 1$. The converse is also true when M is a multiplication lattice L–module.

Proof. Let $\sigma(M)$ be a T_{YS}–space. Suppose that M is not a μ–lattice module. Then there exists a prime element P containing two different minimal prime elements Q, T. So $P \in V(Q) \cap V(T)$, that is, $P \in \{Q\} \cap \{T\}$. This is a contradiction. Suppose that $\dim(M) \geq 2$. Then there are prime elements P, Q, T such that $P < Q < T$. Hence $(P : 1_M) \leq (Q : 1_M) \leq (T : 1_M)$. Thus $T \in V(P) \cap V(Q) \Rightarrow T \in \{P\} \cap \{Q\}$, which is a false.

Conversely, assume that M is a multiplication lattice L–module. Let M be a μ–lattice module and $\dim(M) \leq 1$. Let P, Q be different prime elements of M. Assume that $\{P\} \cap \{Q\} \neq \emptyset$ and $\{P\} \cap \{Q\} \neq \{P\}$. Let $K \in \{P\} \cap \{Q\}$. Then $K \neq P$, also $(P : 1_M) \leq (K : 1_M)$ and $(Q : 1_M) \leq (K : 1_M)$. Since M is a multiplication lattice L–module, then $P < K$ and $Q \leq K$. As $\dim(M) \leq 1$, then P is a minimal prime element and since M is a μ–lattice module, $Q = K$. Thus $\{P\} \cap \{Q\} = \{Q\}$.

References

Accepted: 31.10.2015