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Abstract. In this paper, we investigate a discrete competitive Lotka-Volterra predator-
prey model with multiple delays. For general non-autonomous case, sufficient conditions
which ensure the permanence and the global stability of the system are derived by
applying the differential inequality theory; For periodic case, sufficient conditions which
guarantee the existence of an unique globally stable positive periodic solution are esta-
blished. Some numerical simulations which illustrate our theoretical findings are carried
out.
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1. Introduction

Since the work of Berryman [1], the research on dynamical behavior of predator-
prey models has become one of the dominant themes in both ecology and mathe-
matical ecology. In particular, the stability of the equilibrium, the permanence
and extinction of species, the existence of periodic solutions and positive almost
periodic solutions, bifurcation and chaos of predator-prey models have been inves-
tigated in a number of notable studies [2]-[26]. In many applications, the nature
of permanence is of great interest. For example, Fan and Li [27] made a theoreti-
cal discussion on the permanence of a cooperative scalar population models with
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delays, Wang and Huang [28] addressed the permanence of a stage-structured
predator-prey system with impulsive stocking prey and harvesting predator, Liu
et al. [29] analyzed the permanence and global attractivity of an impulsive ratio-
dependent predator-prey system in a patchy environment. Zhao and Teng et al.
[30] established the permanence criteria for a delayed discrete nonautonomous-
species Kolmogorov systems. For more details, we refer to [31]-[40].

In 2008, Qiu and Cao [41] investigated the exponential stability of the fol-
lowing competitive Lotka-Volterra predator-prey system with delays

(1.1)

{
ẋ(t) = x(t)[b1 − a11x(t− τ11)− a12y(t− τ12],

ẏ(t) = y(t)[b2 − a21x(t− τ21)− a22y(t− τ22)],

where x(t) and y(t) denotes the density of population at time t, respectively,
bi, aij, i, j = 1, 2, and τij, i, j = 1, 2 are positive constants. Using the linear ma-
trix inequality(LMI) optimization approach and constructing suitable Lyapunov
function, Qiu and Cao [41] obtained a set of easily verifiable sufficient conditions
which guarantee the exponential stability of the positive equilibrium of system
(1.1). Considering that the environment fluctuates randomly, we think that it
is more reasonable to consider varying parameters of predator-prey systems. In-
spired by the viewpoint, we modify system (1.1) as follows.

(1.2)

{
ẋ(t) = x(t)[b1(t)− a11(t)x(t− τ11(t))− a12(t)y(t− τ12(t)],

ẏ(t) = y(t)[b2(t)− a21(t)x(t− τ21(t))− a22(t)y(t− τ22(t))].

Here we shall point out that discrete time models governed by difference equations
are more appropriate to describe the dynamics relationship among populations
than continuous ones when the populations have non-overlapping generations.
Moreover, discrete time models can also provide efficient models of continuous ones
for numerical simulations [4], [16], [42]. Thus it is reasonable and interesting to
investigate discrete time systems governed by difference equations. The principle
object of this article is to propose a discrete analogue system (1.2) and explore
its dynamics.

Following the ideas of [4], [11], we will discretize the system (1.2). Assume
that the average growth rates in system (1.2) change at regular intervals of time,
then we can obtain the following modified system:

(1.3)





ẋ(t)

x(t)
= b1([t])− a11([t])x([t]− τ11([t]))− a12([t])y([t]− τ12([t]),

ẏ(t)

y(t)
= b2([t])− a21([t])x([t]− τ21([t]))− a22([t])y([t]− τ22([t])),

where [t] denotes the integer part of t, t ∈ (0, +∞) and t 6= 0, 1, 2, .... We integrate
(1.3) on any interval of the form [k, k + 1), k = 0, 1, 2, ..., and obtain

(1.4)

{
x(t) = x(k) exp {b1(k)− a11(k)x(k − τ11(k))− a12(k)y(k − τ12(k)(t− k)} ,

y(t) = y(k) exp {b2(k)− a21(k)x(k − τ21(k))− a22(k)y(k − τ22(k))(t− k)} ,
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where for k ≤ t < k+1, k = 0, 1, 2, .... Let t → k + 1, then (1.4) takes the following
form:

(1.5)

{
x(k + 1) = x(k) exp {b1(k)− a11(k)x(k − τ11(k))− a12(k)y(k − τ12(k)} ,

y(k + 1) = y(k) exp {b2(k)− a21(k)x(k − τ21(k))− a22(k)y(k − τ22(k))} ,

which is a discrete time analogue of system (1.2), where k = 0, 1, 2, .... For the
point of view of biology, we shall consider (1.5) together with the initial conditions
x(0) ≥ 0, y(0) ≥ 0. The principle object of this article is to explore the dynamics
of system (1.5). Applying the differential inequality theory and the method of
Lyapunov function, we investigate the permanence and the globally asymptotically
stability of system (1.5).

Throughout this paper, we assume that

(H1) bi, aij, τij with i, j = 1, 2 are non-negative sequences bounded above and
below by positive constants.

Let τ = sup
1≤i,j≤2,k∈Z

{τij(k)}. We consider (1.5) together with the following initial

conditions

(1.6)
x(θ) = ϕ(θ) ≥ 0, y(θ) = ψ(θ) ≥ 0, θ ∈ N [−τ, 0] = {−τ,−τ + 1, ..., 0},

ϕ(0) > 0, ψ(0) > 0.

Obviously, the solutions of (1.5) and (1.6) are well defined for all k ≥ 0 and satisfy

x(k) > 0, y(k) > 0, for k ∈ Z.

The remainder of the paper is organized as follows: in Section 2, we introduce
some basic definitions and lemmas, some sufficient conditions for the permanence
of system (1.5) are obtained. In Section 3, some sufficient conditions for the
global stability of system (1.5) are established. The existence and stability of
system (1.5) are analyzed in Section 4. In Section 5, an example which shows the
feasibility of the main results is given. A brief conclusion is drawn in Section 6.

2. Permanence

For convenience, we always use the notations:

f l = inf
k∈Z

f(k), fu = sup
k∈Z

f(k),

where f(k) is a non-negative sequence bounded above and below by positive con-
stants. In order to obtain the main result of this paper, we shall first state the
definition of permanence and several lemmas which will be useful in the proof of
the main result.
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Definition 2.1 [43] We say that system (1.5) is permanent if there are positive
constants Mi,mi (i = 1, 2) such that for each positive solution (x(k), y(k)) of
system (1.5) satisfies

m1 ≤ lim
k→+∞

inf x(k) ≤ lim
k→+∞

sup x(k) ≤ M1,

m2 ≤ lim
k→+∞

inf y(k) ≤ lim
k→+∞

sup y(k) ≤ M2.

Lemma 2.1 [43] Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp{a(k)− b(k)x(k)}
for k ∈ N , where a(k) and b(k) are non-negative sequences bounded above and
below by positive constants. Then

lim
k→+∞

sup x(k) ≤ 1

bl
exp(au − 1).

Lemma 2.2 [43] Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp{a(k)− b(k)x(k)}, k ≥ N0,

lim
k→+∞

sup x(k) ≤ x∗ and x(N0) > 0, where a(k) and b(k) are non-negative se-

quences bounded above and below by positive constants and N0 ∈ N . Then

lim
k→+∞

inf x(k) ≥ min
{al

bu
exp{al − bux∗}, al

bu

}
.

Now we state our permanence result for system (1.5).

Theorem 2.1 Let M1,M2,m1 and m2 be defined by (2.4), (2.9), (2.15) and (2.20),
respectively. In addition to condition (H1), assume that the following condition

(H2) bl
1 > au

12M2, b
l
2 > au

21M1

holds, then system (1.5) is permanent, that is, there exist positive constants mi,Mi

(i = 1, 2) which are independent of the solution of system (1.5), such that for any
positive solution (x(k), y(k)) of system (1.5) with the initial condition x(0) ≥ 0,
y(0) ≥ 0, one has

m1 ≤ lim
k→+∞

inf x(k) ≤ lim
k→+∞

sup x(k) ≤ M1,

m2 ≤ lim
k→+∞

inf y(k) ≤ lim
k→+∞

sup y(k) ≤ M2.

Proof. Let (x1(k), x2(k)) be any positive solution of system (1.5) with the initial
condition (x(0), y(0)). It follows from the first equation of system (1.5) that

x(k + 1) = x(k) exp {b1(k)− a11(k)x(k − τ11(k))− a12(k)y(k − τ12(k)}
≤ x(k) exp {b1(k)}≤x(k) exp {bu

1} .(2.1)
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It follows from (2.1) that

(2.2) x(k − τ11(k)) ≥ x(k) exp{−bu
1τ

u}.
Substituting (2.2) into the first equation of system (1.5), it follows that

(2.3) x(k + 1) ≤ x(k)[bu
1 − al

11 exp{−bu
1τ

u}x(k)].

It follows from (2.3) and Lemma 2.1 that

(2.4) lim
k→+∞

sup x(k) ≤ 1

al
11

exp{bu
1τ

u + bu
1 − 1} := M1.

For any positive constant ε > 0, it follows from (2.4) that there exists a N1 > 0
such that for all k > N1

(2.5) x(k) ≤ M1 + ε.

By (1.5), we have

y(k + 1) = y(k) exp {b2(k)− a21(k)x(k − τ21(k))− a22(k)y(k − τ22(k))}
≤ y(k) exp{b2(k)} ≤ y(k) exp{bu

2},(2.6)

which leads to

(2.7) y(k − τ22(k)) ≥ y(k) exp{−bu
2τ

u}.
Substituting (2.7) into the second equation of system (1.5), we have

y(k + 1) = y(k) exp {b2(k)− a21(k)x(k − τ21(k))− a22(k)y(k − τ22(k))}
≤ y(k)[bu

2 − al
22 exp{−bu

2τ
u}y(k)].(2.8)

Thus it follows from Lemma 2.1 and (2.8) that

(2.9) lim
k→+∞

sup y(k) ≤ 1

al
22

exp{bu
2τ

u + bu
2 − 1} := M2.

For any positive constant ε > 0, it follows from (2.9) that there exists a N2 > 0
such that for all k > N2

(2.10) y(k) ≤ M2 + ε.

For k ≥ max{N1, N2}+ τu, it follows from the first equation of system (1.5) that

x(k + 1) = x(k)[b1(k)− a11(k)x(k − τ11(k))− a12(k)y(k − τ12(k))]

≥ x(k)[bl
1 − au

11(M1 + ε)− au
12(M2 + ε)],(2.11)

which leads to

(2.12) x(k − τ11(k)) ≤ x(k) exp{−[bl
1 − au

11(M1 + ε)− au
12(M2 + ε)]τu}.
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Substituting (2.12) into the first equation of system (1.5), it follows that

x(k + 1) ≥ x(k){bl
1 − au

12(M2 + ε)

−au
11 exp{−[bl

1 − au
11(M1 + ε)− au

12(M2 + ε)]τu}x(k)}.(2.13)

According to Lemma 2.2, it follows from (2.13) that

(2.14) lim
k→+∞

inf x(k) ≥ min{A1ε, A2ε},

where

A1ε =
bl
1 − au

12(M2 + ε)

au
11 exp{−[bl

1 − au
11(M1 + ε)− au

12(M2 + ε)]τu}

× exp
{

bl
1 − au

12(M2 + ε)− au
11 exp{−[bl

1 − au
11(M1 + ε)

−au
12(M2 + ε)]τu}

}
M1,

A2ε =
bl
1 − au

12(M2 + ε)

au
11 exp{−[bl

1 − au
11(M1 + ε)− au

12(M2 + ε)]τu} .

Setting ε → 0 in (2.14), we can get

(2.15) lim
k→+∞

inf x(k) ≥ 1

2
min{A1, A2} := m1,

where

A1 =
bl
1 − au

12M2

au
11 exp{−[bl

1 − au
11M1 − au

12M2]τu}

× exp
{

bl
1 − au

12M2 − au
11 exp{−[bl

1 − au
11M1 − au

12M2]τ
u}

}
M1,

A2 =
bl
1 − au

12M2

au
11 exp{−[bl

1 − au
11M1 − au

12M2]τu} .

For k ≥ max{N1, N2}+ τu, from the second equation of system (1.5), we have

y(k + 1) = y(k)[b2(k)− a21(k)x(k − τ21(k))− a22y(k − τ22(k)]

≥ y(t)[bl
2 − au

21(M1 + ε)− au
22(M2 + ε)],(2.16)

which leads to

(2.17) y(k − τ22(k)) ≤ y(k) exp{bl
2 − au

21(M1 + ε)− au
22(M2 + ε)]τu}.

Substituting (2.17) into the second equation of system (1.5), it follows that

y(k + 1) ≥ y(k){bl
2 − au

22 exp{[bl
2 − au

21(M1 + ε)− au
22(M2 + ε)]τu}y(k)

−au
21(M1 + ε)}.(2.18)
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By Lemma 2.2 and (2.18), we can get

(2.19) lim
k→+∞

inf y(k) ≥ min{B1ε, B2ε},

where

B1ε =
bl
2 − au

21(M1 + ε)

au
22 exp{−[bl

2 − au
21(M1 + ε)− au

22(M2 + ε)]τu} exp
{

bl
2 − au

21(M1 + ε)

−au
22 exp{−[bl

2 − au
21(M1 + ε)− au

22(M2 + ε)]τu}
}

M2,

B2ε =
bu
2 − au

21(M1 + ε)

au
22 exp{[bl

2 − al
21(M1 + ε)− au

22(M2 + ε)]τu} .

Setting ε → 0 in above inequality, it follows that

(2.20) lim
k→+∞

inf y(k) ≥ 1

2
min{B1, B2} := m2,

where

B1 =
bl
2 − au

21M1

au
22 exp{−[bl

2 − au
21M1 − au

22M2]τu}

× exp
{

bl
2 − au

21M1 − au
22 exp{−[bl

2 − au
21M1 − au

22M2]τ
u}

}
M2,

B2 =
bu
2 − au

21M1

au
22 exp{[bl

2 − al
21M1 − au

22M2]τu} .

By (2.4), (2.9), (2.15) and (2.20), we can conclude that system (1.5) is permanent.
The proof of Theorem 2.1 is complete.

Remark 2.1. Under the assumption of Theorem 2.1, the set [m1, M1]× [m2,M2]
is an invariant set of system (1.5).

3. Global stability

In this section, we formulate the stability property of positive solutions of system
(1.5) when all the time delays are zero.

Theorem 3.1 Let τij = 0(i, j = 1, 2). In addition to (H1)–(H2), assume further
that (H3)

Θ1 = max{|1− au
11M1|, |1− al

11m1|}+ au
12M2 < 1,

Θ2 = max{|1− au
22M2|, |1− al

22m3|}+ au
21M1 < 1.

Then for any positive solutions (x(k), y(k)) and (x∗(k), y∗(k)) of system (1.5), we
have

lim
k→∞

[x∗(k)− x(k)] = 0, lim
k→∞

[y∗(k)− y(k)] = 0.
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Proof. Let

(3.1) x(k) = x∗(k) exp(u(k)), y(k) = y∗(k) exp(v(k)).

Then system (1.5) is equivalent to

(3.2)





u(k + 1) = u(k)− a11(k)x∗(k)(exp(u(k))− 1)

−a12(k)y∗(k)(exp(v(k))− 1)

v(k + 1) = v(k)− a21(k)x∗(k)(exp(u(k))− 1),

−a22(k)y∗(k)(exp(v(k))− 1).

Then

(3.3)





u(k + 1) = u(k)− a11(k)x∗(k)(exp(θ11(k)u(k))u(k)

−a12(k)y∗(k)(exp(θ12(k)y(k))y(k)

v(k + 1) = v(k)− a21(k)x∗(k)(exp(θ21(k)u(k))u(k),

−a22(k)y∗(k)(exp(θ22(k)v(k))v(k),

where θij(k) ∈ [0, 1](i, j = 1, 2). To complete the proof, it suffices to show that

(3.4) lim
k→+∞

u(k) = 0, lim
k→+∞

v(k) = 0.

In view of (H3), we can choose ε > 0 small enough such that

Θε
1 = max{|1− au

11(M1 + ε)|, |1− al
11(m1 − ε)|}+ au

12(M2 + ε) < 1,(3.5)

Θε
2 = max{|1− au

22(M2 + ε)|, |1− al
22(m2 − ε)|}+ au

21(M1 + ε) < 1.(3.6)

For above ε > 0, in view of Theorem 2.1 in Section 2, there exists a k∗ ∈ N such
that

m1 − ε≤x∗(k) ≤ M1 + ε, m2 − ε≤y∗(k) ≤ M2 + ε for all k ≥ k∗.

Noticing that θij(k) ∈ [0, 1] (i, j = 1, 2) implies that x∗(k) exp(θij(k)u(k)) lies
between x∗(k) and x(k) and y∗(k) exp(θij(k)v(k)) lies between y∗(k) and y(k).
From (3.3), we have

u(k + 1) ≤ max{|1− au
11(M1 + ε)|, |1− al

11(m1 − ε)|}|u(k)|(3.7)

+au
12(M2 + ε)|v(k)|,

v(k + 1) ≤ max{|1− au
22(M2 + ε)|, |1− al

22(m3 − ε)|}|v(k)|(3.8)

+au
21(M1 + ε)|u(k)|.

Let ρ = max{Θε
1, Θ

ε
2}, then ρ < 1. By (3.7) and (3.8), for k ≥ k∗, we have

max{|u(k + 1)|, |v(k + 1)|} ≤ ρ max{|u(k)|, |v(k)|},
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which implies

max{|u(k)|, |v(k)|} ≤ ρk−k∗ max{|u(k∗)|, |v(k∗)|}.
Thus (3.4) holds true and the proof is completed.

4. Existence and stability of periodic solution

In this section, we further assume that τij = 0(i, j = 1, 2) and the coefficients of
system (1.5) satisfy the following condition

(H4) There exists a positive integer ω such that for k ∈ N, 0 < bi(k + ω) = bi(k),
0 < aij(k + ω) = aij(k) (i, j = 1, 2).

Theorem 4.1 Assume that (H1)–(H4) are satisfied, then system (1.5) with all the
delays τij = 0 (i, j = 1, 2) admits at least one positive ω-periodic solution which
we denote by (x∗(k), y∗(k)).

Proof. As pointed out in Remark 2.1 of Section 2,

D2 def
= [m1,M1]× [m2,M2]

is an invariant set of system (1.5). Then we define a mapping F on D2 by

F (x1(0), x2(0)) = (x1(ω), x2(ω)), for (x1(0), x2(0)) ∈ D2.

Clearly, F depends continuously on (x1(0), x2(0)). Thus F is continuous and
maps the compact set D2 into itself. Therefore , F has a fixed point. It is not
difficult to see that the solution (x∗1(k), x∗2(k)) passing through this fixed point is
an ω-periodic solution of the system (1.5). The proof of Theorem 4.1 is complete.

Theorem 4.2 Assume that (H1)–(H4) are satisfied, then system (1.5) with all
the delays τij = 0(i, j = 1, 2) has a global stable positive ω-periodic solution.

Proof. Under the assumptions (H1)–(H4), it follows from Theorem 4.1 that
system (1.5) with all the delays τij = 0(i, j = 1, 2) admits at least one positive
ω-periodic solution. In addition, Theorem 3.1 ensures the positive solution to be
globally stable. Hence the proof.

5. Numerical example

In this section, we will give an example which shows the feasibility of the main
results (Theorem 2.1) of this paper. Let us consider the following discrete system:

(5.1)





x(k + 1) = x(k) exp

{(
2 + 0.03 sin

kπ

2

)
−

(
0.4 + 0.01 sin

kπ

2

)
x(k − 1)

−
(

0.05 + 0.02 cos
kπ

2

)
y(k − 1)

}
,

y(k + 1) = y(k) exp

{(
3 + 0.05 cos

kπ

2

)
−

(
0.5 + 0.2 sin

kπ

2

)
x(k − 1)

−
(

0.4 + 0.02 sin
kπ

2

)
y(k − 1)

}
.
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Here b1(k) = 2 + 0.03 sin kπ
2

, b2(t) = 3 + 0.05 cos kπ
2

, a11(k) = 0.4 + 0.01 sin kπ
2

,
a12(k) = 0.05 + 0.02 cos kπ

2
, a21(k) = 0.5 + 0.2 sin kπ

2
, a22(k) = 0.4 + 0.02 sin kπ

2
,

τij(k) = 1 (i, j = 1, 2). All the coefficients bi(k) (i = 1, 2), aij(k) (i, j = 1, 2),
τij(k) (i, j = 1, 2) are functions with respect to k, and it is not difficult to obtain
that bu

1 = 2.03, bl
1 = 1.97, bu

2 = 3.05, bl
2 = 2.95, au

11 = 0.401, al
11 = 0.39, au

12 = 0.07,
al

12 = 0.03, au
21 = 0.7, al

21 = 0.3, au
22 = 0.42, al

22 = 0.38, τu
ij = τ l

ij = 1 (i, j = 1, 2).
It is easy to check that all the conditions of Theorem 2.1 are fulfilled. Thus system
(5.1) is permanence which is shown in Figure 1.

0 500 1000 1500
0

1

2

3

4

5

6

k

x(
k)

, y
(k

)

Figure 1: The dynamical behavior of the first the second components of the
solution (x(k), y(k)) system (5.1), where the red line stands for x(k) and the blue
line stands for y(k).

6. Conclusions

In this paper, we have considered the dynamical behavior of a discrete competi-
tive Lotka-Volterra predator-prey model with multiple delays. A set of sufficient
conditions which ensure the permanence of the model are obtained. Moreover,
we also discuss the global stability of the model with all the delays τij(k) = 0
(i, j = 1, 2) and deal with the existence and stability of the system. It is showed
that delay has important influence on the permanence of system. Therefore, delay
plays an key role in the permanence of the model. When all the delays are zero,
we establish some sufficient conditions which guarantee the global stability of the
model. Some simulations are presented to illustrate our main theoretical findings.
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