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Abstract. A Banach space operator T satisfies generalized a-Weyl’s theorem if the
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1. Introduction

The open problem in operator theory known as the invariant subspace problem
assert that: any Hilbert space operator acting on an infinitely-dimensional, se-
parable, complex Hilbert space operator has proper invariant subspaces. In [23]
the author gave a negative answer to this problem in the case of a Banach space
operators. As for Hilbert space operators, this is also an open problem. In [22],
it is proved that this problem has a negative answer if and only if there is some
hypercyclic operator T on the Hilbert space H such that any nonzero x in H is
a hypercyclic vector of T. Hence interest in hypercyclic operators arises from the
invariant subspace problem. Recall that an operator 7" on the Hilbert space H is
hyponormal if 7*T > TT*. In [13], it is proved that hyponormal operators satisfy
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generalized Weyl’s theorem. However, in [19, Corollary 4.5], it is proved that
hyponormal operator are not hypercyclic. Hence it is naturel to ask about the
relation between hypercyclic/supercyclic operators and Weyl type theorems. In
this direction and using Herrero’s results [16] about spectral properties satisfied
by hypercyclic/supercyclic operators, Duggal in [14] gave necessary and sufficient
conditions for hypercyclic/supercyclic Banach spaces operator to satisfy a-Weyl’s
theorem. Hypercyclic/supercyclic operators which satisfy Weyl type theorems are
also recently studied in [12], [25].

In this note, we prove that if T" is a hypercyclic or supecyclic Banach space
operator, then T and T™ satisfy generalized a-Browder’s theorem. More, we give
necessary and/ or sufficient conditions for hypercyclic and supercyclic Banach
space operators to satisfies generalized a-Weyl’s theorem.

2. Notation and terminology

Let X an infinite complex separable Banach space and T' € £(X) be the algebra
of all bounded linear operator on X. The T-orbit of a vector space x € X is the
set

O(z, T) ={T"x ; n € N}.

The operator T is said to be hypercyclic if there is some vector z € X such that
O(x,T) is dense in X . Similarly, 7" is said to be supercyclic if there exists a vector
x € X such that the set

CO(x, T) ={\T"xz ; ne N, A e C}

is dense in X. The sets of all hypercyclic operators and supercyclic operators will
be denoted by HC(X) and SC(X) respectively.

Recall that T € L£(X) is said to be bounded below, if 7" is injective and the
range R(T) of T is closed. Denote the approximate point spectrum of 7" by

0,(T) ={A € C: T — Al is not bounded below}.

Let
os(T) ={\ € C:T — A\ is not surjective}

denote the surjectivity spectrum of T'. Clearly, o(T') = 0,(T") U o4(T), the spec-
trum of 7. Denote by «(T) the dimension of the kernel kerT', and by 5(T)
the codimension of the range R(7'). An operator T' € L£(X) is said to be upper
semi-Fredholm (respectively, lower semi-Fredholm) operators if R(T") is closed and
a(T) is finite (respectively, 5(T') is finite). In this case the index of 7" is defined
by ind(T) = a(T) — S(T). An operator T is said to be a Fredholm operator if it is
both upper semi-Fredholm and lower semi-Fredholm. SF,(X) and SF_(X) will
stand for the set of all upper semi-Fredholm operators and by the set of all lower
semi-Fredholm operators, respectively. This two classes of operators generate the
upper semi-Fredholm spectrum and lower semi-Fredholm spectrum defined by

osp (T) ={\€C:T — ¢ SF,(X)}
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and
osp (T)={AeC:T—-X¢SF (X)}.

In addition the set
SF(X)={T € SF{(X) : ind(T) <0}
generates the following Weyl essential approximate point spectrum
O’SF;(T) ={AeC:T-X¢SF (X)}.

Recall that the ascent a(T') of an operator T, is defined by a(T) = inf{n € N :
ker T™ = ker T"*1} and the descent d(T) = inf{n € N : T"X = T""1 X}, with
inf ) = oo. It is well known that if a(7) and d(7T') are both finite, then a(T") = d(T')
(see [17] for more details).

The Weyl essential approximate point spectrum and the Browder essential
approximate point spectrum of T' € £(X) are the sets

Oaw(T) ={\ € 0,(T) : T — A is not upper semi-Fredholm or 0 < ind(T —\I)}
and
oap(T) ={A € 0a(T) : A € 04(T) or a(T — \I) = o0}.

It is clear that
OSF, (T) g an(T) g Uab(T) g Ua(T)-

An operator T' € L(X) is said to be Weyl operator if it is Fredholm operator of
index zero. The Weyl spectrum o,,(T") is defined by

ow(T)={N € C:T — A is not Weyl operator}.

For T' € £(X) and a nonnegative integer n define 7T}, to be the restriction of
T to R(T™) viewed as a map from R(7") into R(T™). If for some integer n the
range space R(T") is closed and T, is semi-Fredholm operator, upper or lower, in
the usual sense, then T is called semi B-Fredholm operator. In this case the index
of T' is defined as the index of the semi-Fredholm operator 7j,.

Similarly, we define the upper semi B-Fredholm, lower semi B-Fredholm and
B-Fredholm operator of T" by:

ospr, (T) ={A € o(T) : T — X is not upper semi B-Fredholm },

ospr (T) ={A € o(T): T — X is not lower semi B-Fredholm }

and
opr(T) ={N € o(T): T — X is not B-Fredholm },

respectively. If T is B-Fredholm operator of index zero, then T is said to be a
B-Weyl operator and the B-Weyl spectrum is defined by:

opw(T) ={A € C: T — X is not B-Weyl operator}.
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A complex number X € o(7T) is a pole of resolvent of " € L(X) if T — A\
has finite ascent and descent. Apparently, if A € o(T') is a pole of the resolvent of
T € L(X), then A € isoo(T), the set of isolated points of o(T"). To introduce the
definitions of the main notions studied in this work, some notations are needed.
Let T € £(X) and denote by II(T) = {A € C: a(T — \X) = d(T — ) < oo}
(respectively, Io(T) = {A € I(T) : a(T — A\I) < oo}) the set of poles of T'
(respectively, the set of poles of finite rank of 7). Similarly denote by I1%(T") =
{N€ 0, (T) : a(T — X)) =d < oo and (T — M )¥1E is closed} (respectively,
I3(T) = {X € I(T") : (T — M) < o0}) the set of left poles of T' (respectively,
the set of left poles of finite rank of T"). In the sequel let I(T") = isoo(T) \ II(T)
and I(T) = isoo,(T) \ II*(T). In addition, given T" € L(X), let E(T) = {\ €
isoo(T) : 0 < a(T — M)} (respectively, Eo(T) = {\ € E(T) : o(T — X\[) < o0})
the set of eigenvalues of T" which are isolated in the spectrum of T (respectively,
the set of eigenvalues of finite multiplicity isolated in (7). Now we introduce
the main notions that has been studied in [5], [9], [10].

Definition 2.1 Let 7' € £(X). Then it will be said that
(i) Browder’s theorem holds for T', if ¢,,(T) = o(T') \ ILy(7),
(ii) Generalized Browder’s theorem holds for T, if 0, (T) = o(T) \ II(T),
(iii) a-Browder’s theorem holds for T, if 0,,(T) = 04(T) \ IIE(T),
(iv) Generalized a-Browder’s theorem holds for T', if 045 Fr (T) = o,(T)\11*(T).

Definition 2.2 Let 7' € £(X). Then it will be said that
(i) Weyl’s theorem holds for T', if 0,,(T") = o(T) \ Eo(T),

)
(ii) Generalized Weyl’s theorem holds for T', if oy,,(T) = o(T) \ E(T),
(iii) Property (w) holds for T', if 0,4, (1) = 04(T) \ Eo(T),

)

(iv) Property (gw) holds for T, if JSBF;(T) =0,(T)\ E(T).

Recall that an operator T' € L£(X) is said to have the single valued extension
property at Ay € C (abbreviated SVEP at )\;), if for every open disc D cen-
tered at Ao, the only analytic function f : D — X which satisfies the equation
(T'— M) f(\) =0 for all A € D is the function f = 0. An operator T' € L(X) is
said to have SVEP if T has SVEP at every A € C, see [1], [21] for more details
about the SVEP.

3. Hypercyclic/Supercyclic operators satisfying generalized
a-Weyls’s theorem

In the sequel, we will use the following lemma.

Lemma 3.1 LetT € L(X). IfT € HC(X)USC(X), then the SVEP holds for T*.
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Proof. if T € SC(X), then from [7]
0,(T*) = 0 or 0,(T*) = {a}, where a € C\{0}.

Hence T satisfies the SVEP. .

Recall that an operator 7' € £(X) is Drazin invertible if and only if it has a
finite ascent and descent, which is also equivalent to the fact T' = T & T}, where
Ty is a nilpotent operator and T} is an invertible operator, see [20, Proposition
A]. The Drazin spectrum is given by

op(T) = {X € C such that T'— X is not Drazin invertible }.

We observe that

op(T) = o(T) \I(T).
An operator T' € £(X) is called left Drazin invertible if a(T") < oo and R(T*1)+1)
is closed [10, Definition 2.4]. The left Drazin spectrum is given by

01a(T) = {\ € C such that T'— X is not lefty Drazin invertible }.
Similarly, we have that 0y4(T) = 0,(T) \ II*(T). In [2] the authors proved that:
T satisfies generalized Browder’s theorem if and only if o4, (T) = op(T)
and

T satisfy generalized a-Browder’s theorem if and only if o4p Fo (T) = 04(T).

Using this results, we will prove the following theorem.

Theorem 3.2 Let T € L(X). If T € HC(X) U SC(X), then T and T* satisfy
generalized a-Browder’s theorem.

Proof. By Lemma 3.1, the SVEP holds for 7*. Hence from [4, Theorem 3.2],
T satisfies generalized a-Browder’s theorem. Now, we shows that generalized a-
Browder’s theorem holds for 7. We have that

0spr (17) C 01a(T7).
To prove that T™ also satisfies a-Browder’s theorem it suffice to prove that
TSBF; (T%) > 0u(T™).
For this let A ¢ Tspr; (T™*), then T — X is upper semi B-Fredholm and ind(T™* —
A) > 0. Since T™* has SVEP, then
d(T* = \) < 0.

By [1, Theorem 3.17], we have that ind(T* — X\) < 0. Hence ind(T* — X\) = 0
and 7% — X is B-Fredholm. Since d(T* — \) < oo, then by [1, Theorem 3.3]
a(T* — X) = d(T* — )\) and hence\ ¢ 0,4(T*). This complete the result since
HC(X) C SC(X). .

For T' € L£(X) denote by H(o(T)) the set of all analytic function on a neigh-

bourhood of (7). In the following corollary, we prove that the conclusion of
Theorem 3.2 holds for f(T') whenever T € HC(X) U SC(X).
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Corollary 3.3 Let T € L(X). If T € HC(X)U SC(X), then f(T) satisfies gene-
ralized a-Browder’s theorem for every f € H(o(T)).

Proof. Since from Lemma 3.1 T* satisfies the SVEP, then by [21] f(T*) also
satisfies the SVEP for every f € H(o(T)). Hence from [4, Theorem 3.2], f(T) also
satisfies generalized a-Browder’s theorem. u

In what follow, we will prove that the adjoint of hypercyclic or supercyclic
Banach space operator satisfy generalized Weyl’s theorem.

Theorem 3.4 Let T € L(X).
(i) If T € HC(X) U SC(X), then T* satisfies generalized Weyl’s theorem.

(i) If T € HC(X) U SC(X) and E(T) C E(T*), then T satisfies generalized
a-Weyl’s theorem.

Proof. (i) If T € SC(X), then we can conclude that E(T™*) = II(T™*). Indeed,
if T € SC(X) then either E(T*) = 0 or E(T*) = {a} for non zero « such
that a & o, (T*). If E(T*) = 0, then E(T*) = II(T*) = 0. If E(T*) = {a} with
a ¢ op(T%), then o € II(T™) and hence E(T*) = II(T™). Since, by Theorem 3.2, T*
satisfies generalized a-Browder’s theorem, then T™ satisfies Browder’s theorem. It
then follows from [6, Corollaray 2.1] that T* satisfies generalized Weyl’s theorem.

(ii) Assume that F(T) C E(T*). From Theorem 3.2, we conclude that 7" sa-
tisfies generalized a-Browder’s theorem, and hence generalized Browder’s theorem
that is (1) /oy, (T) = II(T'), hence

o(T) /00, (T) = I(T) C E(T),

From the proof of (i), T* satisfies the generalized Weyl’s theorem, hence by [6,
Corollary 2.1] we have that E(T*) = II(7*). Finally,

o(T) /o (T) I(T)
E(T)
E(T)
I(
TI(

inin

)
7).

Hence o(T) /oy, (T) = E(T) that is T satisfies generalized Weyl’s theorem. Now,

since T satisfies the SVEP, then o (T') = 0,(T) , II(T") = II1*(T") and then oy,,(T") =

OSBF, (T') and from the fact that 7' satisfies generalized Weyl’s theorem, we

conclude from [6, Corollary 2.1] that E(T) = II(T"), and hence E(T) = II*(T).
Finally,

o(T)/oww(T) = E(T) = I(T) = 0a(T)/055p-(T) = 11*(T).

That is, T' satisfies generalized a-Weyl’s theorem. n

In the following, we will characterize generalized a-Weyl’s theorem for hyper-
cyclic and supercyclic Banach space operator in term of isolated eigenvalues in its
spectrum.
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Theorem 3.5 ForT € L(X). We have the following assertions:

(i) Let T € HC(X). Then T satisfies generalized a-Weyl’s theorem if and only
if E(T) = 0.

(ii) Let T € SC(X). Then T satisfies generalized a-Weyl’s theorem if and only
if there is an o € C\oy(T) such that E(T) C {a}.

Proof. (i) If T € HC(X), then E(T*) = (. Since by Theorem 3.4 T* satisfies
generalized Weyl’s theorem, then from [6, Corollary 2.1], E(T*) = II(T™). If also T’
satisfies generalized a-Weyl’s theorem, then it satisfies generalized Weyl’s theorem
and again we have II(T') = E(T) = (. So E(T*) =1I(T*) = II(T) = E(T) = (. For
the converse, Assume that E(T) = (). From Theorem 3.2 T satisfies generalized
a-Browder’s theorem, hence we have O'a(T)/O'SBF; (T) =1I“(T) =0 = E(T) =
E*(T). That is T satisfies generalized a-Weyl’s theorem.

(i) If T € SC(X), then E(T*) = () or E(T*) = {a} for a non zero o € C
such that « ¢ o0,(T), that is E(T*) C {a}. If E(T*) = 0, we conclude as in the
proof of (i). If E(T*) = {a}, then again E(T*) =11(T*) = II(T) = E(T) = {«},
this since T" and T satisfy generalized Weyl’s theorem. For the converse, assume
that there is an o € C\oy(T) such that E(T) C {a}. If E(T*) = 0, then as
in the proof of i) T satisfies generalized a-Weyl” theorem. If E(T™*) = {a}, then
E(T) C E(T*) = {a}. By Theorem 3.4, T satisfies generalized a-Weyl’s theorem. m
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