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Abstract. A Banach space operator T satisfies generalized a-Weyl’s theorem if the
complement of its upper semi B-Weyl spectrum in its approximate point spectrum is
the set of eigenvalues of T which are isolated in the approximate spectrum of T. In
this note we characterize hypecyclic and supercyclic operators satisfying generalized
a-Weyl’s theorem.
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1. Introduction

The open problem in operator theory known as the invariant subspace problem
assert that: any Hilbert space operator acting on an infinitely-dimensional, se-
parable, complex Hilbert space operator has proper invariant subspaces. In [23]
the author gave a negative answer to this problem in the case of a Banach space
operators. As for Hilbert space operators, this is also an open problem. In [22],
it is proved that this problem has a negative answer if and only if there is some
hypercyclic operator T on the Hilbert space H such that any nonzero x in H is
a hypercyclic vector of T. Hence interest in hypercyclic operators arises from the
invariant subspace problem. Recall that an operator T on the Hilbert space H is
hyponormal if T ∗T ≥ TT ∗. In [13], it is proved that hyponormal operators satisfy
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generalized Weyl’s theorem. However, in [19, Corollary 4.5], it is proved that
hyponormal operator are not hypercyclic. Hence it is naturel to ask about the
relation between hypercyclic/supercyclic operators and Weyl type theorems. In
this direction and using Herrero’s results [16] about spectral properties satisfied
by hypercyclic/supercyclic operators, Duggal in [14] gave necessary and sufficient
conditions for hypercyclic/supercyclic Banach spaces operator to satisfy a-Weyl’s
theorem. Hypercyclic/supercyclic operators which satisfy Weyl type theorems are
also recently studied in [12], [25].

In this note, we prove that if T is a hypercyclic or supecyclic Banach space
operator, then T and T ∗ satisfy generalized a-Browder’s theorem. More, we give
necessary and/ or sufficient conditions for hypercyclic and supercyclic Banach
space operators to satisfies generalized a-Weyl’s theorem.

2. Notation and terminology

Let X an infinite complex separable Banach space and T ∈ L(X) be the algebra
of all bounded linear operator on X. The T-orbit of a vector space x ∈ X is the
set

O(x, T ) = {T nx ; n ∈ N}.
The operator T is said to be hypercyclic if there is some vector x ∈ X such that
O(x, T ) is dense in X. Similarly, T is said to be supercyclic if there exists a vector
x ∈ X such that the set

CO(x, T ) = {λT nx ; n ∈ N, λ ∈ C}
is dense in X. The sets of all hypercyclic operators and supercyclic operators will
be denoted by HC(X) and SC(X) respectively.

Recall that T ∈ L(X) is said to be bounded below, if T is injective and the
range R(T ) of T is closed. Denote the approximate point spectrum of T by

σa(T ) = {λ ∈ C : T − λI is not bounded below}.
Let

σs(T ) = {λ ∈ C : T − λI is not surjective}
denote the surjectivity spectrum of T . Clearly, σ(T ) = σa(T ) ∪ σs(T ), the spec-
trum of T . Denote by α(T ) the dimension of the kernel ker T , and by β(T )
the codimension of the range R(T ). An operator T ∈ L(X) is said to be upper
semi-Fredholm (respectively, lower semi-Fredholm) operators if R(T ) is closed and
α(T ) is finite (respectively, β(T ) is finite). In this case the index of T is defined
by ind(T ) = α(T )−β(T ). An operator T is said to be a Fredholm operator if it is
both upper semi-Fredholm and lower semi-Fredholm. SF+(X) and SF−(X) will
stand for the set of all upper semi-Fredholm operators and by the set of all lower
semi-Fredholm operators, respectively. This two classes of operators generate the
upper semi-Fredholm spectrum and lower semi-Fredholm spectrum defined by

σSF+(T ) = {λ ∈ C : T − λ /∈ SF+(X)}
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and
σSF−(T ) = {λ ∈ C : T − λ /∈ SF−(X)}.

In addition the set

SF−
+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}

generates the following Weyl essential approximate point spectrum

σSF−+
(T ) = {λ ∈ C : T − λ /∈ SF−

+ (X)}.

Recall that the ascent a(T ) of an operator T , is defined by a(T ) = inf{n ∈ N :
ker T n = ker T n+1} and the descent d(T ) = inf{n ∈ N : T nX = T n+1X}, with
inf ∅ = ∞. It is well known that if a(T ) and d(T ) are both finite, then a(T ) = d(T )
(see [17] for more details).

The Weyl essential approximate point spectrum and the Browder essential
approximate point spectrum of T ∈ L(X) are the sets

σaw(T ) = {λ ∈ σa(T ) : T −λI is not upper semi-Fredholm or 0 < ind(T −λI)}

and
σab(T ) = {λ ∈ σa(T ) : λ ∈ σaw(T ) or a(T − λI) = ∞}.

It is clear that
σSF+(T ) ⊆ σaw(T ) ⊆ σab(T ) ⊆ σa(T ).

An operator T ∈ L(X) is said to be Weyl operator if it is Fredholm operator of
index zero. The Weyl spectrum σw(T ) is defined by

σw(T ) = {λ ∈ C : T − λI is not Weyl operator}.

For T ∈ L(X) and a nonnegative integer n define Tn to be the restriction of
T to R(T n) viewed as a map from R(T n) into R(T n). If for some integer n the
range space R(T n) is closed and Tn is semi-Fredholm operator, upper or lower, in
the usual sense, then T is called semi B-Fredholm operator. In this case the index
of T is defined as the index of the semi-Fredholm operator Tn.

Similarly, we define the upper semi B-Fredholm, lower semi B-Fredholm and
B-Fredholm operator of T by:

σSBF+(T ) = {λ ∈ σ(T ) : T − λ is not upper semi B-Fredholm },

σSBF−(T ) = {λ ∈ σ(T ) : T − λ is not lower semi B-Fredholm }
and

σBF (T ) = {λ ∈ σ(T ) : T − λ is not B-Fredholm },
respectively. If T is B-Fredholm operator of index zero, then T is said to be a
B-Weyl operator and the B-Weyl spectrum is defined by:

σbw(T ) = {λ ∈ C : T − λ is not B-Weyl operator}.
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A complex number λ ∈ σ(T ) is a pole of resolvent of T ∈ L(X) if T − λI
has finite ascent and descent. Apparently, if λ ∈ σ(T ) is a pole of the resolvent of
T ∈ L(X), then λ ∈ isoσ(T ), the set of isolated points of σ(T ). To introduce the
definitions of the main notions studied in this work, some notations are needed.
Let T ∈ L(X) and denote by Π(T ) = {λ ∈ C : a(T − λI) = d(T − λI) < ∞}
(respectively, Π0(T ) = {λ ∈ Π(T ) : α(T − λI) < ∞}) the set of poles of T
(respectively, the set of poles of finite rank of T ). Similarly denote by Πa(T ) =
{λ ∈ σa(T ) : a(T − λI) = d < ∞ and (T − λI)d+1E is closed} (respectively,
Πa

0(T ) = {λ ∈ Πa(T ) : α(T − λI) < ∞}) the set of left poles of T (respectively,
the set of left poles of finite rank of T ). In the sequel let I(T ) = isoσ(T ) \ Π(T )
and Ia(T ) = isoσa(T ) \ Πa(T ). In addition, given T ∈ L(X), let E(T ) = {λ ∈
isoσ(T ) : 0 < α(T − λI)} (respectively, E0(T ) = {λ ∈ E(T ) : α(T − λI) < ∞})
the set of eigenvalues of T which are isolated in the spectrum of T (respectively,
the set of eigenvalues of finite multiplicity isolated in σ(T )). Now we introduce
the main notions that has been studied in [5], [9], [10].

Definition 2.1 Let T ∈ L(X). Then it will be said that

(i) Browder’s theorem holds for T , if σw(T ) = σ(T ) \ Π0(T ),

(ii) Generalized Browder’s theorem holds for T , if σbw(T ) = σ(T ) \ Π(T ),

(iii) a-Browder’s theorem holds for T , if σaw(T ) = σa(T ) \ Πa
0(T ),

(iv) Generalized a-Browder’s theorem holds for T , if σSBF−+
(T ) = σa(T )\Πa(T ).

Definition 2.2 Let T ∈ L(X). Then it will be said that

(i) Weyl’s theorem holds for T , if σw(T ) = σ(T ) \ E0(T ),

(ii) Generalized Weyl’s theorem holds for T , if σbw(T ) = σ(T ) \ E(T ),

(iii) Property (w) holds for T , if σaw(T ) = σa(T ) \ E0(T ),

(iv) Property (gw) holds for T , if σSBF−+
(T ) = σa(T ) \ E(T ).

Recall that an operator T ∈ L(X) is said to have the single valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc D cen-
tered at λ0, the only analytic function f : D → X which satisfies the equation
(T − λI)f(λ) = 0 for all λ ∈ D is the function f ≡ 0. An operator T ∈ L(X ) is
said to have SVEP if T has SVEP at every λ ∈ C, see [1], [21] for more details
about the SVEP.

3. Hypercyclic/Supercyclic operators satisfying generalized
a-Weyls’s theorem

In the sequel, we will use the following lemma.

Lemma 3.1 Let T ∈ L(X). If T ∈ HC(X)∪SC(X), then the SVEP holds for T ∗.
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Proof. if T ∈ SC(X), then from [7]

σp(T
∗) = ∅ or σp(T

∗) = {α}, where α ∈ C\{0}.
Hence T ∗ satisfies the SVEP.

Recall that an operator T ∈ L(X) is Drazin invertible if and only if it has a
finite ascent and descent, which is also equivalent to the fact T = T0 ⊕ T1, where
T0 is a nilpotent operator and T1 is an invertible operator, see [20, Proposition
A]. The Drazin spectrum is given by

σD(T ) = {λ ∈ C such that T − λ is not Drazin invertible }.
We observe that

σD(T ) = σ(T ) \ Π(T ).

An operator T ∈ L(X) is called left Drazin invertible if a(T ) < ∞ and R(T a(T )+1)
is closed [10, Definition 2.4]. The left Drazin spectrum is given by

σld(T ) = {λ ∈ C such that T − λ is not lefty Drazin invertible }.
Similarly, we have that σld(T ) = σa(T ) \ Πa(T ). In [2] the authors proved that:

T satisfies generalized Browder’s theorem if and only if σbw(T ) = σD(T )

and

T satisfy generalized a-Browder’s theorem if and only if σSBF−+
(T ) = σld(T ).

Using this results, we will prove the following theorem.

Theorem 3.2 Let T ∈ L(X). If T ∈ HC(X) ∪ SC(X), then T and T ∗ satisfy
generalized a-Browder’s theorem.

Proof. By Lemma 3.1, the SVEP holds for T ∗. Hence from [4, Theorem 3.2],
T satisfies generalized a-Browder’s theorem. Now, we shows that generalized a-
Browder’s theorem holds for T ∗. We have that

σSBF−+
(T ∗) ⊂ σld(T

∗).

To prove that T ∗ also satisfies a-Browder’s theorem it suffice to prove that

σSBF−+
(T ∗) ⊃ σld(T

∗).

For this let λ /∈ σSBF−+
(T ∗), then T ∗ − λ is upper semi B-Fredholm and ind(T ∗ −

λ) > 0. Since T ∗ has SVEP, then

d(T ∗ − λ) < ∞.

By [1, Theorem 3.17], we have that ind(T ∗ − λ) ≤ 0. Hence ind(T ∗ − λ) = 0
and T ∗ − λ is B-Fredholm. Since d(T ∗ − λ) < ∞, then by [1, Theorem 3.3]
a(T ∗ − λ) = d(T ∗ − λ) and henceλ /∈ σld(T

∗). This complete the result since
HC(X) ⊂ SC(X).

For T ∈ L(X) denote by H(σ(T )) the set of all analytic function on a neigh-
bourhood of σ(T ). In the following corollary, we prove that the conclusion of
Theorem 3.2 holds for f(T ) whenever T ∈ HC(X) ∪ SC(X).
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Corollary 3.3 Let T ∈ L(X). If T ∈ HC(X)∪ SC(X), then f(T ) satisfies gene-
ralized a-Browder’s theorem for every f ∈ H(σ(T )).

Proof. Since from Lemma 3.1 T ∗ satisfies the SVEP, then by [21] f(T ∗) also
satisfies the SVEP for every f ∈ H(σ(T )). Hence from [4, Theorem 3.2], f(T ) also
satisfies generalized a-Browder’s theorem.

In what follow, we will prove that the adjoint of hypercyclic or supercyclic
Banach space operator satisfy generalized Weyl’s theorem.

Theorem 3.4 Let T ∈ L(X).

(i) If T ∈ HC(X) ∪ SC(X), then T ∗ satisfies generalized Weyl’s theorem.

(ii) If T ∈ HC(X) ∪ SC(X) and E(T ) ⊆ E(T ∗), then T satisfies generalized
a-Weyl’s theorem.

Proof. (i) If T ∈ SC(X), then we can conclude that E(T ∗) = Π(T ∗). Indeed,
if T ∈ SC(X) then either E(T ∗) = ∅ or E(T ∗) = {α} for non zero α such
that α /∈ σb(T

∗). If E(T ∗) = ∅, then E(T ∗) = Π(T ∗) = ∅. If E(T ∗) = {α} with
α /∈ σb(T

∗), then α ∈ Π(T ∗) and hence E(T ∗) = Π(T ∗). Since, by Theorem 3.2, T ∗

satisfies generalized a-Browder’s theorem, then T ∗ satisfies Browder’s theorem. It
then follows from [6, Corollaray 2.1] that T ∗ satisfies generalized Weyl’s theorem.

(ii) Assume that E(T ) ⊆ E(T ∗). From Theorem 3.2, we conclude that T sa-
tisfies generalized a-Browder’s theorem, and hence generalized Browder’s theorem
that is σ(T )/σbw(T ) = Π(T ), hence

σ(T )/σbw(T ) = Π(T ) ⊆ E(T ).

From the proof of (i), T ∗ satisfies the generalized Weyl’s theorem, hence by [6,
Corollary 2.1] we have that E(T ∗) = Π(T ∗). Finally,

σ(T )/σbw(T ) = Π(T )
⊆ E(T )
⊆ E(T ∗)
= Π(T ∗)
= Π(T ).

Hence σ(T )/σbw(T ) = E(T ) that is T satisfies generalized Weyl’s theorem. Now,
since T ∗ satisfies the SVEP, then σ(T ) = σa(T ) , Π(T ) = Πa(T ) and then σbw(T ) =
σSBF+− (T ) and from the fact that T satisfies generalized Weyl’s theorem, we
conclude from [6, Corollary 2.1] that E(T ) = Π(T ), and hence E(T ) = Πa(T ).

Finally,

σ(T )/σbw(T ) = E(T ) = Π(T ) = σa(T )/σSBF−+
(T ) = Πa(T ).

That is, T satisfies generalized a-Weyl’s theorem.

In the following, we will characterize generalized a-Weyl’s theorem for hyper-
cyclic and supercyclic Banach space operator in term of isolated eigenvalues in its
spectrum.
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Theorem 3.5 For T ∈ L(X). We have the following assertions:

(i) Let T ∈ HC(X). Then T satisfies generalized a-Weyl’s theorem if and only
if E(T ) = ∅.

(ii) Let T ∈ SC(X). Then T satisfies generalized a-Weyl’s theorem if and only
if there is an α ∈ C\σb(T ) such that E(T ) ⊂ {α}.

Proof. (i) If T ∈ HC(X), then E(T ∗) = ∅. Since by Theorem 3.4 T ∗ satisfies
generalized Weyl’s theorem, then from [6, Corollary 2.1], E(T ∗) = Π(T ∗). If also T
satisfies generalized a-Weyl’s theorem, then it satisfies generalized Weyl’s theorem
and again we have Π(T ) = E(T ) = ∅. So E(T ∗) = Π(T ∗) = Π(T ) = E(T ) = ∅. For
the converse, Assume that E(T ) = ∅. From Theorem 3.2 T satisfies generalized
a-Browder’s theorem, hence we have σa(T )/σSBF−+

(T ) = Πa(T ) = ∅ = E(T ) =

Ea(T ). That is T satisfies generalized a-Weyl’s theorem.

(ii) If T ∈ SC(X), then E(T ∗) = ∅ or E(T ∗) = {α} for a non zero α ∈ C
such that α /∈ σb(T ), that is E(T ∗) ⊂ {α}. If E(T ∗) = ∅, we conclude as in the
proof of (i). If E(T ∗) = {α}, then again E(T ∗) = Π(T ∗) = Π(T ) = E(T ) = {α},
this since T and T ∗ satisfy generalized Weyl’s theorem. For the converse, assume
that there is an α ∈ C\σb(T ) such that E(T ) ⊂ {α}. If E(T ∗) = ∅, then as
in the proof of i) T satisfies generalized a-Weyl’ theorem. If E(T ∗) = {α}, then
E(T ) ⊂ E(T ∗) = {α}. By Theorem 3.4, T satisfies generalized a-Weyl’s theorem.
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