COMPARATIVE GROWTH ANALYSIS OF FUNCTIONS ANALYTIC IN THE UNIT DISC DEPENDING UPON THEIR RELATIVE *L**-ORDERS AND RELATIVE *L**-LOWER ORDERS

Sanjib Kumar Datta

Department of Mathematics University of Kalyani P.O.-Kalyani, Dist-Nadia, PIN-741235 West Bengal India e-mail: sanjib_kr_datta@yahoo.co.in

Tanmay Biswas

Rajbari, Rabindrapalli, R.N. Tagore Road P.O.-Krishnagar, Dist-Nadia, PIN-741101 West Bengal India e-mail: tanmaybiswas_math@rediffmail.com

Pulak Sahoo

Department of Mathematics University of Kalyani P.O.-Kalyani, Dist-Nadia, PIN-741235 West Bengal India e-mail: pulak.pmath19@qmail.com

Abstract. In the paper the ideas of relative Nevanlinna L^* -order and relative Nevanlinna L^* -lower order of an analytic function with respect to an entire function in the unit disc $U = \{z : |z| < 1\}$ are introduced. Hence, we study some comparative growth properties of composition of two analytic functions in the unit disc U on the basis of relative Nevanlinna L^* -order and relative Nevanlinna L^* -lower order.

Keywords and phrases: growth, analytic function, composition, unit disc, relative Nevanlinna L^* -order, relative Nevanlinna L^* -lower order, slowly changing function in the unit disc.

AMS Subject Classification (2000): 30D35, 30D30, 30D20.

1. Introduction, definitions and notations

A function f, analytic in the unit disc $U = \{z : |z| < 1\}$, is said to be of finite Nevanlinna order [2] if there exist a number μ such that Nevanlinna characteristic function

$$T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ \left| f\left(r e^{i\theta} \right) \right| d\theta$$

satisfies $T(r, f) < (1 - r)^{-\mu}$ for all r in $0 < r_0(\mu) < r < 1$. The greatest lower bound of all such numbers μ is called the Nevanlinna order of f. Thus the Nevanlinna order ρ_f of f is given by

$$\rho_f = \limsup_{r \to 1} \frac{\log T(r, f)}{-\log (1 - r)} \; .$$

Similarly, the Nevanlinna lower order λ_f of f is given by

$$\lambda_f = \liminf_{r \to 1} \frac{\log T(r, f)}{-\log (1 - r)} .$$

Datta et. al. [1] introduced the notion of Nevanlinna *L*-order for an analytic function f in the unit disc $U = \{z : |z| < 1\}$ where $L = L\left(\frac{1}{1-r}\right)$ is a positive continuous function in the unit disc U increasing slowly i.e., $L\left(\frac{a}{1-r}\right) \sim L\left(\frac{1}{1-r}\right)$ as $r \to 1$, for every positive constant 'a', in the following manner:

Definition 1 If f be analytic in U, then the Nevanlinna L-order ρ_f^L and the Nevanlinna L-lower order λ_f^L of f are defined as

$$\rho_f^L = \frac{\log T\left(r, f\right)}{\log\left(\frac{L\left(\frac{1}{1-r}\right)}{(1-r)}\right)} \quad \text{and} \quad \lambda_f = \liminf_{r \to 1} \frac{\log T\left(r, f\right)}{\log\left(\frac{L\left(\frac{1}{1-r}\right)}{(1-r)}\right)} \ .$$

Now we introduce the concepts of relative Nevanlinna L^* -order and relative Nevanlinna L^* -lower order of an analytic function f with respect to another analytic function g in the unit disc U which are as follows:

Definition 2 If f be analytic in U and g be entire, then the relative Nevanlinna L^* -order of f with respect to g, denoted by $\rho_g^{L^*}(f)$ is defined by

$$\rho_f^L = \inf \left\{ \mu > 0 : T_f(r) < T_g \left[\frac{\exp \left\{ L\left(\frac{1}{1-r}\right) \right\}}{(1-r)} \right]^{\mu} \text{ for all } 0 < r_0(\mu) < r < 1 \right\} .$$

Similarly, the relative Nevanlinna L^* -order of f with respect to g, denoted by $\lambda_q^{L^*}(f)$ is given by

$$\lambda_{g}^{L^{*}}(f) = \liminf_{r \to 1} \frac{\log T_{g}^{-1} T_{f}(r)}{\log \left(\frac{\exp\{L(\frac{1}{1-r})\}}{(1-r)}\right)}$$

When $g(z) = \exp z$, the definition coincides with the definition of the Nevanlinna L^* -order and the Nevanlinna L^* -lower order.

In this paper, we study some growth properties of composition of two analytic functions in the unit disc $U = \{z : |z| < 1\}$ on the basis of relative Nevanlinna L^* -order (relative Nevanlinna L^* -lower order). We do not explain the standard

definitions and notations in the theory of entire functions as those are available in [3].

2. Theorems

In this section, we present the main results of the paper.

Theorem 1 If f, g be any two analytic functions in U and h be an entire function such that $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ and $0 < \lambda_h^{L^*}(f) \le \rho_h^{L^*}(f) < \infty$ then

$$\begin{aligned} \frac{\lambda_{h}^{L^{*}}\left(f \circ g\right)}{\rho_{h}^{L^{*}}\left(f\right)} &\leq \liminf_{r \to 1} \frac{\log T_{h}^{-1} T_{f \circ g}\left(r\right)}{\log T_{h}^{-1} T_{f}\left(r\right)} \leq \frac{\lambda_{h}^{L^{*}}\left(f \circ g\right)}{\lambda_{h}^{L^{*}}\left(f\right)} \\ &\leq \limsup_{r \to 1} \frac{\log T_{h}^{-1} T_{f \circ g}\left(r\right)}{\log T_{h}^{-1} T_{f}\left(r\right)} \leq \frac{\rho_{h}^{L^{*}}\left(f \circ g\right)}{\lambda_{h}^{L^{*}}\left(f\right)} \end{aligned}$$

Proof. From the definition of $\rho_h^{L^*}(f)$ and $\lambda_h^{L^*}(f \circ g)$, we have for arbitrary positive ε and for all sufficiently large values of $\left(\frac{1}{1-r}\right)$ that

(1)
$$\log T_h^{-1} T_{f \circ g}(r) \ge \left(\lambda_h^{L^*}(f \circ g) - \varepsilon\right) \log \left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)$$

and

(2)
$$\log T_h^{-1} T_f(r) \le \left(\rho_h^{L^*}(f) + \varepsilon\right) \log \left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) .$$

Now from (1) and (2) it follows for all sufficiently large values of $\left(\frac{1}{1-r}\right)$ that

$$\frac{\log T_h^{-1} T_{f \circ g}\left(r\right)}{\log T_h^{-1} T_f\left(r\right)} \geqslant \frac{\left(\lambda_h^{L^*}\left(f \circ g\right) - \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\rho_h^{L^*}\left(f\right) + \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)} \ .$$

As $\varepsilon (> 0)$ is arbitrary, we obtain that

(3)
$$\liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \ge \frac{\lambda_h^{L^*}(f \circ g)}{\rho_h^{L^*}(f)}$$

Again for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity,

(4)
$$\log T_h^{-1} T_{f \circ g}(r) \le \left(\lambda_h^{L^*}(f \circ g) + \varepsilon\right) \log \left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)$$

and for all sufficiently large values of $\left(\frac{1}{1-r}\right)$,

(5)
$$\log T_h^{-1} T_f(r) \ge \left(\lambda_h^{L^*}(f) - \varepsilon\right) \log \left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) .$$

Combining (4) and (5), we get for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$\frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \le \frac{\left(\lambda_h^{L^*}\left(f \circ g\right) + \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\lambda_h^{L^*}\left(f\right) - \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}$$

Since $\varepsilon (> 0)$ is arbitrary, it follows that

(6)
$$\liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \le \frac{\lambda_h^{L^*}(f \circ g)}{\lambda_h^{L^*}(f)}$$

Also for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

(7)
$$\log T_h^{-1} T_f(r) \le \left(\lambda_h^{L^*}(f) + \varepsilon\right) \log \left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) .$$

Now from (1) and (7), we obtain for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$\frac{\log T_h^{-1} T_{f \circ g}\left(r\right)}{\log T_h^{-1} T_f\left(r\right)} \geq \frac{\left(\lambda_h^{L^*}\left(f \circ g\right) - \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\lambda_h^{L^*}\left(f\right) + \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)} \ .$$

As $\varepsilon (> 0)$ is arbitrary, we get from above that

(8)
$$\limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \ge \frac{\lambda_h^{L^*}(f \circ g)}{\lambda_h^{L^*}(f)}$$

Also for all sufficiently large values of $\left(\frac{1}{1-r}\right)$,

(9)
$$\log T_h^{-1} T_{f \circ g}(r) \le \left(\rho_h^{L^*}\left(f \circ g\right) + \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \ .$$

Now it follows from (5) and (9) for all sufficiently large values of $\left(\frac{1}{1-r}\right)$ that

$$\frac{\log T_h^{-1} T_{f \circ g}\left(r\right)}{\log T_h^{-1} T_f\left(r\right)} \le \frac{\left(\rho_h^{L^*}\left(f \circ g\right) + \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\lambda_h^{L^*}\left(f\right) - \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}$$

Since $\varepsilon (> 0)$ is arbitrary, we obtain that

(10)
$$\limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \le \frac{\rho_h^{L^*}(f \circ g)}{\lambda_h^{L^*}(f)}$$

Thus the theorem follows from (3), (6), (8) and (10).

The following theorem can be proved in the line of Theorem 1 and so its proof is omitted.

Theorem 2 If f, g be any two analytic functions in U and h be entire function with $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ and $0 < \lambda_h^{L^*}(g) \le \rho_h^{L^*}(g) < \infty$ then

$$\begin{aligned} \frac{\lambda_h^{L^*}\left(f \circ g\right)}{\rho_h^{L^*}\left(g\right)} &\leq \liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}\left(r\right)}{\log T_h^{-1} T_g\left(r\right)} \leq \frac{\lambda_h^{L^*}\left(f \circ g\right)}{\lambda_h^{L^*}\left(g\right)} \\ &\leq \limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}\left(r\right)}{\log T_h^{-1} T_g\left(r\right)} \leq \frac{\rho_h^{L^*}\left(f \circ g\right)}{\lambda_h^{L^*}\left(g\right)} \end{aligned}$$

Theorem 3 If f, g be any two analytic functions in U and h be entire function such that $0 < \rho_h^{L^*}(f \circ g) < \infty$ and $0 < \rho_h^{L^*}(f) < \infty$ then

$$\liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \le \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(f)} \le \limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} .$$

Proof. From the definition of $\rho_h^{L^*}(f)$, we get for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

(11)
$$\log T_h^{-1} T_f(r) \ge \left(\rho_h^{L^*}(f) - \varepsilon\right) \log \left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) .$$

Now from (9) and (11), it follows for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$\frac{\log T_h^{-1} T_{f \circ g}\left(r\right)}{\log T_h^{-1} T_f\left(r\right)} \le \frac{\left(\rho_h^{L^*}\left(f \circ g\right) + \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\rho_h^{L^*}\left(f\right) - \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}$$

As $\varepsilon (> 0)$ is arbitrary, we obtain that

(12)
$$\liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \le \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(f)}$$

Again for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity,

(13)
$$\log T_h^{-1} T_{f \circ g}(r) \ge \left(\rho_h^{L^*}(f \circ g) - \varepsilon\right) \log \left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)$$

So combining (2) and (13), we get for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$\frac{\log T_h^{-1} T_{f \circ g}\left(r\right)}{\log T_h^{-1} T_f\left(r\right)} \ge \frac{\left(\rho_h^{L^*}\left(f \circ g\right) - \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\rho_h^{L^*}\left(f\right) + \varepsilon\right) \log\left(\frac{\exp\left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}$$

Since $\varepsilon (> 0)$ is arbitrary, it follows that

(14)
$$\limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \ge \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(f)} \,.$$

Thus the theorem follows from (12) and (14).

The following theorem can be carried out in the line of Theorem 3 and therefore we omit its proof.

Theorem 4 If f, g be any two analytic functions in U and h be an entire function with $0 < \rho_h^{L^*}(f \circ g) < \infty$ and $0 < \rho_h^{L^*}(g) < \infty$ then

$$\liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_g(r)} \le \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(g)} \le \limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_g(r)}$$

The following theorem is a natural consequence of Theorem 1 and Theorem 3.

Theorem 5 If f, g be any two analytic functions in U and h be an entire function such that $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ and $0 < \lambda_h^{L^*}(f) \le \rho_h^{L^*}(f) < \infty$ then

$$\begin{split} \liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} &\leq \min \left\{ \frac{\lambda_h^{L^*}(f \circ g)}{\lambda_h^{L^*}(f)}, \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(f)} \right\} \\ &\leq \max \left\{ \frac{\lambda_h^{L^*}(f \circ g)}{\lambda_h^{L^*}(f)}, \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(f)} \right\} \leq \limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} \end{split}$$

The proof is omitted.

Analogously, one may state the following theorem without its proof:

Theorem 6 If f, g be any two analytic functions in U and h be an entire function with $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ and $0 < \lambda_h^{L^*}(g) \le \rho_h^{L^*}(g) < \infty$ then

$$\begin{split} \liminf_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_g(r)} &\leq \min \left\{ \frac{\lambda_h^{L^*}(f \circ g)}{\lambda_h^{L^*}(g)}, \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(g)} \right\} \\ &\leq \max \left\{ \frac{\lambda_h^{L^*}(f \circ g)}{\lambda_h^{L^*}(g)}, \frac{\rho_h^{L^*}(f \circ g)}{\rho_h^{L^*}(g)} \right\} \leq \limsup_{r \to 1} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_g(r)} \end{split}$$

References

- DATTA, S.K., BISWAS, T., SEN, P., Measure of growth properties of functions analytic in unit disc, Int. J. of Math. Sci. & Engg. Appls. (IJMSEA), vol. 8, no. IV (July, 2014), 147-216.
- [2] JUNEJA, O.P., KAPOOR, G.P., Analytic functions-growth aspects, Pitman Avanced Publishing Program, 1985.
- [3] VALIRON, G., Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949.

Accepted: 04.08.2015