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Abstract. In the paper the ideas of relative Nevanlinna L∗-order and relative Nevan-
linna L∗-lower order of an analytic function with respect to an entire function in the
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1. Introduction, definitions and notations

A function f , analytic in the unit disc U = {z : |z| < 1} , is said to be of finite
Nevanlinna order [2] if there exist a number µ such that Nevanlinna characteristic
function

T (r, f) =
1

2π

∫ 2π

0

log+
∣∣f (

reiθ
)∣∣ dθ
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satisfies T (r, f) < (1− r)−µ for all r in 0 < r0 (µ) < r < 1. The greatest lower
bound of all such numbers µ is called the Nevanlinna order of f . Thus the Nevan-
linna order ρf of f is given by

ρf = lim sup
r→1

log T (r, f)

− log (1− r)
.

Similarly, the Nevanlinna lower order λf of f is given by

λf = lim inf
r→1

log T (r, f)

− log (1− r)
.

Datta et. al. [1] introduced the notion of Nevanlinna L-order for an analytic
function f in the unit disc U = {z : |z| < 1} where L = L

(
1

1−r

)
is a positive

continuous function in the unit disc U increasing slowly i.e., L
(

a
1−r

) ∼ L
(

1
1−r

)
as

r → 1, for every positive constant ‘a’, in the following manner:

Definition 1 If f be analytic in U, then the Nevanlinna L-order ρL
f and the

Nevanlinna L-lower order λL
f of f are defined as

ρL
f =

log T (r, f)

log

(
L( 1

1−r )
(1−r)

) and λf = lim inf
r→1

log T (r, f)

log

(
L( 1

1−r )
(1−r)

) .

Now we introduce the concepts of relative Nevanlinna L∗-order and relative
Nevanlinna L∗-lower order of an analytic function f with respect to another ana-
lytic function g in the unit disc U which are as follows:

Definition 2 If f be analytic in U and g be entire, then the relative Nevanlinna
L∗-order of f with respect to g, denoted by ρL∗

g (f) is defined by

ρL
f = inf

{
µ > 0 : Tf (r) < Tg

[
exp

{
L

(
1

1−r

)}

(1− r)

]µ

for all 0 < r0 (µ) < r < 1

}
.

Similarly, the relative Nevanlinna L∗-order of f with respect to g, denoted by
λL∗

g (f) is given by

λL∗
g (f) = lim inf

r→1

log T−1
g Tf (r)

log

(
exp{L( 1

1−r )}
(1−r)

) .

When g (z) = exp z, the definition coincides with the definition of the Nevan-
linna L∗-order and the Nevanlinna L∗-lower order.

In this paper, we study some growth properties of composition of two analytic
functions in the unit disc U = {z : |z| < 1} on the basis of relative Nevanlinna
L∗-order (relative Nevanlinna L∗-lower order). We do not explain the standard
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definitions and notations in the theory of entire functions as those are available
in [3].

2. Theorems

In this section, we present the main results of the paper.

Theorem 1 If f , g be any two analytic functions in U and h be an entire function
such that 0 < λL∗

h (f ◦ g) ≤ ρL∗
h (f ◦ g) < ∞ and 0 < λL∗

h (f) ≤ ρL∗
h (f) < ∞ then

λL∗
h (f ◦ g)

ρL∗
h (f)

≤ lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤ λL∗
h (f ◦ g)

λL∗
h (f)

≤ lim sup
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤ ρL∗
h (f ◦ g)

λL∗
h (f)

.

Proof. From the definition of ρL∗
h (f) and λL∗

h (f ◦ g) , we have for arbitrary
positive ε and for all sufficiently large values of

(
1

1−r

)
that

(1) log T−1
h Tf◦g (r) >

(
λL∗

h (f ◦ g)− ε
)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)

and

(2) log T−1
h Tf (r) ≤ (

ρL∗
h (f) + ε

)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)
.

Now from (1) and (2) it follows for all sufficiently large values of
(

1
1−r

)
that

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

>

(
λL∗

h (f ◦ g)− ε
)
log

(
exp{L( 1

1−r )}
(1−r)

)

(ρL∗
h (f) + ε) log

(
exp{L( 1

1−r )}
(1−r)

) .

As ε (> 0) is arbitrary, we obtain that

(3) lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

> λL∗
h (f ◦ g)

ρL∗
h (f)

.

Again for a sequence of values of
(

1
1−r

)
tending to infinity,

(4) log T−1
h Tf◦g (r) ≤ (

λL∗
h (f ◦ g) + ε

)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)

and for all sufficiently large values of
(

1
1−r

)
,

(5) log T−1
h Tf (r) >

(
λL∗

h (f)− ε
)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)
.
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Combining (4) and (5) , we get for a sequence of values of
(

1
1−r

)
tending to infinity

that

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤

(
λL∗

h (f ◦ g) + ε
)
log

(
exp{L( 1

1−r )}
(1−r)

)

(λL∗
h (f)− ε) log

(
exp{L( 1

1−r )}
(1−r)

) .

Since ε (> 0) is arbitrary, it follows that

(6) lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤ λL∗
h (f ◦ g)

λL∗
h (f)

.

Also for a sequence of values of
(

1
1−r

)
tending to infinity that

(7) log T−1
h Tf (r) ≤ (

λL∗
h (f) + ε

)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)
.

Now from (1) and (7) , we obtain for a sequence of values of
(

1
1−r

)
tending to

infinity that

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≥

(
λL∗

h (f ◦ g)− ε
)
log

(
exp{L( 1

1−r )}
(1−r)

)

(λL∗
h (f) + ε) log

(
exp{L( 1

1−r )}
(1−r)

) .

As ε (> 0) is arbitrary, we get from above that

(8) lim sup
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≥ λL∗
h (f ◦ g)

λL∗
h (f)

.

Also for all sufficiently large values of
(

1
1−r

)
,

(9) log T−1
h Tf◦g (r) ≤ (

ρL∗
h (f ◦ g) + ε

)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)
.

Now it follows from (5) and (9) for all sufficiently large values of
(

1
1−r

)
that

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤

(
ρL∗

h (f ◦ g) + ε
)
log

(
exp{L( 1

1−r )}
(1−r)

)

(λL∗
h (f)− ε) log

(
exp{L( 1

1−r )}
(1−r)

) .

Since ε (> 0) is arbitrary, we obtain that

(10) lim sup
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤ ρL∗
h (f ◦ g)

λL∗
h (f)

.

Thus the theorem follows from (3) , (6) , (8) and (10) .

The following theorem can be proved in the line of Theorem 1 and so its proof
is omitted.
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Theorem 2 If f , g be any two analytic functions in U and h be entire function
with 0 < λL∗

h (f ◦ g) ≤ ρL∗
h (f ◦ g) < ∞ and 0 < λL∗

h (g) ≤ ρL∗
h (g) < ∞ then

λL∗
h (f ◦ g)

ρL∗
h (g)

≤ lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tg (r)

≤ λL∗
h (f ◦ g)

λL∗
h (g)

≤ lim sup
r→1

log T−1
h Tf◦g (r)

log T−1
h Tg (r)

≤ ρL∗
h (f ◦ g)

λL∗
h (g)

.

Theorem 3 If f , g be any two analytic functions in U and h be entire function
such that 0 < ρL∗

h (f ◦ g) < ∞ and 0 < ρL∗
h (f) < ∞ then

lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤ ρL∗
h (f ◦ g)

ρL∗
h (f)

≤ lim sup
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

.

Proof. From the definition of ρL∗
h (f) , we get for a sequence of values of

(
1

1−r

)
tending to infinity that

(11) log T−1
h Tf (r) >

(
ρL∗

h (f)− ε
)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)
.

Now from (9) and (11) , it follows for a sequence of values of
(

1
1−r

)
tending to

infinity that

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤

(
ρL∗

h (f ◦ g) + ε
)
log

(
exp{L( 1

1−r )}
(1−r)

)

(ρL∗
h (f)− ε) log

(
exp{L( 1

1−r )}
(1−r)

) .

As ε (> 0) is arbitrary, we obtain that

(12) lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤ ρL∗
h (f ◦ g)

ρL∗
h (f)

.

Again for a sequence of values of
(

1
1−r

)
tending to infinity,

(13) log T−1
h Tf◦g (r) >

(
ρL∗

h (f ◦ g)− ε
)
log

(
exp

{
L

(
1

1−r

)}

(1− r)

)
.

So combining (2) and (13) , we get for a sequence of values of
(

1
1−r

)
tending to

infinity that

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

>

(
ρL∗

h (f ◦ g)− ε
)
log

(
exp{L( 1

1−r )}
(1−r)

)

(ρL∗
h (f) + ε) log

(
exp{L( 1

1−r )}
(1−r)

) .
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Since ε (> 0) is arbitrary, it follows that

(14) lim sup
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

> ρL∗
h (f ◦ g)

ρL∗
h (f)

.

Thus the theorem follows from (12) and (14) .

The following theorem can be carried out in the line of Theorem 3 and there-
fore we omit its proof.

Theorem 4 If f , g be any two analytic functions in U and h be an entire function
with 0 < ρL∗

h (f ◦ g) < ∞ and 0 < ρL∗
h (g) < ∞ then

lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tg (r)

≤ ρL∗
h (f ◦ g)

ρL∗
h (g)

≤ lim sup
r→1

log T−1
h Tf◦g (r)

log T−1
h Tg (r)

.

The following theorem is a natural consequence of Theorem 1 and Theorem 3.

Theorem 5 If f , g be any two analytic functions in U and h be an entire function
such that 0 < λL∗

h (f ◦ g) ≤ ρL∗
h (f ◦ g) < ∞ and 0 < λL∗

h (f) ≤ ρL∗
h (f) < ∞ then

lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

≤ min

{
λL∗

h (f ◦ g)

λL∗
h (f)

,
ρL∗

h (f ◦ g)

ρL∗
h (f)

}

≤ max

{
λL∗

h (f ◦ g)

λL∗
h (f)

,
ρL∗

h (f ◦ g)

ρL∗
h (f)

}
≤ lim sup

r→1

log T−1
h Tf◦g (r)

log T−1
h Tf (r)

.

The proof is omitted.
Analogously, one may state the following theorem without its proof:

Theorem 6 If f , g be any two analytic functions in U and h be an entire function
with 0 < λL∗

h (f ◦ g) ≤ ρL∗
h (f ◦ g) < ∞ and 0 < λL∗

h (g) ≤ ρL∗
h (g) < ∞ then

lim inf
r→1

log T−1
h Tf◦g (r)

log T−1
h Tg (r)

≤ min

{
λL∗

h (f ◦ g)

λL∗
h (g)

,
ρL∗

h (f ◦ g)

ρL∗
h (g)

}

≤ max

{
λL∗

h (f ◦ g)

λL∗
h (g)

,
ρL∗

h (f ◦ g)

ρL∗
h (g)

}
≤ lim sup

r→1

log T−1
h Tf◦g (r)

log T−1
h Tg (r)

.
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