COMPARATIVE GROWTH ANALYSIS OF FUNCTIONS ANALYTIC IN THE UNIT DISC DEPENDING UPON THEIR RELATIVE L^{*}-ORDERS AND RELATIVE L^{*}-LOWER ORDERS

Sanjib Kumar Datta
Department of Mathematics
University of Kalyani
P.O.-Kalyani, Dist-Nadia, PIN-741235
West Bengal
India
e-mail: sanjib_kr_datta@yahoo.co.in
Tanmay Biswas
Rajbari, Rabindrapalli, R.N. Tagore Road
P.O.-Krishnagar, Dist-Nadia, PIN-741101
West Bengal
India
e-mail: tanmaybiswas_math@rediffmail.com
Pulak Sahoo
Department of Mathematics
University of Kalyani
P.O.-Kalyani, Dist-Nadia, PIN-741235
West Bengal
India
e-mail: pulak.pmath19@gmail.com

Abstract

In the paper the ideas of relative Nevanlinna L^{*}-order and relative Nevanlinna L^{*}-lower order of an analytic function with respect to an entire function in the unit disc $U=\{z:|z|<1\}$ are introduced. Hence, we study some comparative growth properties of composition of two analytic functions in the unit disc U on the basis of relative Nevanlinna L^{*}-order and relative Nevanlinna L^{*}-lower order.

Keywords and phrases: growth, analytic function, composition, unit disc, relative Nevanlinna L^{*}-order, relative Nevanlinna L^{*}-lower order, slowly changing function in the unit disc.
AMS Subject Classification (2000): 30D35, 30D30, 30D20.

1. Introduction, definitions and notations

A function f, analytic in the unit $\operatorname{disc} U=\{z:|z|<1\}$, is said to be of finite Nevanlinna order [2] if there exist a number μ such that Nevanlinna characteristic function

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

satisfies $T(r, f)<(1-r)^{-\mu}$ for all r in $0<r_{0}(\mu)<r<1$. The greatest lower bound of all such numbers μ is called the Nevanlinna order of f. Thus the Nevanlinna order ρ_{f} of f is given by

$$
\rho_{f}=\limsup _{r \rightarrow 1} \frac{\log T(r, f)}{-\log (1-r)} .
$$

Similarly, the Nevanlinna lower order λ_{f} of f is given by

$$
\lambda_{f}=\liminf _{r \rightarrow 1} \frac{\log T(r, f)}{-\log (1-r)} .
$$

Datta et. al. [1] introduced the notion of Nevanlinna L-order for an analytic function f in the unit disc $U=\{z:|z|<1\}$ where $L=L\left(\frac{1}{1-r}\right)$ is a positive continuous function in the unit disc U increasing slowly i.e., $L\left(\frac{a}{1-r}\right) \sim L\left(\frac{1}{1-r}\right)$ as $r \rightarrow 1$, for every positive constant ' a ', in the following manner:

Definition 1 If f be analytic in U, then the Nevanlinna L-order ρ_{f}^{L} and the Nevanlinna L-lower order λ_{f}^{L} of f are defined as

$$
\rho_{f}^{L}=\frac{\log T(r, f)}{\log \left(\frac{L\left(\frac{1}{1-r}\right)}{(1-r)}\right)} \quad \text { and } \quad \lambda_{f}=\liminf _{r \rightarrow 1} \frac{\log T(r, f)}{\log \left(\frac{L\left(\frac{1}{1-r}\right)}{(1-r)}\right)}
$$

Now we introduce the concepts of relative Nevanlinna L^{*}-order and relative Nevanlinna L^{*}-lower order of an analytic function f with respect to another analytic function g in the unit disc U which are as follows:

Definition 2 If f be analytic in U and g be entire, then the relative Nevanlinna L^{*}-order of f with respect to g, denoted by $\rho_{g}^{L^{*}}(f)$ is defined by

$$
\rho_{f}^{L}=\inf \left\{\mu>0: T_{f}(r)<T_{g}\left[\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right]^{\mu} \text { for all } 0<r_{0}(\mu)<r<1\right\}
$$

Similarly, the relative Nevanlinna L^{*}-order of f with respect to g, denoted by $\lambda_{g}^{L^{*}}(f)$ is given by

$$
\lambda_{g}^{L^{*}}(f)=\liminf _{r \rightarrow 1} \frac{\log T_{g}^{-1} T_{f}(r)}{\log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}
$$

When $g(z)=\exp z$, the definition coincides with the definition of the Nevanlinna L^{*}-order and the Nevanlinna L^{*}-lower order.

In this paper, we study some growth properties of composition of two analytic functions in the unit disc $U=\{z:|z|<1\}$ on the basis of relative Nevanlinna L^{*}-order (relative Nevanlinna L^{*}-lower order). We do not explain the standard
definitions and notations in the theory of entire functions as those are available in [3].

2. Theorems

In this section, we present the main results of the paper.
Theorem 1 If f, g be any two analytic functions in U and h be an entire function such that $0<\lambda_{h}^{L^{*}}(f \circ g) \leq \rho_{h}^{L^{*}}(f \circ g)<\infty$ and $0<\lambda_{h}^{L^{*}}(f) \leq \rho_{h}^{L^{*}}(f)<\infty$ then

$$
\begin{aligned}
\frac{\lambda_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(f)} \leq \liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} & \leq \frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(f)} \\
& \leq \limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\rho_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(f)}
\end{aligned}
$$

Proof. From the definition of $\rho_{h}^{L^{*}}(f)$ and $\lambda_{h}^{L^{*}}(f \circ g)$, we have for arbitrary positive ε and for all sufficiently large values of $\left(\frac{1}{1-r}\right)$ that

$$
\begin{equation*}
\log T_{h}^{-1} T_{f \circ g}(r) \geqslant\left(\lambda_{h}^{L^{*}}(f \circ g)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\log T_{h}^{-1} T_{f}(r) \leq\left(\rho_{h}^{L^{*}}(f)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{2}
\end{equation*}
$$

Now from (1) and (2) it follows for all sufficiently large values of $\left(\frac{1}{1-r}\right)$ that

$$
\frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \geqslant \frac{\left(\lambda_{h}^{L^{*}}(f \circ g)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\rho_{h}^{L^{*}}(f)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}
$$

As $\varepsilon(>0)$ is arbitrary, we obtain that

$$
\begin{equation*}
\liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \geqslant \frac{\lambda_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(f)} . \tag{3}
\end{equation*}
$$

Again for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity,

$$
\begin{equation*}
\log T_{h}^{-1} T_{f \circ g}(r) \leq\left(\lambda_{h}^{L^{*}}(f \circ g)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{4}
\end{equation*}
$$

and for all sufficiently large values of $\left(\frac{1}{1-r}\right)$,

$$
\begin{equation*}
\log T_{h}^{-1} T_{f}(r) \geqslant\left(\lambda_{h}^{L^{*}}(f)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{5}
\end{equation*}
$$

Combining (4) and (5), we get for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$
\frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\left(\lambda_{h}^{L^{*}}(f \circ g)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\lambda_{h}^{L^{*}}(f)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)} .
$$

Since $\varepsilon(>0)$ is arbitrary, it follows that

$$
\begin{equation*}
\liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(f)} \tag{6}
\end{equation*}
$$

Also for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$
\begin{equation*}
\log T_{h}^{-1} T_{f}(r) \leq\left(\lambda_{h}^{L^{*}}(f)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{7}
\end{equation*}
$$

Now from (1) and (7), we obtain for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$
\frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \geq \frac{\left(\lambda_{h}^{L^{*}}(f \circ g)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\lambda_{h}^{L^{*}}(f)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}
$$

As $\varepsilon(>0)$ is arbitrary, we get from above that

$$
\begin{equation*}
\limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \geq \frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(f)} \tag{8}
\end{equation*}
$$

Also for all sufficiently large values of $\left(\frac{1}{1-r}\right)$,

$$
\begin{equation*}
\log T_{h}^{-1} T_{f \circ g}(r) \leq\left(\rho_{h}^{L^{*}}(f \circ g)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{9}
\end{equation*}
$$

Now it follows from (5) and (9) for all sufficiently large values of $\left(\frac{1}{1-r}\right)$ that

$$
\frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\left(\rho_{h}^{L^{*}}(f \circ g)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\lambda_{h}^{L^{*}}(f)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}
$$

Since $\varepsilon(>0)$ is arbitrary, we obtain that

$$
\begin{equation*}
\underset{r \rightarrow 1}{\limsup } \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\rho_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(f)} \tag{10}
\end{equation*}
$$

Thus the theorem follows from (3), (6), (8) and (10).
The following theorem can be proved in the line of Theorem 1 and so its proof is omitted.

Theorem 2 If f, g be any two analytic functions in U and h be entire function with $0<\lambda_{h}^{L^{*}}(f \circ g) \leq \rho_{h}^{L^{*}}(f \circ g)<\infty$ and $0<\lambda_{h}^{L^{*}}(g) \leq \rho_{h}^{L^{*}}(g)<\infty$ then

$$
\begin{aligned}
\frac{\lambda_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(g)} \leq \liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{g}(r)} \leq & \frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(g)} \\
& \leq \limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{g}(r)} \leq \frac{\rho_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(g)}
\end{aligned}
$$

Theorem 3 If f, g be any two analytic functions in U and h be entire function such that $0<\rho_{h}^{L^{*}}(f \circ g)<\infty$ and $0<\rho_{h}^{L^{*}}(f)<\infty$ then

$$
\liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(f)} \leq \limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)}
$$

Proof. From the definition of $\rho_{h}^{L^{*}}(f)$, we get for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$
\begin{equation*}
\log T_{h}^{-1} T_{f}(r) \geqslant\left(\rho_{h}^{L^{*}}(f)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{11}
\end{equation*}
$$

Now from (9) and (11), it follows for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$
\frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\left(\rho_{h}^{L^{*}}(f \circ g)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\rho_{h}^{L^{*}}(f)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}
$$

As $\varepsilon(>0)$ is arbitrary, we obtain that

$$
\begin{equation*}
\liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \leq \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(f)} \tag{12}
\end{equation*}
$$

Again for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity,

$$
\begin{equation*}
\log T_{h}^{-1} T_{f \circ g}(r) \geqslant\left(\rho_{h}^{L^{*}}(f \circ g)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right) \tag{13}
\end{equation*}
$$

So combining (2) and (13), we get for a sequence of values of $\left(\frac{1}{1-r}\right)$ tending to infinity that

$$
\frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \geqslant \frac{\left(\rho_{h}^{L^{*}}(f \circ g)-\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}{\left(\rho_{h}^{L^{*}}(f)+\varepsilon\right) \log \left(\frac{\exp \left\{L\left(\frac{1}{1-r}\right)\right\}}{(1-r)}\right)}
$$

Since $\varepsilon(>0)$ is arbitrary, it follows that

$$
\begin{equation*}
\limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} \geqslant \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(f)} \tag{14}
\end{equation*}
$$

Thus the theorem follows from (12) and (14).
The following theorem can be carried out in the line of Theorem 3 and therefore we omit its proof.

Theorem 4 If f, g be any two analytic functions in U and h be an entire function with $0<\rho_{h}^{L^{*}}(f \circ g)<\infty$ and $0<\rho_{h}^{L^{*}}(g)<\infty$ then

$$
\liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{g}(r)} \leq \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(g)} \leq \limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{g}(r)}
$$

The following theorem is a natural consequence of Theorem 1 and Theorem 3.
Theorem 5 If f, g be any two analytic functions in U and h be an entire function such that $0<\lambda_{h}^{L^{*}}(f \circ g) \leq \rho_{h}^{L^{*}}(f \circ g)<\infty$ and $0<\lambda_{h}^{L^{*}}(f) \leq \rho_{h}^{L^{*}}(f)<\infty$ then

$$
\begin{aligned}
\liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)} & \leq \min \left\{\frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(f)}, \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(f)}\right\} \\
& \leq \max \left\{\frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(f)}, \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(f)}\right\} \leq \limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r)}
\end{aligned}
$$

The proof is omitted.
Analogously, one may state the following theorem without its proof:
Theorem 6 If f, g be any two analytic functions in U and h be an entire function with $0<\lambda_{h}^{L^{*}}(f \circ g) \leq \rho_{h}^{L^{*}}(f \circ g)<\infty$ and $0<\lambda_{h}^{L^{*}}(g) \leq \rho_{h}^{L^{*}}(g)<\infty$ then

$$
\begin{aligned}
\liminf _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{g}(r)} & \leq \min \left\{\frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(g)}, \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(g)}\right\} \\
& \leq \max \left\{\frac{\lambda_{h}^{L^{*}}(f \circ g)}{\lambda_{h}^{L^{*}}(g)}, \frac{\rho_{h}^{L^{*}}(f \circ g)}{\rho_{h}^{L^{*}}(g)}\right\} \leq \limsup _{r \rightarrow 1} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{g}(r)}
\end{aligned}
$$

References

[1] Datta, S.K., Biswas, T., Sen, P., Measure of growth properties of functions analytic in unit disc, Int. J. of Math. Sci. \& Engg. Appls. (IJMSEA), vol. 8, no. IV (July, 2014), 147-216.
[2] Juneja, O.P., Kapoor, G.P., Analytic functions-growth aspects, Pitman Avanced Publishing Program, 1985.
[3] Valiron, G., Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949.
Accepted: 04.08.2015

