ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS — N. 36—2016 (161—166) 161

COMPARATIVE GROWTH ANALYSIS OF FUNCTIONS
ANALYTIC IN THE UNIT DISC DEPENDING UPON THEIR
RELATIVE L*-ORDERS AND RELATIVE L*-LOWER ORDERS

Sanjib Kumar Datta

Department of Mathematics

University of Kalyani

P.O.-Kalyani, Dist-Nadia, PIN-741235
West Bengal

India

e-mail: sanjib_kr_datta@yahoo.co.in

Tanmay Biswas

Ragbari, Rabindrapalli, R.N. Tagore Road
P.0O.-Krishnagar, Dist-Nadia, PIN-741101
West Bengal

India

e-mail: tanmaybiswas_math@rediffmail.com

Pulak Sahoo

Department of Mathematics

University of Kalyani

P.O.-Kalyani, Dist-Nadia, PIN-741235
West Bengal

India

e-mail: pulak.pmath19Q@gmail.com

Abstract. In the paper the ideas of relative Nevanlinna L*-order and relative Nevan-
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1. Introduction, definitions and notations

A function f, analytic in the unit disc U = {z: |2| < 1}, is said to be of finite
Nevanlinna order [2] if there exist a number u such that Nevanlinna characteristic
function

2
T(r,f)= % /O log™ | f (re”)| d6
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satisfies T'(r, f) < (1 —7)" for all 7 in 0 < ro(u) < r < 1. The greatest lower
bound of all such numbers p is called the Nevanlinna order of f. Thus the Nevan-
linna order py of f is given by

L loaT (r, )
= limsup————— .
Ps rﬂlp—log(l—r)

Similarly, the Nevanlinna lower order Ay of f is given by

logT
Ay = liminf 208 L)
r—1 —log(1—r)

Datta et. al. [1] introduced the notion of Nevanlinna L-order for an analytic
function f in the unit disc U = {z: |z| <1} where L = L (7X) is a positive
continuous function in the unit disc U increasing slowly i.e., L (%r) ~ L (1i—r) as
r — 1, for every positive constant ‘a’, in the following manner:

Definition 1 If f be analytic in U, then the Nevanlinna L-order pf and the
Nevanlinna L-lower order )\L of f are defined as

p_ logT(r, j;) and )\f—hmmf log T'(r, f)

_ logT'(r /) ogT(r /)
Py log ( ((1 1T ) log <L(111'r ))

Now we introduce the concepts of relative Nevanlinna L*-order and relative
Nevanlinna L*-lower order of an analytic function f with respect to another ana-
lytic function ¢ in the unit disc U which are as follows:

Definition 2 If f be analytic in U and g be entire, then the relative Nevanlinna
L*-order of f with respect to g, denoted by ,05* (f) is defined by

exp {L (ﬁ)}] '
(1=r)

Similarly, the relative Nevanlinna L*-order of f with respect to g, denoted by
AL (f) is given by

p?zinf{u>0:Tf(7’)<Tg

forallO<7’0(,u)<r<1} .

» log T-'T
AE (f) = timint—28Ts 1100
(i)
08 (1-r)

When ¢ (2) = exp z, the definition coincides with the definition of the Nevan-
linna L*-order and the Nevanlinna L*-lower order.

In this paper, we study some growth properties of composition of two analytic
functions in the unit disc U = {z: |z| < 1} on the basis of relative Nevanlinna
L*-order (relative Nevanlinna L*-lower order). We do not explain the standard
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definitions and notations in the theory of entire functions as those are available
in [3].

2. Theorems
In this section, we present the main results of the paper.

Theorem 1 If f, g be any two analytic functions in U and h be an entire function
such that 0 < X" (fog) < pE (fog) <oo and 0 < A" (f) < pE (f) < oo then

L -1 L*
Ay L(*f ) < lim ianOg Thileog (r) < Ay L(*f °g)
o (f) r—1 log T}, Ty (r) Ay (f)

< lim suplog Th_leog (r) < Ph L(*f °9)
r—1 logT, Ty (r) A (f)

Proof. From the definition of p£™ (f) and A" (fog), we have for arbitrary
positive € and for all sufficiently large values of (ﬁ) that

1) osT T () > O (Fog)—<)log (expjf-(?)})
and
2) log 7, Ty () < (i (/) +¢) log (exp({lL—(?) }> .

Now from (1) and (2) it follows for all sufficiently large values of (=) that

L exp{L(}5)}
log T; ' Tyoq (1) i (Fog) ~ o) los (ﬁ)

ST TO) g (1) + o (2 fite )l

As e (> 0) is arbitrary, we obtain that

(3) lim it -8 1h_Tres (r) 5 A Lgf °g)
r—1 IOg Th Tf (7”) Py (f)

Again for a sequence of values of (1—2) tending to infinity,

exp{L (75)}
(=1 )

(4) log Ty Ty (r) < (MY (fog) +¢)log (

and for all sufficiently large values of (l%r),

(5) log T, ' Ty (r) = (N (f) —€) log (

exp {L ()}
(1) ) |
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Combining (4) and (5) , we get for a sequence of values of (%_r) tending to infinity

that
e T () Y U2+ s (L)
ST 0) p 1)— oos (HED)
Since € (> 0) is arbitrary, it follows that

-1 L*
(6) lim inf 28 Tn_Lios (1)  Au_(F09)
r—1 logT, Ty () AL (f)

Also for a sequence of values of (ﬁ) tending to infinity that

exp{L (1)}
a5

Now from (1) and (7), we obtain for a sequence of values of (=) tending to
infinity that

(7) log T, ' Ty (r) < (MY (f) +¢) log (

L exp{L(5)}
log T, ' Tyoq (1) (A (fog) ) los (?)

eI g 1)+ oo (2Ll

As e (> 0) is arbitrary, we get from above that

log T, 'Tyo AL
(8) lim sup o8 h—1 fog (7) > 2k L(*f °g)
r—1 logT, Ty (r) A (f)

Also for all sufficiently large values of (1_2)7

(9) log Ty, " Troq (1) < (pr (fog)+¢)log (

exp {L ()}
1) ) |

Now it follows from (5) and (9) for all sufficiently large values of (=) that
L* exp{L(ﬁ)}
e Ty T ) F U2+ 9os (24

long;le (r) — (Aﬁ* (f) — &) log (eXP{L(fr)})

(1-r)
Since € (> 0) is arbitrary, we obtain that

log T, 'Tyoy (r) _ pi (£09)

10 lim sup — < -
1o g T () < A (D
Thus the theorem follows from (3), (6),(8) and (10). .

The following theorem can be proved in the line of Theorem 1 and so its proof
is omitted.
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Theorem 2 If f, g be any two analytic functions in U and h be entire function
with 0 < X" (fog) < pE (fog) <ooand 0 < A" (g) < pE (g) < oo then

Mo (Fog) oy . 08T Tyog (r) _ A (fog)
pr(g) ~ =1 logT, T, (r) T A (9)
log T Ty, L*
< lim sup 0g h,lf g("’) < Ph L(*fog) .
r—1 logT, T, (r) A (9)

Theorem 3 If f, g be any two analytic functions in U and h be entire function
such that 0 < pk™ (fog) < oo and 0 < pE™ (f) < oo then

log T, YT L log T T,
lim inf o8 hfl og (1) < Ph L<f °9) < lim sup 8 hfl frog (1)
r—1 log T, Ty (r) p (f) r—1 logT, Ty (r)

Proof. From the definition of pf” (f), we get for a sequence of values of (1)
tending to infinity that

(11) logT{le (r) > (pﬁ (f) - g) log < 1=

L))

Now from (9) and (11), it follows for a sequence of values of (=) tending to

infinity that

= exp{L(5)}
log Ty, ' Tyoq (1) < (o9 e log (W)
BT ) (g () - o) log (—exp{égi%)})

As € (> 0) is arbitrary, we obtain that

log T T, L
(12) lim inf 08 h—1 fog () < Ph L(*f °g)
=1 log T, Ty (r) = oy ()

Again for a sequence of values of (1%7") tending to infinity,

exp {L ()}
- ) |

(13) log Ty Tyoq (1) = (pF (f o g) — ) log (

So combining (2) and (13), we get for a sequence of values of (l—ir) tending to
infinity that

I exp{L(%)}
o1 ) O (7290 = 91 (L)

BT g (1 2yt (2Ll
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Since € (> 0) is arbitrary, it follows that

log T}, 'To L
(14) lim sup o8 L oy (T) > Ph L<*f °9) .
r—1 logT), Ty (r) P (f)
Thus the theorem follows from (12) and (14). .

The following theorem can be carried out in the line of Theorem 3 and there-
fore we omit its proof.

Theorem 4 If f, g be any two analytic functions in U and h be an entire function
with 0 < pL™ (f o g) < o0 and 0 < pE™ (g) < oo then

log T, T L log T 1T,
hm lnf 0g h,1 fog (T) S ph L(*f © g) S hm sup og h,1 fog (T)
r—1" logT, 'T, (r) Py (9) r—1 logT, ‘T, (r)

The following theorem is a natural consequence of Theorem 1 and Theorem 3.

Theorem 5 If f, g be any two analytic functions in U and h be an entire function
such that 0 < X" (fog) < pE (fog) <oo and 0 < \E" (f) < pE (f) < oo then

o dog Ty Tyeg (1) . [N (fog) pr (fog)
111;11_)1111f log T, T (r) gmm{ MO T el () }
M (feg) pﬁ*(fog)}

= ma { N D

log T}, ' Tyo
< lim sup o8 h_l rog (1) .
r—1 log T, Ty (r)
The proof is omitted.
Analogously, one may state the following theorem without its proof:

Theorem 6 If f, g be any two analytic functions in U and h be an entire function
with 0 < X" (fog) < pE (fog) <ooand 0 < A" (g) < pE (g) < oo then

log Ty ' Tyog () _ . { A (fog) pi (fo g)}
ri 1ogTh_1Tg (ry — MN(g) T pE (g)
i J M (Fo9) o (fog)}
= ma { A9 T er (9)

log T T,
< lim sup o8 hfl Jog (r)
r—1 log T, T, (r)

References

[1] DaTTA, S.K., Biswas, T., SEN, P., Measure of growth properties of func-
tions analytic in unit disc, Int. J. of Math. Sci. & Engg. Appls. (IJMSEA),
vol. 8, no. IV (July, 2014), 147-216.

[2] JuNEJA, O.P., KAPOOR, G.P., Analytic functions-growth aspects, Pitman
Avanced Publishing Program, 1985.

[3] VALIRON, G., Lectures on the general theory of integral functions, Chelsea
Publishing Company, 1949.

Accepted: 04.08.2015



