HESITANT FUZZY IDEALS IN ABEL-GRASSMANN’S GROUPOIDS

Asad Ali
School of Mathematics and Statistics
Beijing Institute of Technology
Beijing, 100081
P.R. China
e-mail: sifwat865@hotmail.com

Madad Khan
Department of Mathematics
COMSATS Institute of Information Technology
Abbottabad
Pakistan
e-mail: madadmath@yahoo.com

Fu-Gui Shi
School of Mathematics and Statistics
Beijing Institute of Technology
Beijing, 100081
P.R. China
e-mail: fuguishi@bit.edu.cn

Abstract. In this paper, we introduced the concepts of hesitant fuzzy sets, hesitant fuzzy product, characteristic hesitant fuzzy set, hesitant fuzzy \mathcal{AG}-groupoids, hesitant fuzzy left (resp., right, two-sided) ideal, hesitant fuzzy bi-ideal, hesitant fuzzy interior ideal and hesitant fuzzy quasi-ideal in \mathcal{AG}-groupoids, their examples and basic properties are given. We also characterized regular, completely regular, weakly regular and quasi-regular \mathcal{AG}-groupoid by the properties of their hesitant fuzzy ideals.

Keywords: hesitant fuzzy sets, hesitant fuzzy \mathcal{AG}-groupoid, hesitant fuzzy left (resp., right, two-sided, quasi-, bi-, interior) ideal.

2000 Mathematics Subject Classification: 06-XX, 20-XX, 08-XX.

Introduction
A fuzzy subset f of a given set S (or a fuzzy set in S) is, described as an arbitrary function $f : S \to [0, 1]$, where $[0, 1]$ is the usual closed interval of real numbers. This fundamental concept of fuzzy set, was introduced by Zadeh in 1965 [17], it has been widely studied, developed and successfully applied in various fields, such as multicriteria decision making (see [19], [20]), fuzzy logic and approximate reasoning [18], and pattern recognition [21]. In real cases, due to the fuzziness and uncertainty of decision making problems, the criteria’s weights and evaluation values of alternatives can be inaccurate, uncertain, or incomplete. For the problems like those, fuzzy sets, especially fuzzy numbers, can provide good solutions. However, in fuzzy sets the membership degree of the element is represented by
a single value between zero and one, and a major drawback of fuzzy sets is that single values cannot convey information precisely.

In practice, the information regarding alternatives, when referring to a fuzzy set concept, may be incomplete, that is, the sum of membership and non-membership degree of an element in the universe can be less than one. The fuzzy set fails when it comes to managing the insufficient understanding of membership degrees. Thus Atanassov’s intuitionistic fuzzy sets, interval valued fuzzy sets, and trapezoidal or triangular intuitionistic fuzzy sets, as the extensions of Zadeh’s fuzzy sets, were introduced ([4], [5], [6]). Interval valued fuzzy sets, intuitionistic fuzzy sets has been widely applied in solving multicriteria decision making problems ([6], [7]).

Hesitant fuzzy set is a novel and recent extension of fuzzy sets that aims to model the uncertainty originated by the hesitation that might arise in the assignment of membership degrees of the elements to a fuzzy set. Despite the previous extensions overcome in different ways the managing of simultaneous sources of vagueness, Torra [10], introduced a useful generalization of the fuzzy set that is designed for situations in which it is difficult to determine the membership of an element to a set owing to ambiguity between a few different values. The hesitant fuzzy set permits the membership degree of an element to a set to be represented by a set of possible values between 0 and 1 (see [10], [11]). The hesitant fuzzy set therefore provides a more accurate representation of peoples hesitancy in stating their preferences over objects than the fuzzy set or its classical extensions. Hesitant fuzzy sets are very useful to deal with group decision making problems when experts have hesitation among several possible memberships for an element to a set. During the evaluating process in practice, however, these possible memberships may not be only crisp values in [0, 1], but also interval values. Hesitant fuzzy sets have attracted the attention of many researchers in a short period of time because hesitant situations are very common in different real world problems and this new approach facilitates the management of uncertainty provoked by hesitation. A deep revision of the specialized literature shows the quick growth and applicability of hesitant fuzzy sets which have been extended from different points of view, (see [9], [11], [12], [13], [14], [15], [16]). Jun and Song applied the notion of hesitant fuzzy sets to MTL-algebras and EQ-algebras (see [1], [2]). Additionally, many operators for hesitant fuzzy sets and their extensions have been introduced to deal with such type of information in different applications where decision making has been the most remarkable one. Here the purpose of this paper is to deal with the algebraic structure of \(\mathcal{AG} \)-groupoids by applying the concept of hesitant fuzzy sets.

In this study, we applied the notion of hesitant fuzzy sets to \(\mathcal{AG} \)-groupoids. We introduced the notions of hesitant fuzzy product, characteristic hesitant fuzzy set, hesitant fuzzy \(\mathcal{AG} \)-groupoids, hesitant fuzzy left (resp., right, two-sided) ideal, hesitant fuzzy bi-ideal, hesitant fuzzy interior ideal and hesitant fuzzy quasi-ideal on \(\mathcal{AG} \)-groupoids and investigate several properties. Moreover, we consider characterizations of regular, completely regular, weakly regular and quasi-regular \(\mathcal{AG} \)-groupoids in terms of hesitant fuzzy ideals.
Preliminaries notes

The concept of an \(\mathcal{AG} \)-groupoid (Abel-Grassmann’s groupoid) \cite{3} was first given by M. A. Kazim and M. Naseeruddin in 1972.

A groupoid \((\mathcal{S}, \cdot)\) is called an \(\mathcal{AG} \)-groupoid (\(LA \)-semigroup in some articles \cite{8}), if its elements satisfy left invertive law: \((ab)c = (cb)a\) for all \(a, b, c \in \mathcal{S} \). In an \(\mathcal{AG} \)-groupoid medial law \cite{3}, \((ab)(cd) = (ac)(bd)\), holds for all \(a, b, c, d \in \mathcal{S} \).

It is also known that in an \(\mathcal{AG} \)-groupoid with left identity, the paramedial law:
\[(ab)(cd) = (db)(ca), \] \cite{8} holds for all \(a, b, c, d \in \mathcal{S} \). If an \(\mathcal{AG} \)-groupoid contains left identity, then the following law \cite{8} holds,
\[(1) \quad a(bc) = b(ac), \quad \text{for all } a, b, c \in \mathcal{S}. \]

Let \(\mathcal{S} \) be an \(\mathcal{AG} \)-groupoid and \(X, Y \) be subsets of \(\mathcal{S} \). Then, the multiplication of \(X \) and \(Y \) is defined as follows:
\[XY = \{xy \in \mathcal{S} \mid x \in X \text{ and } y \in Y\}.\]

Let \(\mathcal{S} \) be an \(\mathcal{AG} \)-groupoid. By \(\mathcal{AG} \)-subgroupoid of \(\mathcal{S} \) we means a non-empty subset \(A \) of \(\mathcal{S} \) such that \(A^2 \subseteq A \), and by a left (resp., right) ideal of \(\mathcal{S} \) we mean a non-empty subset \(I \) of \(\mathcal{S} \) such that \(SI \subseteq I \) (\(IS \subseteq I \)). By two-sided ideals or simply ideal, we mean a non-empty subset of \(\mathcal{S} \) which is both a left and a right ideal of \(\mathcal{S} \). An \(\mathcal{AG} \)-subgroupoid \(B \) of \(\mathcal{S} \) is called a bi-ideal of \(\mathcal{S} \) if \((BS)B \subseteq B \). A non-empty subset \(B \) of \(\mathcal{S} \) is called a generalized bi-ideal of \(\mathcal{S} \) if \((BS)B \subseteq B \).

Sometimes, it is difficult to determine the membership of an element into a fixed set and which may be caused by a doubt among the set of different values. For the sake of better description of this situation, Torra \cite{10}, introduced the concept of hesitant fuzzy sets as a generalization of fuzzy sets. Torra defined hesitant fuzzy sets in terms of a function that returns a set of membership values for each element in the domain. This is formally defined in the next definition.

Definition 1 \cite{10} Let \(\mathcal{S} \) be a reference set. Then, we define hesitant fuzzy set on \(\mathcal{S} \) in terms of a function \(h \) that when applied to \(\mathcal{S} \) returns a finite subset of \([0, 1]\). A hesitant fuzzy set \(\mathcal{H} \) can also be viewed as the following mathematical representation:
\[\mathcal{H} := \{(x, h(x)) \mid \forall x \in \mathcal{S}\},\]

where \(h(x) \) is the set of some different values in \([0, 1]\), denoting the possible membership degrees of the elements of \(x \in \mathcal{S} \) to the set \(\mathcal{H} \). The set of all hesitant fuzzy sets on \(\mathcal{S} \) is denoted by
\[H(\mathcal{S}) = \left\{ \{(x, h(x)) \mid \forall x \in \mathcal{S}\} \mid \text{for any } x \in \mathcal{S} \text{ and any function } h \text{ is the set of some different values in } [0, 1] \right\}.\]

Note that, throughout this paper, the set of all subsets of \([0, 1]\) will be denoted by \(\mathcal{P}([0, 1]) \).
Let \(g \) and \(h \) be two hesitant fuzzy sets on \(S \). Then, hesitant union \(g \sqcup h \) and hesitant intersection \(g \cap h \) of \(g \) and \(h \) are defined to be hesitant fuzzy sets on \(S \) as follows:

\[
g \sqcup h :\mapsto \mathcal{P}([0,1], x \mapsto g(x) \sqcup h(x)) \quad \text{and} \quad g \cap h :\mapsto \mathcal{P}([0,1], x \mapsto g(x) \cap h(x)),
\]

respectively.

Definition 2 The hesitant fuzzy product of two hesitant fuzzy sets \(f \) and \(g \) on an \(AG \)-groupoid \(S \) is defined to be a hesitant fuzzy set \(f \circ g \) on \(S \) which is given by

\[
(f \circ g)(x) = \begin{cases}
\bigcup_{x=yz} \{f(y) \cap g(z)\} & \text{if there exist } x, z \in S \text{ such that } x = yz, \\
\phi & \text{otherwise.}
\end{cases}
\]

We denote by \(H(S) \) the set of all hesitant fuzzy sets on \(S \).

Definition 3 Let \(f \) and \(g \) be the elements of \(H(S) \). Then, \(f \) is called the subset of \(g \), denoted by \(f \subseteq g \), if \(f(x) \subseteq g(x) \) for all \(x \in S \).

Theorem 1 For any hesitant fuzzy sets \(f, g, h \in H(S) \), the following conditions hold.

i. \((f \circ g) \circ h = f \circ (g \circ h)\).

ii. \(f \circ g \neq g \circ f\), in general.

iii. \(f \circ (g \sqcup h) = (f \circ g) \sqcup (f \circ h)\) and \((f \sqcup g) \circ h = (f \circ h) \sqcup (g \circ h)\).

iv. \(f \circ (g \cap h) = (f \circ g) \cap (f \circ h)\) and \((f \cap g) \circ h = (f \circ h) \cap (g \circ h)\).

v. If \(f \subseteq g \), then \(f \circ h \subseteq g \circ h \) and \(h \circ f \subseteq h \circ g \).

vi. If \(t, l \in H(S) \) such that \(t \sqsubseteq f \) and \(l \subseteq g \), then \(t \circ l \sqsubseteq f \circ g \).

Proposition 1 Let \(S \) be an \(AG \)-groupoid. Then, the set \((H(S), \circ)\) forms an \(AG \)-groupoid.

Proof. It is obvious that \(H(S) \) is closed. Let \(f, g, h \in H(S) \). Let \(a \in S \). If \(a \) is not expressible as \(a = bc \) for some \(b, c \in S \), then \(((f \circ g) \circ h)(a) = ((h \circ g) \circ f)(a) = \phi \). Let for \(a \in S \) there exist \(b, c \in S \) such that \(a = bc \). Then,

\[
((f \circ g) \circ h)(a) = \bigcup_{a=bc} \{(f \circ g)(b) \cap h(c)\} = \bigcup_{a=bc} \left\{ \bigcup_{b=pq} \{f(p) \cap g(q)\} \cap h(c) \right\} = \bigcup_{a=(pq)c} \{f(p) \cap g(q) \cap h(c)\} = \bigcup_{a=(cq)p} \{h(c) \cap g(q) \cap f(p)\} = \bigcup_{a=wp} \{h \circ g\}(w) \cap f(p)\} = ((h \circ g) \circ f)(a).
\]

Thus, \(H(S) \) satisfies left invertive law. Hence, \((H(S), \circ)\) is an \(AG \)-groupoid.
Proposition 2 Let S be an \mathcal{AG}-groupoid, then $H(S)$ satisfies the medial law.

Proof. Let f, g, h and k be any hesitant fuzzy sets of $H(S)$. Then, by using left invertive law,

$$(f \circ g) \bar{\circ} (h \bar{\circ} k) = ((h \bar{\circ} k) \circ g) \bar{\circ} f = ((g \circ k) \bar{\circ} h) \bar{\circ} f = (f \bar{\circ} h) \bar{\circ} (g \circ k).$$

Theorem 2 Let S be an \mathcal{AG}-groupoid with left identity. Then, the following properties holds in $H(S)$.

(i) $f \circ (g \bar{\circ} h) = g \circ (f \bar{\circ} h)$, for all hesitant fuzzy sets $f, g, h \in H(S)$.

(ii) $(f \circ g) \bar{\circ} (h \bar{\circ} k) = (k \circ h) \bar{\circ} (g \circ f)$, for all hesitant fuzzy sets $f, g, h, k \in H(S)$.

Proof. (i) Let $a \in S$. If $a \neq bc$ for some $b, c \in S$, then $(f \circ (g \bar{\circ} h))(a) = (g \circ (f \bar{\circ} h))(a) = \phi$. If a is expressible as $a = bc$ for some $b, c \in S$, then

$$(f \circ (g \bar{\circ} h))(a) = \bigcup_{a=bc} \{f(b) \cap (g \bar{\circ} h)(c)\} = \bigcup_{a=bc} \left\{ \bigcup_{p=q} \{f(b) \cap (g \circ p) \cap h(q)\}\right\} = \bigcup_{a=pq} \{g(p) \cap (f \ circ h)(w)\} = (g \circ (f \bar{\circ} h))(a).$$

Hence, $f \circ (g \bar{\circ} h) = g \circ (f \bar{\circ} h)$ for all $a \in S$.

(ii) Let $a \in S$ and $a \neq bc$ for some $b, c \in S$, then $(f \circ g) \bar{\circ} (h \bar{\circ} k) = (k \circ h) \bar{\circ} (g \circ f) = \phi$. Assume that $a \in S$ is expressible as $a = bc$ for some $b, c \in S$. Then,

$$(f \circ g) \bar{\circ} (h \bar{\circ} k)) = \bigcup_{a=bc} \{(f \circ g)(b) \cap (h \bar{\circ} k)(c)\} = \bigcup_{a=bc} \left\{ \bigcup_{b=pq} \{f(p) \cap g(q) \cap h(u) \cap k(v)\}\right\} = \bigcup_{a=(pq)(uv)} \{f(p) \cap g(q) \cap h(u) \cap k(v)\} = \bigcup_{a=(pv)(qp)} \{k(p) \cap h(q) \cap g(u) \cap f(v)\} = \bigcup_{a=mn} \left\{ \bigcup_{m=uv} \{k(p) \cap h(u)\} \cap \bigcup_{n=qp} \{g(q) \cap f(p)\}\right\} = \bigcup_{a=mn} \{(k \circ h)(m) \cap (g \circ f)(n)\} = (k \circ h) \bar{\circ} (g \circ f))(a)$$

Hence, $(f \circ g) \bar{\circ} (h \bar{\circ} k) = (k \circ h) \bar{\circ} (g \circ f)$ for all $a \in S$.

\blacksquare
Definition 4 For a non-empty subset \(A \) of an \(\mathcal{AG} \)-groupoid \(S \), define a map

\[
\mathcal{H}_A : S \to \mathcal{P}([0,1], \ x \mapsto \begin{cases}
0,1 & \text{if } x \in A, \\
\phi & \text{otherwise.}
\end{cases}
\]

Then, \(\mathcal{H}_A \) is a hesitant fuzzy set on \(S \) and is called characteristic hesitant fuzzy set on \(S \). The hesitant fuzzy set \(\mathcal{H}_S \) is called identity hesitant fuzzy set on \(S \).

Theorem 3 Let \(\mathcal{H}_A \) and \(\mathcal{H}_B \) be hesitant fuzzy sets on \(\mathcal{AG} \)-groupoid \(S \), where \(A \) and \(B \) are non-empty subsets of \(S \). Then, the following properties hold.

(i) If \(A \subseteq B \), then \(\mathcal{H}_A \subseteq \mathcal{H}_B \).

(ii) \(\mathcal{H}_A \cap \mathcal{H}_B = \mathcal{H}_{A \cap B} \).

(iii) \(\mathcal{H}_A \circ \mathcal{H}_B = \mathcal{H}_{AB} \).

Proof. (i) It is obvious.

(ii) Let \(x \in S \). If \(x \in A \cap B \), then \(x \in A \) and \(x \in B \). Thus, we have

\[
(\mathcal{H}_A \cap \mathcal{H}_B)(x) = \mathcal{H}_A(x) \cap \mathcal{H}_B(x) = [0,1] = \mathcal{H}_{A \cap B}(x).
\]

If \(x \notin A \cap B \), then \(x \notin A \) or \(x \notin B \). Hence, we have

\[
(\mathcal{H}_A \cap \mathcal{H}_B)(x) = \mathcal{H}_A(x) \cap \mathcal{H}_B(x) = \phi = \mathcal{H}_{A \cap B}(x).
\]

Therefore, \(\mathcal{H}_A \cap \mathcal{H}_B = \mathcal{H}_{A \cap B} \).

(iii) For any \(x \in S \). Let \(x \in AB \). Then, there exist \(y \in A \) and \(z \in B \) such that \(x = yz \). Thus, we have

\[
(\mathcal{H}_A \circ \mathcal{H}_B)(x) = \bigcup_{x=yz} \{\mathcal{H}_A(y) \cap \mathcal{H}_B(z)\} \supseteq \mathcal{H}_A(y) \cap \mathcal{H}_B(z) = [0,1],
\]

and so \((\mathcal{H}_A \circ \mathcal{H}_B)(x) = [0,1] \). Since \(x \in AB \), we get \(\mathcal{H}_{AB}(x) = [0,1] \). Suppose \(x \notin AB \). Then \(x \neq yz \) for any \(y \in A \) and \(z \in B \). If \(x = yz \) for some \(y, z \in S \), then \(y \notin A \) or \(z \notin B \). Hence,

\[
(\mathcal{H}_A \circ \mathcal{H}_B)(x) = \bigcup_{x=yz} \{\mathcal{H}_A(y) \cap \mathcal{H}_B(z)\} = \phi = \mathcal{H}_{AB}(x).
\]

If \(x \neq yz \) for all \(x, y \in S \), then

\[
(\mathcal{H}_A \circ \mathcal{H}_B)(x) = \phi = \mathcal{H}_{AB}(x).
\]

In any case, we have \(\mathcal{H}_A \circ \mathcal{H}_B = \mathcal{H}_{AB} \). ☐

Definition 5 A hesitant fuzzy set \(h \) on \(\mathcal{AG} \)-groupoid \(S \) is called a hesitant fuzzy \(\mathcal{AG} \)-groupoid on \(S \) if it satisfies:

\[
(\forall x, y \in S) \ (h(xy) \supseteq h(x) \cap h(y)).
\]
Example 1 Let $S = \{1, 2, 3\}$ be an AG-groupoid with the following Cayley multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Let h be a hesitant fuzzy set on S defined as follows:

\[
\forall x \in S, \quad h(x) : S \rightarrow \mathcal{P}([0, 1]), \quad x \mapsto \begin{cases}
(0.2, 0.8) & \text{if } x = 1, \\
(0.3, 0.7) & \text{if } x = 2, \\
(0.5, 0.7) & \text{if } x = 3.
\end{cases}
\]

It is easy to observe that h is a hesitant fuzzy AG-groupoid on S.

If $h(a) = [0, 1] \forall a \in S$, then it is easy to see that h is a hesitant fuzzy AG-groupoid on S. We denote such type of hesitant fuzzy AG-groupoids by \tilde{H}. It is obvious that $\tilde{H} = \mathcal{H}_S$ that is $\tilde{H}(a) = [0, 1] \forall a \in S$.

Lemma 1 Let S be an AG-groupoid and f be a hesitant fuzzy AG-groupoid on S. Then, $\tilde{H} \circ \tilde{H} \subseteq \tilde{H}$, $\tilde{H} \circ f \subseteq \tilde{H}$, $f \sqcup \tilde{H} = \tilde{H}$ and $f \sqcap \tilde{H} \subseteq f$.

Proposition 3 Let S be an AG-groupoid with left identity. Then, $\tilde{H} \circ \tilde{H} = \tilde{H}$.

Proof. Let $a \in S$. Since every element $a \in S$ can be expressed as $a = ea$, where e is the left identity in S, so we have

\[
(\tilde{H} \circ \tilde{H})(a) = \bigcup_{a=bc} \{ \tilde{H}(b) \cap \tilde{H}(c) \} \supseteq \{ \tilde{H}(e) \cap \tilde{H}(a) \} = [0, 1].
\]

Hence, $(\tilde{H} \circ \tilde{H})(a) = [0, 1] = \tilde{H}(a) \forall a \in S$.

Theorem 4 Let f be a hesitant fuzzy set on AG-groupoid S. Then, f is a hesitant fuzzy AG-groupoid on S if and only if $f \circ f \subseteq f$.

Proof. Let f be a hesitant fuzzy AG-groupoid on S. Let $a \in S$.

If $a \neq bc$ for some $b, c \in S$. Then, $(f \circ f)(a) = \emptyset \subseteq f(a)$, implies that $(f \circ f)(a) \subseteq f(a)$. Hence, $f \circ f \subseteq f$.

If $a = bc$ for some $b, c \in S$. Then, since f is a hesitant fuzzy AG-groupoid on S, so we have $(f \circ f)(a) = \bigcup_{a=bc} \{ f(b) \cap f(c) \} \subseteq \bigcup_{a=bc} f(a) = f(a) = f(a)$. Hence, $f \circ f \subseteq f$.

Conversely, suppose that $f \circ f \subseteq f$. Let $a, b, c \in S$ and $a = bc$, then we have $f(bc) = f(a) \supseteq (f \circ f)(a) = \bigcup_{a=bc} \{ f(b) \cap f(c) \} \supseteq f(b) \cap f(c)$. Hence, f is a hesitant fuzzy AG-groupoid on S.

Theorem 5 Let S be an AG-groupoid and A be a non-empty subset of S. Then, A is an AG-subgroupoid of S if and only if H_A is a hesitant fuzzy AG-groupoid on S.

Proof. Suppose that A is an AG-subgroupoid of S, then $AA \subseteq A$. Thus, we have $H_A \circ H_A = H_{AA} \subseteq H_A$. By Theorem 4, H_A is a hesitant fuzzy AG-groupoid on S.

Conversely, assume that H_A is a hesitant fuzzy AG-groupoid on S and let $a \in AA$. Then, by using Theorem 4, we have $H_A(a) \supseteq (H_A \circ H_A)(a) = H_{AA}(a) = [0, 1] \Rightarrow H_A(a) = [0, 1] \Rightarrow a \in A$. Thus, $AA \subseteq A$. Hence, A is an AG-subgroupoid of S.

Definition 6 A hesitant fuzzy set h on an AG-groupoid S is called a hesitant fuzzy left (resp., right) ideal on S if it satisfies:

$$(\forall x, y \in S) \ (h(xy) \supseteq h(y)) \ (\text{resp. } h(xy) \supseteq h(x)).$$

A hesitant fuzzy set h on S is called a hesitant fuzzy two-side ideal on S if it is both hesitant fuzzy left ideal and hesitant fuzzy right ideal on S.

Example 2 Let $S = \{a, b, c, d\}$ be an AG-groupoid with the following Cayley multiplication table.

<table>
<thead>
<tr>
<th>.</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Let h be a hesitant fuzzy set on S defined as follows:

$$h : S \rightarrow \mathcal{P}([0, 1], \ x \mapsto \begin{cases} (0.2, 0.8) & \text{if } x = a, \\ (0.3, 0.7) & \text{if } x = b, \\ (0.5, 0.6) \cup (0.6, 0.7) & \text{if } x = c, \\ (0.5, 0.7) & \text{if } x = d. \end{cases}$$

Then, it is easy to verify that h is a hesitant fuzzy two-sided ideal on S.

Obviously, every hesitant fuzzy left (resp., right) ideal on S is a hesitant fuzzy AG-groupoid on S. But the converse is not true as seen in the following example.

Example 3 Let $S = \{0, 1, 2, 3, 4, 5\}$ be an AG-groupoid with the following Cayley multiplication table.

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Let h be a hesitant fuzzy set on \mathcal{S} defined as follows:

$$h : \mathcal{S} \to \mathcal{P}([0,1], x \mapsto \begin{cases} [0,1) & \text{if } x = 0, \\ \{0\} \cup [0.4,1) & \text{if } x = 1, \\ [0.5,0.8] \cup \{0.9\} & \text{if } x \in \{2,4\}, \\ [0.5,0.9] & \text{if } x = 3, \\ \{0,0.2\} \cup [0.5,1) & \text{if } x = 5. \end{cases}$$

Then, h is a hesitant fuzzy \mathcal{AG}-groupoid on \mathcal{S}. But it is not a hesitant fuzzy left ideal on \mathcal{S}, since $h(3.5) = h(3) = [0.5,0.9] \not\supseteq \{0,0.2\} \cup [0.5,1) = h(5)$.

Example 4 Let $\mathcal{S} = \{0,1,2,3,4,5\}$ be an \mathcal{AG}-groupoid with the Cayley multiplication table which is appeared in Example 3. Let g be a hesitant fuzzy set on \mathcal{S} defined as follows:

$$g : \mathcal{S} \to \mathcal{P}([0,1], x \mapsto \begin{cases} [0.3,1) & \text{if } x \in \{0,1\}, \\ [0.4,0.9] & \text{if } x = 2, \\ (0.3,1) & \text{if } x = 3, \\ (0.4,0.9) & \text{if } x \in \{4,5\}. \end{cases}$$

Then, g is a hesitant fuzzy \mathcal{AG}-groupoid on \mathcal{S}. But it is not a hesitant fuzzy right ideal on \mathcal{S}, since $g(3.4) = g(2) = [0.4,0.9] \not\supseteq (0.3,1) = g(3)$.

Theorem 6 Let f be a hesitant fuzzy set on \mathcal{AG}-groupoid \mathcal{S}. Then, f is a hesitant fuzzy left (resp., right) ideal on \mathcal{S} if and only if $(\mathcal{H}f \subseteq f)$ (resp., $f \mathcal{H} \subseteq f$).

Proof. Assume that f be a hesitant fuzzy left ideal on \mathcal{S}. Let $a \in \mathcal{S}$. If $a \neq bc$ for some $b,c \in \mathcal{S}$, then $(\mathcal{H}f)(a) = \emptyset \subseteq f(a)$, that is $\mathcal{H}f \subseteq f(a)$. If a is expressible as $a = bc$ for some $b,c \in \mathcal{S}$. Then, since f is a hesitant fuzzy left ideal on \mathcal{S}, we have $(\mathcal{H}f)(a) = \bigcup_{a = bc} \mathcal{H}(b) \cap f(c) \subseteq \{0,1\} \cup f(bc) = \bigcup_{a = bc} \{0,1\} \cap f(a) = f(a)$.

Hence, $\mathcal{H}f \subseteq f$.

Conversely, let $\mathcal{H}f \subseteq f$. Let there exist $b,c \in \mathcal{S}$ such that $a = bc$. Then, we have $f(bc) = f(a) \supseteq (\mathcal{H}f)(a) = \bigcup_{a = bc} \mathcal{H}(b) \cap f(c) \supseteq \mathcal{H}(b) \cap f(c) = [0,1] \cap f(c) = f(c)$.

Hence, f is a hesitant fuzzy left ideal on \mathcal{S}.

The other case can be seen in a similar way.

Theorem 7 For any non-empty subset A of an \mathcal{AG}-groupoid \mathcal{S}, the following are equivalent.

(i) A is left (resp., right, two-sided) ideal of \mathcal{S}.

(ii) The characteristic hesitant fuzzy set \mathcal{H}_A on \mathcal{S} is a left (resp., right, two-sided) ideal on \mathcal{S}.
Proof. (i) ⇒ (ii) : Let \(A \) be left ideal of an \(\mathcal{AG} \)-groupoid \(S \). For any \(x, y \in S \), if \(y \notin A \) then \(\mathcal{H}_A(y) = \emptyset \subseteq \mathcal{H}_A(xy) \). If \(y \in A \), then \(x, y \in A \), since \(A \) is left ideal of \(S \). Hence, \(\mathcal{H}_A(xy) = [0,1] = \mathcal{H}_A(y) \). Therefore, \(\mathcal{H}_A \) is a hesitant fuzzy left ideal on \(S \). Similarly, \(\mathcal{H}_A \) is a hesitant fuzzy right and hesitant fuzzy two-sided ideal on \(S \) when \(A \) is a right ideal and two-sided ideal of \(S \).

(ii) ⇒ (i) : Let \(\mathcal{H}_A \) be a hesitant fuzzy left ideal on \(S \). Let \(x \in S \) and \(y \in A \). Then \(\mathcal{H}_A(y) = [0,1] \), and so \(\mathcal{H}_A(xy) \supseteq \mathcal{H}_A(y) = [0,1] \), that is, \(\mathcal{H}_A(xy) = [0,1] \). Thus \(x, y \in A \) and therefore \(A \) is a left ideal of \(S \). Similarly, we can show that \(A \) is a right ideal and two-sided ideal of \(S \), when \(\mathcal{H}_A \) is a hesitant fuzzy right ideal and hesitant fuzzy two-sided ideal on \(S \).

Theorem 8 Let \(S \) be an \(\mathcal{AG} \)-groupoid and \(f \) be a hesitant fuzzy set on \(S \). If \(f \) is a hesitant fuzzy left (resp., right, two-sided) ideal on \(S \), then \(f \) is a hesitant fuzzy \(\mathcal{AG} \)-groupoid on \(S \).

Proof. Let \(f \) be a hesitant fuzzy left ideal on \(\mathcal{AG} \)-groupoid \(S \). Then, \(f(ab) \supseteq f(b) \) \(\forall a, b \in S \) implies that \(f(ab) \supseteq f(b) \supseteq f(a) \cap f(b) \). Hence, \(f \) is a hesitant fuzzy \(\mathcal{AG} \)-groupoid on \(S \).

Similarly, we can show that if \(f \) is a hesitant fuzzy (right, two-sided) ideal on \(S \), then \(f \) is a hesitant fuzzy \(\mathcal{AG} \)-groupoid on \(S \).

Definition 7 Let \(S \) be an \(\mathcal{AG} \)-groupoid. A hesitant fuzzy \(\mathcal{AG} \)-groupoid \(f \) on \(S \) is called a hesitant fuzzy bi-ideal on \(S \) if it satisfies:

\[
(\forall a, b, c \in S) \ (h((ab)c) \supseteq h(a) \cap h(c)).
\]

Example 5 Let \(S = \{1, 2, 3\} \) be an \(\mathcal{AG} \)-groupoid with the following Cayley multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Let \(f \) be a hesitant fuzzy set on \(S \) defined as follows:

\[
f : S \rightarrow \mathcal{P}([0,1], \ x \mapsto \begin{cases} (0.3,0.9) & \text{if } x = 1, \\ (0.4,0.8) & \text{if } x = 2, \\ (0.6,0.8) & \text{if } x = 3. \end{cases}
\]

Then, it is easy to verify that \(f \) is a hesitant fuzzy bi-ideal on \(S \).

Theorem 9 Let \(S \) be an \(\mathcal{AG} \)-groupoid and \(f \) be a hesitant fuzzy set on \(S \). Then, \(f \) is a hesitant fuzzy bi-ideal on \(S \) if and only if

\[
f \circ f \subseteq f \quad \text{and} \quad (f \circ \mathcal{H}) \circ f \subseteq f.
\]

Proof. Let \(f \) be a hesitant fuzzy bi-ideal on \(\mathcal{AG} \)-groupoid \(S \). Then, \(f \) is a hesitant fuzzy \(\mathcal{AG} \)-groupoid on \(S \) and by Theorem 4, we have \(f \circ f \subseteq f \). Next let \(a \in S \). If \(a \) is not expressible as \(a = bc \) for some \(b, c \in S \), then \((f \circ \mathcal{H}) \circ f)(a) = \emptyset \subseteq f \). If \(a \) is expressible as \(a = bc \) for some \(b, c \in S \), then we have
hesitant fuzzy ideals in Abel-Grassmann’s groupoids

\[(f\circ\tilde{H})\circ f(a) = \bigcup_{a=bc}(f\circ\tilde{H})(b) \cap f(c) = \bigcup_{a=bc} \left\{ \bigcup_{b=mn} \left\{ f(m) \cap \tilde{H}(n) \right\} \cap f(c) \right\} = \bigcup_{a=bc} \left\{ f(m) \cap f(c) \right\} \subseteq \bigcup_{a=(mn)c} f((mn)c) = f_a.\]

Hence, \((f\circ\tilde{H})\circ f \subseteq f.\)

Conversely, let \((f\circ\tilde{H})\circ f \subseteq f.\) Then, by Theorem 4, \(f\) is a hesitant fuzzy AG-groupoid on \(S.\) Now, since \((f\circ\tilde{H})\circ f \subseteq f,\) let \(a, b, c \in S,\) then we have

\[f((ab)c) \supseteq ((f\circ\tilde{H})\circ f)((ab)c) = \bigcup_{((ab)c)=pq} \left(f((ab)c) \cap f(q) \right) = \bigcup_{((ab)c)=(mn)q} \left\{ f(m) \cap \tilde{H}(n) \right\} \cap f(q) \subseteq f(a) \cap f(c).\]

This shows that, \(f((ab)c) \supseteq f(a) \cap f(c)\) \(\forall a, b, c \in S.\) Hence, \(f\) is a hesitant fuzzy bi-ideal on \(S.\)

Theorem 10 Let \(S\) be an AG-groupoid. Then, every hesitant fuzzy left (resp., right, two-sided) ideal on \(S\) is a hesitant fuzzy bi-ideal on \(S.\)

Proof. Let \(f\) be a hesitant fuzzy left (resp., right, two-sided) ideal on \(S.\) Then, by Theorem 8, \(f\) is a hesitant fuzzy left (resp., right, two-sided) ideal on \(S.\) Also \(f((ab)c) \supseteq f(c) \supseteq f(a) \cap f(c)\) \(\forall a, b, c \in S.\) Hence, \(f\) is a hesitant fuzzy bi-ideal on \(S.\)

Theorem 11 Let \(A\) be a non-empty subset of an AG-groupoid \(S.\) Then, \(A\) is a bi-ideal of \(S\) if and only if the characteristic hesitant fuzzy set \(H_A\) is a hesitant fuzzy bi-ideal on \(S.\)

Definition 8 Let \(S\) be an AG-groupoid and \(f\) be a hesitant fuzzy set on \(S.\) Then, \(f\) is called a hesitant fuzzy interior ideal on \(S,\) if

\[\forall a, b, c \in S\] \(f((ab)c) \supseteq f(b).\)

Example 6 Let \(S = \{p, q, r\}\) be an AG-groupoid with the following Cayley multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>q</td>
<td>q</td>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>r</td>
<td>q</td>
<td>q</td>
<td>q</td>
</tr>
</tbody>
</table>
Let \(f \) be a hesitant fuzzy set on \(\mathcal{S} \) defined as follows:

\[
 f : \mathcal{S} \to \mathcal{P}([0,1], \ x \mapsto \begin{cases}
 [0.5, 0.7] & \text{if } x = p, \\
 [0.3, 0.7] & \text{if } x = q, \\
 (0.3, 0.6) & \text{if } x = r.
 \end{cases}
\]

Then, it is easy to verify that \(f \) is a hesitant fuzzy interior ideal on \(\mathcal{S} \).

Theorem 12 A hesitant fuzzy set \(f \) on \(\mathcal{A}\mathcal{G} \)-groupoid \(\mathcal{S} \) is a hesitant fuzzy interior ideal on \(\mathcal{S} \) if and only if \((\mathcal{H}\circ f)\circ \mathcal{H} \subseteq f \).

Proof. Let \(a \in \mathcal{S} \) and let \(f \) be a hesitant fuzzy interior ideal on \(\mathcal{S} \). If \(a \) is not expressible as \(a = bc \) for some \(b, c \in \mathcal{S} \), then \(((\mathcal{H}\circ f)\circ \mathcal{H})(a) = \emptyset \subseteq f(a) \). Thus, \((\mathcal{H}\circ f)\circ \mathcal{H} \subseteq f \). If \(a \) is expressible as \(a = bc \) for some \(b, c \in \mathcal{S} \), then we have

\[
 ((\mathcal{H}\circ f)\circ \mathcal{H})(a) = \bigcup_{a=bc} \{ (\mathcal{H}\circ f)(b) \cap \mathcal{H}(c) \} = \bigcup_{a=bc} \left\{ \bigcup_{b=pq} \{ \mathcal{H}(p) \cap f(q) \} \cap \mathcal{H}(c) \right\}
\]

\[
 = \bigcup_{a=bc} \left\{ \bigcup_{b=pq} \{ [0,1], f(q) \} \cap [0,1] \right\} \subseteq \bigcup_{a=bc} \left\{ \bigcup_{b=pq} \{ [0,1], f((pq)c) \} \cap [0,1] \right\}
\]

\[
 = \bigcup_{a=(pq)c} \{ [0,1], f((pq)c) \} \cap [0,1] = f(a).
\]

Also if \(b \neq pq \), then \((\mathcal{H}\circ f)(b) = \emptyset \), and so \(((\mathcal{H}\circ f)\circ \mathcal{H})(a) = \emptyset \subseteq f(a) \).

In any case, we have \((\mathcal{H}\circ f)\circ \mathcal{H} \subseteq f \).

Conversely, let \((\mathcal{H}\circ f)\circ \mathcal{H} \subseteq f \). Let \(a, b, c \in \mathcal{S} \), then

\[
 f((ab)c) \supseteq ((\mathcal{H}\circ f)\circ \mathcal{H})((ab)c) = \bigcup_{(ab)c=mn} \{ (\mathcal{H}\circ f)(m) \cap \mathcal{H}(n) \}
\]

\[
 \supseteq (\mathcal{H}\circ f)(ab) \cap \mathcal{H}(c) = (\mathcal{H}\circ f)(ab) \cap [0,1]
\]

\[
 = \bigcup_{ab=pq} \{ \mathcal{H}(p) \cap f(q) \} \supseteq \mathcal{H}(a) \cap f(b) = [0,1] \cap f(b) = f(b).
\]

This shows that, \(f \) is a hesitant fuzzy interior ideal on \(\mathcal{S} \). \(\blacksquare \)

Theorem 13 Let \(\mathcal{S} \) be an \(\mathcal{A}\mathcal{G} \)-groupoid. Then, a hesitant fuzzy left (resp., right, two-sided) ideal \(f \) on \(\mathcal{S} \) is a hesitant fuzzy interior ideal on \(\mathcal{S} \) but the converse is not true in general.

Proof. Assume that \(f \) be a hesitant fuzzy ideal on \(\mathcal{S} \). Let \(a, b, c \in \mathcal{S} \), then \(f((ab)c) \supseteq f(ab) \supseteq f(b) \). This implies that \(f \) is a hesitant fuzzy interior ideal on \(\mathcal{S} \).

Conversely, since in Example 6, \(f \) is a hesitant fuzzy interior ideal on \(\mathcal{S} \) and it is not a hesitant fuzzy ideal on \(\mathcal{S} \) because \(f(pq) = f(r) = (0.3, 0.6) \not\subseteq [0.3, 0.7] = f(q) \).

Theorem 14 Let \(\mathcal{A} \) be a non-empty subset of an \(\mathcal{A}\mathcal{G} \)-groupoid \(\mathcal{S} \). Then, \(\mathcal{A} \) is an interior ideal of \(\mathcal{S} \) if and only if the characteristic hesitant fuzzy set \(\mathcal{H}_{\mathcal{A}} \) is a hesitant fuzzy interior ideal on \(\mathcal{S} \).
If \(h(a) = [0, 1] \forall a \in S \), then it is easy to see that \(h \) is a hesitant fuzzy AG-groupoid, left (resp., right, bi-ideal, interior ideal, generalized bi-ideal) on \(S \). We denote such type of hesitant fuzzy AG-groupoid, hesitant fuzzy left (resp., right, bi-ideal, interior ideal, generalized bi-ideal) by \(\mathcal{H} \). It is obvious that \(\mathcal{H} = \mathcal{H}_S \) that is \(\mathcal{H}(a) = [0, 1] \forall a \in S \).

Definition 9 A hesitant fuzzy set \(f \) on AG-groupoid \(S \) is called a hesitant fuzzy quasi-ideal on \(S \) if the following condition is valid.

\[
(f \circ \mathcal{H}) \cap (\mathcal{H} \circ f) \subseteq f.
\]

Example 7 Let \(S = \{0, a, b, c\} \) be an AG-groupoid with the following Caley multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>c</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

Let \(f \) be a hesitant fuzzy set defined on \(S \) as follows:

\[
f : S \to \mathcal{P}([0, 1]), \quad x \mapsto \begin{cases}
\epsilon & \text{if } x \in \{0, a\} \\
\phi & \text{if } x \in \{b, c\}
\end{cases}
\]

where \(\epsilon \) is a non-empty subset of \([0, 1]\). Then, \(f \) is a hesitant fuzzy quasi-ideal on \(S \).

Proposition 4 Let \(S \) be an AG-groupoid. Then, every hesitant fuzzy quasi-ideal on \(S \) is a hesitant fuzzy AG-groupoid on \(S \).

Proof. Assume that \(f \) be a hesitant fuzzy quasi-ideal on \(S \). Since \(f \subseteq \mathcal{H}, f \circ f \subseteq \mathcal{H} \circ f \) and \(f \circ f \subseteq f \circ \mathcal{H} \). So we have, \(f \circ f \subseteq (\mathcal{H} \circ f) \cap (f \circ \mathcal{H}) \subseteq f \) implies that \(f \circ f \subseteq f \). Hence, \(f \) is a hesitant fuzzy AG-groupoid on \(S \).

Proposition 5 Every hesitant fuzzy left (resp., right) ideal on AG-groupoid \(S \) is a hesitant fuzzy quasi-ideal on \(S \).

Proof. Assume that \(f \) is a hesitant fuzzy quasi-ideal on \(S \). Now, since \(\mathcal{H} \circ f \subseteq f \), so we have \((\mathcal{H} \circ f) \cap (f \circ \mathcal{H}) \subseteq \mathcal{H} \circ f \subseteq f \). Hence, \(f \) is a hesitant fuzzy left ideal on \(S \).

Proposition 6 Let \(S \) be an AG-groupoid. Then, every idempotent hesitant fuzzy quasi-ideal on \(S \) is a hesitant fuzzy bi-ideal on \(S \).

Proof. Let \(f \) be a hesitant fuzzy quasi-ideal on AG-groupoid \(S \). Then, by Proposition 4, \(f \) is a hesitant fuzzy AG-groupoid on \(S \). Next, since \(f \) is idempotent hesitant fuzzy quasi-ideal on \(S \), so we have

\[
(f \circ \mathcal{H}) \circ f \subseteq (\mathcal{H} \circ \mathcal{H}) \circ f \subseteq \mathcal{H} \circ f \quad \text{and} \quad (f \circ \mathcal{H}) \circ f = (f \circ \mathcal{H}) \circ (f \circ f) = (f \circ f) \circ (\mathcal{H} \circ f) \subseteq f \circ \mathcal{H}
\]

This implies that, \((f \circ \mathcal{H}) \circ f \subseteq (\mathcal{H} \circ f) \cap (f \circ \mathcal{H}) \subseteq f \) implies that \((f \circ \mathcal{H}) \circ f \subseteq f \). Hence, by using Theorem 9, \(f \) is a hesitant fuzzy bi-ideal on \(S \).
Theorem 15 Let Q be a non-empty subset of an AG-groupoid S. Then, Q is a quasi-ideal of S if and only if the characteristic hesitant fuzzy set H_Q is a hesitant fuzzy quasi-ideal on S.

Proof. We first assume that Q is a quasi-ideal of S. Let a be any element of S. If $a \in Q$, then $((H_Q \circ \tilde{H})(a) \cap (\tilde{H} \circ H_Q))(a) \subseteq [0, 1] = H_Q(a)$.

If $a \notin Q$, then $[H_Q](a) = \phi$. On the other hand assume that $((H_Q \circ \tilde{H})(a) \cap (\tilde{H} \circ H_Q))(a) = [0, 1]$. Then

$$
\bigcup_{a=xy} \{H_Q(x) \cap \tilde{H}(y)\} = (H_Q \circ \tilde{H})(a) = [0, 1]
$$

and

$$
\bigcup_{a=xy} \{\tilde{H}(x) \cap H_Q(y)\} = (\tilde{H} \circ H_Q)(a) = [0, 1].
$$

This implies that, there exist b, c, d and e of S with $a = bc = de$ such that $H_Q(b) = [0, 1]$ and $H_Q(e) = [0, 1]$. Hence $a = bc = de \in QS \cap SQ \subseteq Q$, which contradicts that $a \notin Q$. Thus, we have $(H_Q \circ \tilde{H}) \cap (\tilde{H} \circ H_Q) \subseteq H_Q$ and so H_Q is a hesitant fuzzy quasi-ideal on S.

Conversely, suppose that H_Q is a hesitant fuzzy quasi-ideal on S. Let a be any element of $QS \cap SQ$. Then, $bx = a = yc$ for some $x, y \in S$. It follows from Example 2, that

$$
H_Q(a) \supseteq ((H_Q \circ \tilde{H}) \cap (\tilde{H} \circ H_Q))(a) = (H_Q \circ \tilde{H})(a) \cap (\tilde{H} \circ H_Q)(a)
$$

$$
= \left(\bigcup_{u=uv} \{H_Q(u) \cap \tilde{H}(v)\} \right) \cap \left(\bigcup_{a=uv} \{\tilde{H}(u) \cap H_Q(v)\} \right)
$$

$$
= \left(\bigcup_{a=uv} \{H_Q(u)\} \right) \cap \left(\bigcup_{a=uv} \{H_Q(v)\} \right) = [0, 1]
$$

and so $a \in Q$. Thus, $QS \cap SQ \subseteq Q$. Hence, Q is a quasi-ideal of S.

Characterizations of regular AG-groupoids

In this section, we characterize a regular AG-groupoid in terms of hesitant fuzzy ideals.

Definition 10 An AG-groupoid S is called regular AG-groupoid if for every element $a \in S$ there exist an element $x \in S$ such that $a = (ax)a$.
Theorem 16 Let S be a regular \mathcal{AG}-groupoid. Then, for every hesitant fuzzy right ideal f and for every hesitant fuzzy left ideal g on S, $f \diamond g = f \cap g$.

Proof. Let f be a hesitant fuzzy right ideal and g be a hesitant fuzzy left ideal on a regular \mathcal{AG}-groupoid S. Then, $f \diamond g \subseteq f \bowtie H \subseteq f$ and $f \diamond g \subseteq H \bowtie g \subseteq g$. This implies that, $f \diamond g \subseteq f \cap g$. Now let a be any element of S. Then, since S is regular \mathcal{AG}-groupoid, so there exist an element $x \in S$ such that $a = (ax)a$. Thus, we have $(f \diamond g)(a) = \bigcup_{a=xy} \{ f(x) \cap g(y) \} \supseteq f(ax) \cap g(a) \supseteq f(a) \cap g(a) = (f \cap g)(a)$. This implies that, $f \diamond g \supseteq f \cap g$. Hence, $f \diamond g = f \cap g$.

Corollary 1 Let S be a regular \mathcal{AG}-groupoid. Then, for every hesitant fuzzy ideal f and for every hesitant fuzzy left ideal g on S, $f \diamond g = f \cap g$.

Proposition 7 Let S be a regular \mathcal{AG}-groupoid. Then, every hesitant fuzzy right ideal on S is idempotent.

Proof. Let S be a regular \mathcal{AG}-groupoid and g be a hesitant fuzzy right ideal on S. Then, $g \bowtie g \subseteq g \bowtie H \subseteq g$. Next, since S is regular, so for any $a \in S$ there exist $x \in S$ such that $a = (ax)a$. Thus, we have $(g \bowtie g)(a) = \bigcup_{a=(ax)a} \{ g(ax) \cap g(a) \} \supseteq g(a) \cap g(a) = g(a)$. Hence, $g \subseteq (g \bowtie g)$ and so $(g)^2 = g \bowtie g = g$.

Corollary 2 Let S be a regular \mathcal{AG}-groupoid. Then, every hesitant fuzzy ideal on S is idempotent.

Corollary 3 Let S be a regular \mathcal{AG}-groupoid. Then, the set of all hesitant fuzzy ideals on S forms a semilattice structure under the hesitant fuzzy product.

Proposition 8 Every hesitant fuzzy right ideal on a regular \mathcal{AG}-groupoid S is a hesitant fuzzy left ideal on S.

Proof. Let S be a regular \mathcal{AG}-groupoid and f be a hesitant fuzzy right ideal on S. Then, since S is regular, so for any $a \in S$ there exist $x \in S$ such that $a = (ax)a$. Thus, we have $f(ab) = f((ax)a)b = f((ba)(ax)) \supseteq f(ba) \supseteq f(b)$. Hence, f is a hesitant fuzzy left ideal on S.

Proposition 9 Let S be an \mathcal{AG}-groupoid and let the set of all hesitant fuzzy ideals on S forms a regular \mathcal{AG}-groupoid on S under the hesitant fuzzy product. Then, every hesitant fuzzy ideal on S has the form $f = (f \bowtie H) \bowtie g$.

Proof. Let f be a hesitant fuzzy ideal on S. Then, by assumption there exist a hesitant fuzzy ideal on S such that $f = (f \bowtie g) \bowtie f$. Thus,

$$f = (f \bowtie g) \bowtie f \subseteq (f \bowtie H) \bowtie f \subseteq (f \bowtie H) \cap (H \bowtie f) \subseteq f \cap f = f.$$

Now since $(f \bowtie H) \bowtie f \subseteq (f \bowtie H) \bowtie H \subseteq f \bowtie H$ and $(f \bowtie H) \bowtie f \subseteq (H \bowtie H) \bowtie f \subseteq H \bowtie f$, hence, $f = (f \bowtie H) \bowtie f$.

\[\Box \]
Proposition 10 Let \(S \) be a regular \(A\mathcal{G} \)-groupoid and let \(f \) be a hesitant fuzzy interior ideal on \(S \). Then, \(f \) is a hesitant fuzzy ideal on \(S \).

Proof. Let \(f \) be a hesitant fuzzy interior ideal on \(S \) and \(a \) be any element of \(S \). Then, since \(S \) is regular so there exist \(x \in S \) such that \(a = (ax)a \). Thus, we have \(f(ab) = f(((ax)a)b) \supseteq f(a) \). Hence, \(f \) is a hesitant fuzzy right ideal on \(S \).

Theorem 17 Let \(S \) be a regular \(A\mathcal{G} \)-groupoid. Then, for every hesitant fuzzy bi-ideal \(f \) on \(S \), \(f = (f\tilde{\triangledown}H)\tilde{\triangledown}f \).

Proof. Let \(f \) be a hesitant fuzzy bi-ideal on \(S \) and let \(a \) be an arbitrary element of \(S \). Then, since \(S \) is regular, so there exist \(x \in S \) such that \(a = (ax)a \). Thus, we have

\[
((f\tilde{\triangledown}H)\tilde{\triangledown}f)(a) = \bigcup_{a=bc} \{ (f\tilde{\triangledown}H)(b) \cap f(c) \} \supseteq (f\tilde{\triangledown}H)(xa) \cap f(a) = \bigcup_{ax=pq} \{ f(p) \cap \tilde{H}(q) \} \cap f(a) \supseteq f(a) \cap \tilde{H}(x) \cap f(a)
\]

This shows that, \((f\tilde{\triangledown}H)\tilde{\triangledown}f \supseteq f \). By assumption, since \(f \) is a hesitant fuzzy bi-ideal on \(S \), so \((f\tilde{\triangledown}H)\tilde{\triangledown}f \subseteq f \). Hence, \(f = (f\tilde{\triangledown}H)\tilde{\triangledown}f \).

Proposition 11 Let \(S \) be a regular \(A\mathcal{G} \)-groupoid. Let \(f \) be a hesitant fuzzy right ideal and \(g \) be a hesitant fuzzy left ideal on \(S \). Then, \(f\tilde{\triangledown}g \) is a hesitant fuzzy quasi-ideal on \(S \).

Proof. Let \(f \) be a hesitant fuzzy right ideal and \(g \) be a hesitant fuzzy left ideal on \(S \). It follows that \(f \cap g \) is a hesitant fuzzy quasi-ideal on \(S \). Now, since \(S \) is regular, so by Theorem 16, \(f\tilde{\triangledown}g = f \cap g \). Hence, \(f\tilde{\triangledown}g \) is a hesitant fuzzy quasi-ideal on \(S \).

Characterizations of completely regular \(A\mathcal{G} \)-groupoids

In this section, we characterize a completely regular \(A\mathcal{G} \)-groupoid in terms of hesitant fuzzy ideals. An \(A\mathcal{G} \)-groupoid \(S \) is called left regular if for all \(a \in S \) there exist \(x \in S \) such that

\[a = xa^2 = x(aa) \]

An \(A\mathcal{G} \)-groupoid \(S \) is called right regular if for all \(a \in S \) there exist \(x \in S \) such that

\[a = a^2x = (aa)x \]

Definition 11 An \(A\mathcal{G} \)-groupoid \(S \) is called completely regular \(A\mathcal{G} \)-groupoid if \(S \) is regular, left regular and right regular.

Theorem 18 Let \(S \) be an \(A\mathcal{G} \)-groupoid. Then, the following coditions are equivalent.
(i) \(S \) is left regular.

(ii) \(f(a) = f(a^2) \) for all \(a \in S \), where \(f \) is any hesitant fuzzy left ideal on \(S \).

Proof. (i) \(\Rightarrow \) (ii) : Let \(S \) be a left regular AG-groupoid and \(f \) be any hesitant fuzzy left ideal on \(S \). Then, since \(S \) is a left regular so for any \(p \in S \) there exist \(q \in S \) such that \(p = q(pp) \). Thus,

\[
f(p) = f(q(pp)) \supseteq f(pp) \supseteq f(p).
\]

This shows that, \(f(p) = f(p^2) \).

(ii) \(\Rightarrow \) (i) : Let \(f(p) = f(p^2) \) for all \(p \in S \). Since \(L(p^2) \) is a left ideal of \(S \), the characteristic hesitant fuzzy set \(\mathcal{H}_{L(p^2)} \) is a hesitant fuzzy left ideal on \(S \). Since \(p^2 \in L(p^2) \), we have

\[
\mathcal{H}_{L(p^2)}(p) = \mathcal{H}_{L(p^2)}(p^2) = [0, 1].
\]

This implies that, \(p \in L(p^2) = S(pp) \). This obviously means that \(S \) is a left regular.

Theorem 19 Let \(S \) be an AG-groupoid. Then, the following conditions are equivalent.

(i) \(S \) is left regular.

(ii) \(f(a) = f(a^2) \) for all \(a \in S \), where \(f \) is any hesitant fuzzy right ideal on \(S \).

Characterizations of weakly regular AG-groupoids

In this section, we characterize a weakly regular AG-groupoid in terms of hesitant fuzzy ideals.

Definition 12 An AG-groupoid \(S \) is called weakly regular AG-groupoid if for all \(a \in S \) there exist \(b, c \in S \) such that

\[
a = (ab)(ac)
\]

Theorem 20 Let \(S \) be a weakly regular AG-groupoid. Let \(f \) be any hesitant fuzzy right ideal and \(g \) be any hesitant fuzzy ideal on \(S \). Then, \(f \cap g = f\overline{g} \).

Proof. Let \(f \) be any hesitant fuzzy right ideal and \(g \) be any hesitant fuzzy ideal on weakly regular AG-groupoid \(S \). Let \(a \) be any element of \(S \). Then, since \(S \) is weakly regular, so there exist \(b, c \in S \) such that \(a = (ab)(ac) \). Thus, we have

\[
(f\overline{g})(a) = \bigcup_{a=(ab)(ac)} \{f(ab) \cap g(ac)\} \supseteq f(a) \cap f(a) = (f \cap g)(a).
\]

This shows that, \(f \cap g \subseteq f\overline{g} \). Now since \(f \cap g \supseteq f\overline{g} \) holds for all hesitant fuzzy right ideal and for all hesitant fuzzy left ideal on \(S \). Hence, \(f \cap g = f\overline{g} \).
Characterizations of quasi-regular \mathcal{AG}-groupoids

In this section, we characterize quasi-regular \mathcal{AG}-groupoid in terms of hesitant fuzzy ideals. An \mathcal{AG}-groupoid S is called left quasi-regular if for all $a \in S$ there exist $b, c \in S$ such that $a = (ba)(ca)$ and S is called right quasi-regular if for all $a \in S$ there exist $b, c \in S$ such that $a = (ab)(ac)$.

Definition 13 An \mathcal{AG}-groupoid S is called quasi-regular, if it is both left quasi-regular and right quasi-regular.

Theorem 21 Let S be an \mathcal{AG}-groupoid. Then, S is left (resp., right) quasi-regular if and only if every hesitant fuzzy left (resp., right) ideal on S is idempotent.

Proof. Let S be left quasi-regular and f be a hesitant fuzzy left ideal on S. Then, for any $x \in S$ there exist $b, c \in S$ such that $x = (bx)(cx)$. Thus, we have $(\tilde{f} \circ f)(x) = \bigcup_{x=bx(cx)} f(bx) \cap f(cx) \supseteq f(bx) \cap f(cx) \supseteq f(x) \cap f(x) = f(x)$. This shows that, $\tilde{f} \circ f \supseteq f$. Also it is obvious that $f \circ f \subseteq f$. Hence, f is idempotent.

Conversely, let every hesitant fuzzy left ideal on S is idempotent. Let $x \in S$. Then, since $L[x]$ is a principal left ideal of S, so the characteristic hesitant fuzzy set is a hesitant fuzzy left ideal on S. Thus, by using assumption we have

$$H_{L[x]L[x]}(x) = (H_{L[x]} \tilde{\circ} H_{L[x]})(x) = H_{L[x]}(x) = [0, 1].$$

This implies that, $a \in L[x]L[x] = (Sx)(Sx)$. Hence, S is left quasi-regular.

The other case can be shown in a similar way. \hfill \blacksquare

Proposition 12 Let S be left (resp., right) quasi-regular \mathcal{AG}-groupoid and f be a hesitant fuzzy right ideal on S. Then, f is a hesitant fuzzy ideal on S.

Proof. Let S be left (resp., right) quasi-regular \mathcal{AG}-groupoid and f be a hesitant fuzzy right ideal on S. Then, since \tilde{H} is a hesitant fuzzy right ideal of itself on S, and by using assumption \tilde{H} is idempotent, so we have $H \circ f = (H \circ f) \circ f = (f \circ f) \subseteq f \subseteq f \subseteq f$. Hence, f is a hesitant fuzzy ideal on S. \hfill \blacksquare

Theorem 22 Let S be an \mathcal{AG}-groupoid. Let for every hesitant fuzzy ideal f on S, $f = (f \circ \tilde{H})^2 \cap (H \circ f)^2$, then S is quasi-regular.

Proof. Let any hesitant fuzzy right ideal on S. Then, by assumption we have $f = (f \circ \tilde{H})^2 \cap (H \circ f)^2 \subseteq f \circ f \subseteq f \subseteq f \subseteq f$. Thus, $f = f \circ f = (f)^2$ and from Theorem 21, it follows that S is right quasi-regular. In similar way we can show that S is left quasi-regular. \hfill \blacksquare

Acknowledgements. This project is supported by National Natural Science Foundation of China (61074115) and (10971242).
References

Accepted: 12.09.2015