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1. Introduction and main results

In this article, we assume the reader is familiar with standard notations and basic
results of Nevanlinna’s value distribution theory; see [6], [7], [10], [18], [19]. Let
f be a meromorphic function in the whole complex plane. We use σ(f) and
µ(f) to denote the order and lower order of f respectively; see [19, p.10] for the
definitions. Some basic knowledge of complex dynamics of meromorphic functions
is also needed; see [3], [21]. We define fn, n ∈ N denote the nth iterate of f . The
Fatou set F (f) of transcendental meromorphic function f is the subset of the
plane C where the iterates fn of f form a normal family. The complement of
F (f) in C is called the Julia set J(f) of f . It is well known that F (f) is open
and completely invariant under f , J(f) is closed and non-empty.

We denote Ω(α, β) = {z ∈ C| arg z ∈ (α, β)}, where 0 < α < β < 2π. Given
θ ∈ [0, 2π), if Ω(θ−ε, θ+ε)∩J(f) is unbounded for any ε > 0, then we call the ray
arg z = θ the radial distribution of J(f). Define ∆(f) = {θ ∈ [0, 2π)| arg z = θ is
the radial distribution of J(f)}. Obviously, ∆(f) is closed and so measurable. We
use the mes∆(f) to denote the linear measure of ∆(f). Many important results of
radial distribution of transcendental meromorphic functions have been obtained,
for example [1], [12], [13], [14], [15], [16], [22]. Recently, Huang and Wang [8], [9]
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considered the radial distribution of Julia sets of entire solutions of some special
linear complex differential equations and obtained the lower bound of them.

In the present paper, we devote to investigate the radial distributions of Ju-
lia sets of solutions of some kind of second order complex differential equations
which was studied in [17]. The coefficients of this equation are meromorphic and
have some special properties. In order to introduce these properties, we give the
definition of the so called E F Class firstly. In what follows we use the notations
Ω(α, β, r)={z : arg z ∈ Ω(α, β), |z| < r}, Ω(r, α, β)={z : arg z ∈ Ω(α, β), |z| ≥ r}
and denote by Ω(r, α, β) the closure of Ω(r, α, β).

Definition. Let f be a meromorphic function in the finite complex plane C of
order 0 < σ(f) < ∞. A ray arg z = θ starting from the origin is called a zero-pole
accumulation ray of f(z), if for any given real number ε > 0, the following equality
holds

(1.1) lim sup
r→∞

log n{Ω(θ−ε, θ+ε), f=0}+ log n{Ω(θ−ε, θ+ε), f=∞}
log r

= σ(f).

Edrei and Fuchs [4], [5] proved that the number of deficient values of a mero-
morphic function is finite when its zeros and poles are located near some curves.
The weaker form of their result can be stated as follows.

Theorem A. [20, Theorem 3.10] Let f be a meromorphic function in the complex
plane C of order 0 < σ(f) < ∞. Assume that f(z) has q zero-poles accumulation
rays and p deficient values other than 0 and ∞, then p ≤ q.

We shall say that a meromorphic function f ∈ E F , called it Edrei-Fuchs
Class if f(z) satisfies the conditions of Theorem A with p = q ≥ 1, that is, f(z) is
of finite and positive order, and has p zero-pole accumulation rays and p non-zero
finite deficient values. In [17], assume that one of coefficients of the second order
linear complex differential equations belongs to Edrei-Fuchs Class, the authors
proved every nontrivial solutions of this equation is of infinite order. Actually,
they obtained

Theorem B. [17] Let A(z) ∈ E F be a meromorphic function and let B(z) be
a transcendental meromorphic function having a deficient value ∞. Then every
nontrivial solution f of equation

f ′′ + A(z)f ′ + B(z)f = 0(1.2)

is of infinite order.

Our main aim of this article is to estimate the lower bound of radial distri-
bution of Julia set to solutions of equation (1.2).
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Theorem 1.1 Let A(z) ∈ E F be a meromorphic function and let B(z) be a trans-
cendental meromorphic function with finite order having a deficient value ∞, let f
be a nontrivial solution of equation (1.2) and J(f) has an unbounded component,
then mes ∆(f) ≥ M2 > 0, where M2 is a constant defined in Remark 1, Section 2.

Furthermore, we study the radial distribution of Julia set of the derivatives of
the nontrivial solutions of equations (1.2). Indeed, we obtain the following results.

Theorem 1.2 Let A(z) ∈ E F be a meromorphic function and let B(z) be a trans-
cendental meromorphic function with finite order having a deficient value ∞, let
f be a nontrivial solution of equation (1.2). Moreover, if J(f) and J(f (k)) both
have an unbounded component, then mes (∆(f) ∩ ∆(f (k))) ≥ M2, where k is a
positive integer.

By Theorem 1.2, we immediately have

Corollary 1.1 Under the hypothesis of Theorem 1.2 we have mes∆(f (k)) ≥ M2,
where k is a positive integer.

2. Preliminary lemmas

In this article, for a measurable set E ⊂ (0,∞), we define the logarithmic measure
of E by ml(E) =

∫
E

dt
t
. We also define the upper and lower logarithmic densities

of E ⊂ [1,∞) respectively, by

log dens E = lim sup
r→∞

ml(E ∩ [0, r])

log r
,

log dens E = lim inf
r→∞

ml(E ∩ [0, r])

log r
.

(2.1)

In the following, we recall the Nevanlinna characteristic in an angle; see [6].
Let g(z) be meromorphic on the angle Ω(α, β), where β − α ∈ (0, 2π]. Following
[6], we define

Aα,β(r, g) =
w

π

∫ r

1

(
1

tw
− tw

r2w

)
{log+ |g(teiα)|+ log+ |g(teiβ)|}dt

t
;

Bα,β(r, g) =
2w

πrw

∫ β

α

log+ |g(reiθ)| sin w(θ − α)dθ;

Cα,β(r, g) = 2
∑

1<|bn|<r

(
1

|bn|w −
|bn|w
r2w

)
sin w(βn − α),

where w = π/(β−α), and bn = |bn|eiβn are poles of g(z) in Ω(α, β) appearing ac-
cording to their multiplicities. The Nevanlinna angular characteristic is defined as

Sα,β(r, g) = Aα,β(r, g) + Bα,β(r, g) + Cα,β(r, g).
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In particular, we denote the order of Sα,β(r, g) by

σα,β(g) = lim sup
r→∞

log Sα,β(r, g)

log r
.

We call W is a hyperbolic domain if C\W contains at least three points,
where C is the extended complex plane. For an a ∈ C\W , define CW (a) =
inf{λW (z)|z − a| : ∀z ∈ W}, where λW (z) is the hyperbolic density on W . It is
well known that if every component of W is simply connected, then CW (a) ≥ 1/2;
see [22]. For a finite number a ∈ J(f), if there is a component U in F (f) such that
CU(a) > 0, then we call CF (f)(a) > 0, where f(z) is a transcendental meromorphic
function in C.

Lemma 2.1. ([22, Lemma 2.2]) Let f(z) be analytic in Ω(r0, θ1, θ2), U be a hyper-
bolic domain, and f : Ω(r0, θ1, θ2) → U . If there exists a point a ∈ ∂U\{∞} such
that CU(a) > 0, then there exists a constant d > 0 such that, for sufficiently small
ε > 0, we have

|f(z)| = O(|z|d), z →∞, z ∈ Ω(r0, θ1 + ε, θ2 − ε).

The next lemma shows some estimates for the logarithmic derivative of func-
tions being analytic in an angle. Before this, we recall the definition of an R-set; for

reference, see [10]. Set B(zn, rn) = {z : |z−zn| < rn}. If
∞∑

n=1

rn < ∞ and zn →∞,

then
∞⋃

n=1

B(zn, rn) is called an R-set. Clearly, the set

{
|z| : z ∈

∞⋃
n=1

B(zn, rn)

}
is

of finite linear measure.

Lemma 2.2. ([9, Lemma 2.2]) Let z = reiψ, r0 + 1 < r and α ≤ ψ ≤ β, where
0 < β − α ≤ 2π. Suppose that n (≥ 2) is an integer, and that g(z) is analytic
in Ω(r0, α, β) with σα,β(g) < ∞. Choose α < α1 < β1 < β. Then, for every
εj ∈ (0, (βj −αj)/2) (j = 1, 2, . . . , n− 1) outside a set of linear measure zero with

αj = α +

j−1∑
s=1

εs, βj = β −
j−1∑
s=1

εs, j = 2, 3, . . . , n− 1.

there exists K > 0 and M > 0 only depending on g, ε1, . . . , εn−1 and Ω(αn−1, βn−1),
and not depending on z, such that

∣∣∣∣
g′(z)

g(z)

∣∣∣∣ ≤ KrM(sin k(ψ − α))−2

and ∣∣∣∣
g(n)(z)

g(z)

∣∣∣∣ ≤ KrM

(
sin k(ψ − α)

n−1∏
j=1

sin kεj
(ψ − αj)

)−2

for all z ∈ Ω(αn−1, βn−1) outside an R-set H, where k = π/(β − α) and kεj
=

π/(βj − αj) (j = 1, 2, . . . , n− 1).
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Lemma 2.3. ([11]) Let T (r) > 1 be a nonconstant increasing function in (0, +∞)
of finite order σ, i.e.,

lim sup
r→∞

log T (r)

log r
= σ < ∞.(2.2)

For any η such that 0 ≤ η < σ, if σ > 0, and η = 0, if σ = 0, define

E(η) = {r ≥ 1 : rη < T (r)}.(2.3)

Then log dens E(η) > 0.

Lemma 2.4. ([17]) Let A(z) be a meromorphic function of order 0 < σ(A) < +∞
having p finite deficient values a1, a2, . . . , ap, (p ≥ 1) and let B(z) be a meromor-
phic function with finite order having a deficient value ∞. Suppose that β > 1
and 0 < η < σ(A) are two constants. Then there exists a sequence {tn} such that

lim
n→∞

tηn
T (tn, A)

= 0.(2.4)

Moreover, for every sufficiently large n, there is a set Fn ⊂ [tn, (β + 1)tn] with
mes(Fn) ≤ (β − 1)tn/4 such that, for all R ∈ [tn, βtn]\Fn, the arguments θ sets
Eν(R), (ν = 1, 2, . . . , p) and E∞(R) satisfying the following inequalities

(2.5) mes(Eν(R)) := mes

({
θ ∈ [0, 2π)| log

1

|A(Reiθ)−aν |≥
δ0

4
T (R,A)

})
≥M1>0;

and

(2.6) mes(E∞(R)) := mes

({
θ ∈ [0, 2π)| log |B(Reiθ)|≥δ1

4
T (R, B)

})
≥M2>0,

where M1,M2 are two positive constants depending only on σ(A), σ(B), δ0 =
min{δ(aν , A), ν = 1, 2, . . . , p}, δ1 = δ(∞, B), β and η.

Remark 1. From the proof of Lemma 2.4 in [17], we know that

M1 :=
δ0

4

{
(2β + 4)H1

2π

[
(2β + 1) +

2 log 16e(2β+1)
β−1

log β+2
β+1

]}−1

;(2.7)

M2 :=
δ1

4

{
(2β + 4)H2

2π

[
(2β + 1) +

2 log 16e(2β+1)
β−1

log β+2
β+1

]}−1

(2.8)

where H1 = σ(A)
h1

+ 1 and h1 is defined by h1 := log dens E(η1) := log dens {r ≥ 1 :

rη1 < T (r, A)} > 0, η < η1 < σ(A); H2 = σ(B)
h2

+ 1 and h2 is defined by h2 :=

log dens E(η2) := log dens {r ≥ 1 : rη2 < T (r, B)} > 0, η < η2 < σ(B) according
to Lemma 2.3.
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Lemma 2.5. ([17, Lemma 2.6]) Let A(z) ∈ E F , then for any given sufficiently
small ε > 0 and β > 1, when n is sufficiently large, there exists a sequence of
angular regions Ω(θkν + 2ε, θkν+1 − 2ε, tn, βtn) := {z : tn ≤ |z| ≤ βtn, θkν + 2ε ≤
arg z ≤ θkν+1 − 2ε}, n = 1, 2, . . . , ν = 1, 2, . . . , p such that for every 1 ≤ ν ≤ p,
the following inequality

log
1

|A(z)− aν | > log
4

d
(2.9)

holds for z ∈ Ω(θkν + 2ε, θkν+1 − 2ε, tn, βtn)\
p⋃

ν=1

(γν)n, where
p⋃

ν=1

(γν)n are some

disks with the sum of total radius not exceeding pεtn/8 and tn, βtn are defined by
Lemma 2.4 and d = min

1≤ν 6=ν′≤p
{|aν − aν′|} and aν are deficient values of A(z).

3. Proof of theorems

Proof of Theorem 1.1. By Theorem B, we have already known that every
nontrivial meromorphic solution f of (1.2) is of infinite order. We shall obtain the
assertion by reduction to contradiction. At first, we suppose that mes ∆(f) < M2,
so ζ = M2 −mes ∆(f) > 0. Since ∆(f) is closed, obviously S = [0, 2π)\∆(f) is
open, so it consists of at most countably many open intervals. We can choose
finitely many open intervals Ii = (αi, βi), i = 1, 2, . . . , m satisfying [αi, βi] ⊂ S

and mes

(
S\

m⋃
i=1

Ii

)
< ζ/4. For the angular domain Ω(αi, βi), it is easy to see that

(αi, βi)∩∆(f) = ∅ and Ω(r, αi, βi)∩J(f) = ∅ for sufficiently large r. This implies
that, for each i = 1, 2, . . . , m, there exist the corresponding ri and unbounded
Fatou component Ui of F (f) such that Ω(ri, αi, βi) ⊂ Ui; see [2]. Because the
poles of f are in the set J(f); see [3, Section 2.1], then f does not have poles in
Ω(r, αi, βi). By the assumption J(f) has an unbounded component, say Γ, then
the mapping f : Ω(ri, αi, βi) → C\Γ is analytic. Since we have chosen Γ such
that C\Γ is simply connected, for any a ∈ Γ\{∞}, we have CC\Γ(a) ≥ 1/2. Thus,
applying Lemma 2.1 to f in every Ω(ri, αi, βi), there exist a positive constant d1

such that, for z ∈
m⋃

i=1

Ω(ri, αi + ε, βi − ε),

|f(z)| = O(|z|d1), as|z| → ∞,(3.1)

where 0 < ε < min{ζ/(16m), (βi − αi)/8}, i = 1, 2, . . . , m; see [16], [22]. Thus,
recalling the definition of Sα,β(r, f), we immediately have that

Sαi+ε,βi−ε(r, f) = O(1), (i = 1, 2, . . . , m)(3.2)

So σαi+ε,βi−ε(r, f) is finite. Therefore, by Lemma 2.2, there exist two constants
M > 0 and K > 0 such that∣∣∣∣

f (s)(z)

f(z)

∣∣∣∣ ≤ KrM , (s = 1, 2)(3.3)

for all z ∈
m⋃

i=1

Ω(ri, αi + 2ε, βi − 2ε), outside a R-set H.



on radial distribution of julia sets of solutions ... 471

By Lemma 2.4, there exists a sequence {tn} satisfying (2.4), such that for all
Rn ∈ [tn, βtn]\Fn, where Fn ⊂ [tn, (β + 1)tn] is a set with mes(Fn) ≤ (β − 1)tn/4,
and for sufficiently large n, we have

mes(E∞(Rn)) > M2 − ζ/4.(3.4)

Therefore, we have

(3.5)
mes(E∞(Rn) ∩ S) = mes(E∞(Rn)\(∆(f) ∩ E∞(Rn)))

≥ mes(E∞(Rn))−mes(∆(f)) >
3ζ

4
> 0.

Then, for each n, we have

(3.6)

mes

((
m⋃

i=1

Ii

)
∩ E∞(Rn)

)
= mes(S ∩ E∞(Rn))

−mes

((
S\

m⋃
i=1

Ii

)
∩ E∞(Rn)

)
>

3ζ

4
− ζ

4
=

ζ

2
.

Thus, there exists an open interval Ii0 = (α, β) ⊂
m⋃

i=1

Ii ⊂ S such that, for infinitely

many n,

mes(E∞(Rn) ∩ (α, β)) >
ζ

2m
> 0.(3.7)

Without loss of generality, we can assume that (3.7) holds for all n.

Suppose that A(z) has p non-zero finite deficient values, a1, a2, . . . , ap with
deficiency δ(aν , A) > 0, 1 ≤ ν ≤ p and has p zero-pole accumulation rays, 0 ≤ θ1 <
θ2 < . . . < θp < θ1 + 2π. From equation (1.2), we have the following inequality

|B(z)| ≤
∣∣∣∣
f ′′(z)

f(z)

∣∣∣∣ +

∣∣∣∣
f ′(z)

f(z)

∣∣∣∣ (|A(z)− aν |+ |aν |).(3.8)

Let ω = min
1≤k≤ν

(θk+1 − θk) and 0 < ε0 < min
{ ζ

8pm
,
ω

2
,
β − 1

2p

}
. According to

Lemma 2.5, we choose R∗
n ∈ [tn, βtn]\Fn such that for every n ≥ n0

{z : |z| = R∗
n} ∩

(
p⋃

ν=1

(γν)n

)
∩H = ∅(3.9)

where
p⋃

ν=1

(γν)n are some disks with the sum of total radius not exceeding pε0tn/8 <

(β − 1)tn
16

and H is the R-set mentioned above. Hence, by Lemma 2.5 the following

inequalities

log
1

|A(R∗
neiϕ)− aν | > log

4

d
, ν = 1, 2, . . . , p(3.10)
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holds for sufficiently large n and R∗
neiϕ ∈

p⋃
ν=1

Ω(θkν + 2ε0, θkν+1 − 2ε0, tn, βtn).

On the other hand, from Lemma 2.4, for the sequence R∗
n, the following

inequality

(3.11) mes(E∞(R∗
n)) := mes

({
θ ∈ [0, 2π)| log |B(R∗

ne
iθ)|≥δ1

4
T (R∗

n, B)

})
≥M2>0

also holds for sufficiently large n.
Combining with (3.7), there exists a set E∞(R∗

n)∩(α, β)∩[θkν0
+2ε0, θkν0+1−2ε0],

(1 ≤ kν0 ≤ p) such that

mes(E∞(R∗
n) ∩ (α, β) ∩ [θkν0

+ 2ε0, θkν0+1 − 2ε0]) ≥ ζ

4mp
.(3.12)

Thus, for sufficiently large n, we choose ϕn∈E∞(R∗
n)∩(α, β)∩[θkν0

+2ε0, θkν0+1−2ε0]
such that (3.3), (3.10) and (3.11) hold. Combining (3.3), (3.8) with (3.10), we get

|B(R∗
neiϕn)| ≤ K(R∗

n)M

(
1 +

d

4
+ |aν |

)
.(3.13)

Then, by (3.11) we obtain

δ1

4
T (R∗

n, B) ≤ log K + M log R∗
n + log

(
1 +

d

4
+ |aν |

)
.(3.14)

This implies that B(z) is a rational function, which is a contradiction. Thus, we
complete the proof.

Proof of Theorem 1.2. We know that every nontrivial solution f of equation
(1.2) is a transcendental meromorphic function with infinite order. We also obtain
the assertion by reduction to contradiction. Assume that

mes(∆(f) ∩∆(f (k))) < M2(3.15)

and so

ξ := M2 −mes(∆(f) ∩∆(f (k))) > 0.(3.16)

We shall show that there must exist an open interval

I = (α, β) ⊂ ∆(f (k))c, 0 < β − α < M2(3.17)

such that

lim
n→∞

mes(∆(f) ∩ E∞(Rn) ∩ I) > 0,(3.18)

where ∆(f (k))c := [0, 2π)\∆(f (k)) and E∞(Rn) is as defined in (2.6). In order to
achieve this goal, we shall prove the following firstly.

lim
n→∞

mes(E∞(Rn)\∆(f)) = 0.(3.19)
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Otherwise, suppose that there is a subseries {Rnk
} such that

lim
k→∞

mes(E∞(Rnk
)\∆(f)) > 0,(3.20)

then there exists θ0 ∈ ∆(f)c and η > 0 satisfying

lim
k→∞

mes((θ0 − η, θ0 + η) ∩ (E∞(Rnk
)\∆(f))) > 0.(3.21)

Since arg z = θ0 is not a radial distribution of J(f), there exists r0 > 0 such that

Ω(r0, θ0 − η, θ0 + η) ∩ J(f) = ∅.(3.22)

This implies that there exists an unbounded component U of Fatou set F (f), such
that Ω(r0, θ0− η, θ0 + η) ⊂ U and f(Ω(r0, θ0− η, θ0 + η)) ⊂ F (f) is analytic. Note
that J(f) has an unbounded component, applying Lemma 2.1 to f in Ω(r0, θ0 −
η, θ0 + η), for any ζ > 0, ζ < η, we have

|f(z)| = O(|z|d1), z ∈ Ω(r0, θ0 − η + ζ, θ0 + η − ζ), |z| → ∞,(3.23)

where d1 is a positive constant. Recalling the definition of Sα,β(r, f), we imme-
diately get that

Sθ0−η+ζ,θ0+η−ζ(r, f) = O(1).(3.24)

Thus, σθ0−η+ζ,θ0+η−ζ(r, f) is finite. Therefore, by Lemma 2.2, there exists con-
stants M > 0 and K > 0 such that (3.3) holds for all z ∈ Ω(r0, θ0−η+ζ, θ0+η−ζ),
outside a R-set H.

Since ζ can be chosen sufficiently small, from (3.21) we have

lim
k→∞

mes((θ0 − η + ζ, θ0 + η − ζ) ∩ E∞(Rnk
)) > 0.(3.25)

Thus, similarly as (3.9) we can find an infinite series {R∗
nk

eiθnk} such that, for
all sufficiently large k and sufficiently small ε0, (3.3) (3.10) and (3.11) hold when
θnk

∈ (θ0 − η + ζ, θ0 + η − ζ) ∩ E∞(Rnk
) ∩ [θkν0

+ 2ε0, θkν0+1 − 2ε0]. From (3.3),
(3.8), (3.10), (3.11), as the same argument of (3.12) and (3.13) in the proof of
Theorem 1.1, we can obtain contradiction. These implies (3.19) is valid.

By Theorem 1.1, we know that

mes∆(f) ≥ M2.(3.26)

From Lemma 2.4, we have, for all sufficiently large n and any positive ε,

mes(E∞(Rn)) > M2 − ε.(3.27)

Combining (3.19), (3.26) and (3.27) follows that, for all sufficiently large n,

mes(∆(f) ∩ E∞(Rn)) ≥ M2 − ξ/4,(3.28)
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where ξ is defined in (3.16). Since ∆(f (k)) is closed, clearly ∆(f (k))c is open, so it
consists of at most countably open intervals. We can choose finitely many open
intervals Ij (j = 1, 2, . . . , m), satisfying

Ij ⊂ ∆(f (k))c, mes

(
∆(f (k))c\

m⋃
i=1

Ii

)
< ξ/4.(3.29)

Since, for sufficiently large n,

(3.30)

mes

(
∆(f) ∩ E∞(Rn) ∩

(
m⋃

i=1

Ii

))
+ mes(∆(f) ∩ E∞(Rn) ∩∆(f (k)))

= mes

(
∆(f) ∩ E∞(Rn) ∩

(
∆(f (k)) ∪

(
m⋃

i=1

Ii

)))
≥ M2 − ξ/2,

we have

(3.31)

mes(∆(f) ∩ E∞(Rn) ∩
(

m⋃
i=1

Ii)

)

≥ M2 − ξ/2−mes(∆(f) ∩ E∞(Rn) ∩∆(f (k)))

≥ M2 − ξ/2−mes(∆(f) ∩∆(f (k))) = ξ/2.

Thus, there exists an open interval Ii0 = (α, β) ⊂
m⋃

i=1

Ii ⊂ ∆(f (k))c such that, for

infinitely many sufficiently large n,

mes(∆(f) ∩ E∞(Rn) ∩ Ii0) ≥
ξ

2m
> 0.(3.32)

Then, we prove (3.18) holds.

From (3.18), we know that there are θ̃0 and η̃ > 0 such that

(θ̃0 − η̃, θ̃0 + η̃) ⊂ I(3.33)

and

lim
n→∞

mes(∆(f) ∩ E∞(Rn) ∩ (θ̃0 − η̃, θ̃0 + η̃)) > 0.(3.34)

Then, there exists r̃0 such that Ω(r̃0, θ̃0 − η̃, θ̃0 + η̃) ∩ J(f (k)(z)) = ∅. Noting that
J(f (k)) has an unbounded component, by Lemma 2.1 and the similar argument

between (3.22) and (3.23), for any ζ̃ > 0, ζ̃ < η̃, we have

(3.35) |f (k)(z)| = O(|z|d2), z ∈ Ω(r̃0, θ̃0 − η̃ + ζ̃ , θ̃0 + η̃ − ζ̃), |z| → ∞,

where d2 is a positive constant.
Fixed rNeiθN ∈ {rneiθn}, and take a rne

iθn ∈ {rneiθn}, n > N . Take a simple

Jordan arc γ in Ω(r̃0, θ̃0 − η̃, θ̃0 + η̃) which connecting rNeiθN to rNeiθn along
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|z| = rN , and connecting rNeiθn to rneiθn along arg z = θn. For any z ∈ γ, γz

denotes a part of γ, which connecting rNeiθN to z. Let L(γ) be the length of γ.
Clearly, L(γ) = O(rn), n →∞. By (3.35), it follows

(3.36) |f (k−1)(z)|≤
∫

γz

|f (k)(z)||dz|+ck≤O(|z|d2L(γ))+ck≤O(rd2+1
n ), n →∞.

Similarly, we have

(3.37)

|f (k−2)(z)| ≤
∫

γz

|f (k−1)(z)||dz|+ ck−1 ≤ O(rd2+2
n ), n →∞

...

|f(z)| ≤
∫

γz

|f ′(z)||dz|+ c1 ≤ O(rd2+k
n ), n →∞.

where c1, c2, . . . , ck are constants, which are independent of n. Therefore,

Sθ̃0−η̃+ζ̃,θ̃0+η̃−ζ̃(r, f) = O(1).(3.38)

By Lemma 2.2, we know (3.3) also holds for all z ∈ Ω(r̃0, θ̃0 − η̃ + ζ̃ , θ̃0 + η̃ − ζ̃),
outside a R-set H. By the similar argument between (3.3) and (3.14) in the proof
of Theorem 1.1, we can deduce contradictions. Therefore, it follows

mes(∆(f) ∩∆(f (k))) ≥ M2.(3.39)

The proof is complete.
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