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Abstract. In this paper, we introduce the concepts of generalized cubic soft sets,
generalized cubic soft AG-subgroupoids and generalized cubic soft left (resp., right)
ideals to study the algebraic structures and properties of AG-groupoids. We also give
some examples of generalized cubic soft AG-subgroupoids and generalized cubic soft
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left (resp., right) ideals. Moreover, we characterize intra-regular AG-groupoids using
the properties of generalized cubic soft sets and generalized cubic soft right ideals.
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1. Introduction

The concept of a fuzzy set was introduced by Zadeh in 1965 [14], which is now a
days used in almost all branches of science. In fact, a fuzzy set is a suitable tool for
modeling because there exist a lot of ambiguities in crisp models while handling
problems in different fields of science like artificial intelligence, computer science,
control engineering, decision theory, expert system, logic management science,
operations research, robotics and many others. In other words the concept of a
fuzzy set is used to control uncertainty problems arising in models representing
real life phenomenon. This concept is also used in business, medical and related
health sciences. Maiers and Sherif [12], reviewed the literature on fuzzy industrial
controllers and provided an index of applications of fuzzy set theory to twelve
subject areas including decision making, economics, engineering and operations
research.

Molodtsov [11], in 1999 introduced the fundamental concept of a soft set which
is now used in several basic notions of algebra. Ali et al. [6], introduced several new
algebraic operations on soft sets. Cagman and Enginoglu [2], developed the uni-int
decision making method in virtue of soft sets. Feng et al. [4], investigated soft
semirings by using soft set theory. Aktas and Cagman [1], defined the notion of soft
groups and derived some related properties. This initiated an important research
direction concerning algebraic properties of soft sets in miscellaneous kinds of
algebras such as BCK/BCI-algebras, d-algebras, semirings, rings, Lie algebras and
K-algebras. Feng and Li [5], ascertained the relationship among five different types
of soft subsets and considered the free soft algebras associated with soft product
operations. It has been shown that soft sets have some nonclassical algebraic
properties which are distinct from those of crisp sets and fuzzy sets. Further, Jun
discussed the applications of soft sets in ideal theory of BCK/BCI-algebras and in
d-algebras respectively. Recently, combining cubic sets and soft sets, Muhiuddin
and Al-roqi [9], introduced the notions of (external, internal) cubic soft sets, P-
cubic (resp., R-cubic) soft subsets, R-union (resp., R-intersection, P-union and
P-intersection) of cubic soft sets and the complement of a cubic soft set. They
investigated several related properties and applied the notion of cubic soft sets to
BCK/BCI-algebras.

In [10], Khan et al. introduced the generalized version of Jun’s cubic set and
applied it to the ideal theory of semigroups. Here the purpose of this paper is
to deal with the algebraic structure of AG-groupoids by applying the generalized
version of a soft set.

The idea of generalization of a commutative semigroup (which we call the left
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almost semigroup) was introduced by M. A. Kazim and M. Naseeruddin in 1972
[8]. It is also known as an Abel-Grassmann groupoid (AG-groupoid).

A groupoid S is called an AG-groupoid if it satisfies the left invertive law, that
is (ab)c = (cb)a, ∀ a, b, c ∈ S. In an AG-groupoid medial law: (ab)(cd) = (ac)(bd),
holds ∀ a, b, c, d ∈ S [8]. If an AG-groupoid S contains left identity then it
satisfies the paramedial law: (ab)(cd) = (db)(ca), ∀ a, b, c, d ∈ S. Moreover, if an
AG-groupoid S contains the left identity, then the following law holds.

a(bc) = b(ac),∀a, b, c ∈ S.

Our interest in this paper is to introduce the concept of (∈(γ̃1,γ2),∈(γ̃1,γ2)

∨q(δ̃1,δ2))-cubic soft sets, then we use this concept and introduced (∈(γ̃1,γ2),∈(γ̃1,γ2)

∨q(δ̃1,δ2))-cubic softAG-subgroupoid, (∈(γ̃1,γ2),∈(γ̃1,γ2) ∨q(δ̃1,δ2))-cubic soft left (resp.,

right, two-sided) ideals in an AG-groupoid. Moreover, we discuss some charac-
terizations of intra-regular AG-groupoids using the properties of (∈(γ̃1,γ2),∈(γ̃1,γ2)

∨q(δ̃1,δ2))-cubic soft sets and (∈(γ̃1,γ2),∈(γ̃1,γ2) ∨q(δ̃1,δ2))-cubic soft right ideals.

2. Preliminaries notes

In this section, we define some basic definitions that are required for next sections.
Let G be an AG-groupoid. By an AG-subgroupoid of G we mean a non-empty

subset A of G such that A2 ⊆ A. A non-empty subset I of G is called left (resp.,
right) ideal of G such that SI ⊆ I (resp., IS ⊆ I). An ideal I of G is called two
sided ideal of G if it is both left and right ideal of G. An AG-subgroupoid B of G
is called bi-ideal if B(GB) ⊆ B. A non-empty subset Q of G is called quasi-ideal
of G if QG ∩ GQ ⊆ Q.

A fuzzy subset f of an AG-groupoid G is defined as a mapping from G into
[0, 1], where [0, 1] is the usual closed interval of real numbers. Let f and g be any
two fuzzy subsets of G. Then, its product is denoted by f ◦ g and is defined as

(f ◦ g) (x) =





∨
x=yz

{f(y) ∧ g(z)} if there exist x, y ∈ G, such that x = yz,

0 otherwise.

Next, we recall the concept of interval valued fuzzy sets. By an interval number,
we mean a closed subinterval ã = [a−, a+] of the closed interval I = [0, 1] , where
06a−6a+61. Let D[0, 1] denote the family of all closed subintervals of [0, 1], i.e.,

D[0, 1] = {ã = [a−, a+] : a− 6 a+, for all a−, a+ ∈ [0, 1]},

where the elements in D[0, 1] are called the interval numbers on [0, 1], 0̃ = [0, 0]
and 1̃ = [1, 1]. For any two elements in D [0, 1] the redefined minimum and re-
defined maximum, respectively, denoted by r min and r max, and the symbols
”¹”,”º”,”=” are defined. We consider two elements ã = [a−, a+] and b̃ = [b−, b+]
in D[0, 1]. Then,
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ã º b̃ if and only if a− ≥ b− and a+ ≥ b+

ã ¹ b̃ if and only if a− 6 b− and a+ 6 b+

ã = b̃ if and only if a− = b− and a+ = b+

r min{ã, b̃} = min{a−, b−}, min{a+, b+}
r max{ã, b̃} = max{a−, b−}, max{a+, b+}.

Let ãi ∈ D [0, 1] , where i ∈ Π, we define

r inf
i∈Π

ãi =
[
inf a−i , inf a+

i

]
i∈Π

and r sup
i∈Π

ãi =
[
sup a−i , sup a+

i

]
i∈Π

.

Let X be a non-empty set. A cubic set µ̃A on X is defined as

µ̃A=
{〈

x, [µ−A(x), µ̃+
A(x)]

〉
: x ∈ X

}
,

where µ−A(x) ≤ µ+
A(x), for all x ∈ X. Then the ordinary fuzzy sets µ−A(x) : X → [0, 1]

and µ+
A(x) : X → [0, 1] are called a lower fuzzy sets and upper fuzzy sets of µ̃A

respectively. Let µ̃A(x) = [µ−A(x), µ̃+
A(x)] then

A = {〈x, µ̃A(x)〉 : x ∈ X}, where µ̃A : X → D[0, 1].

To avoid symbols complications, we use the symbols Γ = (γ̃1, γ2) and ∆ = (δ̃1, δ2)
for rest of the study.

3. (∈Γ,∈Γ ∨q∆)-Cubic sets

Jun et al. [7], introduced the concept of cubic sets defined on a non-empty set X
as objects having the form

Ξ =
{〈

x, Ψ̃Ξ(x), ηΞ(x)
〉

: x ∈ X
}

,

which is briefly denoted by Ξ =
〈
Ψ̃Ξ, ηΞ

〉
, where the functions Ψ̃Ξ : X → D[0, 1]

and ηΞ : X → [0, 1].

Let Ξ =
〈
Ψ̃Ξ, ηΞ

〉
and z =

〈
Ψ̃z, ηz

〉
be two cubic sets of S. Then,

Ξ ∩z =
{〈

x, r min
{

Ψ̃Ξ(x), Ψ̃z(x)
}

, max{ηΞ(x), ηz(x)}
〉

: x ∈ S
}

and
Ξ¯z =

{〈(
Ψ̃Ξ ◦ Ψ̃η

)
(x), (ηΞ ◦ ηz) (x)

〉
: x ∈ S

}
,

where,

(
Ψ̃Ξ ◦ Ψ̃z

)
(x) =





r sup
x=yz

{r min
{

Ψ̃Ξ(y), Ψ̃z(z)
}

if x = yz,

[0, 0] otherwise.
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and

(ηΞ ◦ ηz)(x) =

{
inf

x=yz
{max{ηΞ(y), ηz(z)}} if x = yz,

1 otherwise.

Let C(S) denote the family of all cubic sets in S. Then, it becomes anAG-groupoid.
Let α̃ ∈ D(0, 1] and β ∈ [0, 1) be such that 0̃ ≺ α̃ and β < 1. Then, by cubic

point (CP ) we mean x(α̃,β)(y) = 〈xα̃(y), xβ(y)〉, where

xα̃(y) =

{
α̃ if x = y,

0̃ otherwise.

and

xβ(y) =

{
β if x = y,
1 otherwise.

Here we give the generalized version of a Jun’s cubic set [10]. For any cubic set

Ξ =
〈
Ψ̃Ξ, ηΞ

〉
and for a cubic point x(α̃,β), with the condition that [α, β]+[α, β] =

[2α, 2β] such that 0 ≤ 2α < 1 and 2β ≤ 1, we have

(i) x(α̃,β) ∈Γ Ξ if Ψ̃Ξ(x) º α̃ Â γ̃1 and ηΞ(x) ≤ β < γ2.

(ii) x(α̃,β)q∆Ξ if Ψ̃Ξ(x) + α̃ Â 2δ̃1 and ηΞ(x) + β < 2δ2.

(iii) x(α̃,β) ∈Γ ∨q∆Ξ if x(α̃,β) ∈Γ Ξ or x(α̃,β)q∆Ξ.

(iv) x(α̃,β) ∈Γ ∧q
∆
Ξ if x(α̃,β) ∈Γ Ξ and x(α̃,β)q∆Ξ.

Next, we define the generalized characteristic function.

Definition 1 Let S be an AG-groupoid. Then, the cubic characteristic function

X (Γ,∆)
Ξ =

〈
Ψ̃X (Γ,∆)

Ξ
, ηX (Γ,∆)

Ξ

〉
of Ξ =

〈
Ψ̃Ξ, ηΞ

〉
is defined as

Ψ̃X (Γ,∆)
Ξ

(x) º
{

δ̃1 = [1, 1] if x ∈ Ξ,
γ̃1 = [0, 0] if x /∈ Ξ,

and

ηX (Γ,∆)
Ξ

(x) ≤
{

δ2 = 0 if x ∈ Ξ,
γ2 = 1 if x /∈ Ξ,

where δ̃1, γ̃1 ∈ D(0, 1] such that γ̃1 ≺ δ̃1 and δ2, γ2 ∈ [0, 1) such that δ2 < γ2.

Now, we introduce a new relation on C(S) denoted by ” ⊆ ∨q(Γ,∆)” as follows.

Let Ξ =
〈
Ψ̃Ξ, ηΞ

〉
,z =

〈
Ψ̃z, ηz

〉
∈ C(S), by Ξ ⊆ ∨q(Γ,∆)z we mean that

x(α̃,β) ∈Γ Ξ implies that x(α̃,β) ∈Γ ∨q∆z for all x ∈ S. Moreover, Ξ and z are said
to be (Γ, ∆)-equal if Ξ ⊆ ∨q(Γ,∆)z and z ⊆ ∨q(Γ,∆)Ξ. The above definitions can
be found in [10].
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Lemma 1 [10] Let Ξ =
〈
Ψ̃Ξ, ηΞ

〉
,z =

〈
Ψ̃z, ηz

〉
∈ C(S). Then, Ξ ⊆ ∨q(Γ,∆)z if

and only if

r max
{

Ψ̃z(a), γ̃1

}
º r min

{
Ψ̃Ξ(a), δ̃1

}
and min {ηz(a), γ2} ≤ max{ηΞ(a), δ2}.

Lemma 2 [10] Let Ξ =
〈
Ψ̃Ξ, ηΞ

〉
,z =

〈
Ψ̃z, ηz

〉
, Ω =

〈
Ψ̃Ω, ηΩ

〉
∈ C(S). If

Ξ ⊆ ∨q(Γ,∆)z and z ⊆ ∨q(Γ,∆)Ω. Then, Ξ ⊆ ∨q(Γ,∆)Ω.

From Lemmas 1 and 2 we say that ” =(Γ,∆) ” is an equivalence relation on C(S).

Lemma 3 Let S be an AG-groupoid and Ξ =
〈
Ψ̃Ξ, ηΞ

〉
,z =

〈
Ψ̃z, ηz

〉
be the

cubic sets of S. Then, we have

(i) Ξ ⊆ z if and only if X (Γ,∆)
Ξ ⊆ ∨q(Γ,∆)X (Γ,∆)

z .

(ii) X (Γ,∆)
Ξ ∩ X (Γ,∆)

z =(Γ,∆) X (Γ,∆)
Ξ∩z .

(iii) X (Γ,∆)
Ξ ¯X (Γ,∆)

z =(Γ,∆) X (Γ,∆)
Ξz .

4. Cubic soft sets

In this section, we recall some fundamental concepts of soft sets. For further
details and background, see [11], [13], [9].

We introduced the concept of an (∈Γ,∈Γ ∨q∆)-cubic soft set which is actually
the generalization of a soft set.

Definition 2 [9] Let U be an initial universal set and E be set of parameters
under consideration. Let CU denotes the set of all cubic subsets of U. Let A ⊆ E.
A pair (F, A) is called cubic soft set over U, where F is a mapping given by
F : A → CU . Note that the the pair (F,A) can be expressed as the following set:

(F,A) := {F (ε) : ε ∈ A}, where F (ε) =
〈
Ψ̃F (ε), ηF (ε)

〉
.

In general, for every ε ∈ A, F (ε) is a cubic set of U and it is called cubic value
set of parameter ε. The set of all cubic soft sets over U with parameters from E
is called cubic soft class and is denoted by Fρ(U,E).

Definition 3 [13] Let (F,A) and (G,B) be two cubic soft sets over U. Then
(F, A) is called cubic soft set of (G,B) and write (F, A) ⊂ (G,B) if

(i) A ⊆ B.

(ii) For any ε ∈ A, F (ε) ⊆ G(ε).

(F, A) and (G,B) are said to be cubic soft equal and write (F, A) = (G,B) if
(F, A) ⊂ (G,B) and (G,B) ⊂ (F, A).
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Definition 4 [13] The union of two cubic soft sets (F, A) and (G,B) over U is
called cubic soft set and is denoted by (H,C), where C = A ∪B and

H(ε) =





F (ε), if ε ∈ A−B,
G(ε), if ε ∈ B − A,
F (ε) ∪G(ε), if ε ∈ A ∩B,

for all ε ∈ C. This is denoted by (H, C) = (F, A)∪̃(G,B).

Definition 5 [13] The intersection of two cubic soft sets (F, A) and (G,B) over
U is called cubic soft set and is denoted by (H, C), where C = A ∪B and

H(ε) =





F (ε), if ε ∈ A−B,
G(ε), if ε ∈ B − A,
F (ε) ∩G(ε), if ε ∈ A ∩B,

for all ε ∈ C. This is denoted by (H, C) = (F, A)∩̃(G,B).

Here, we introduced the concept of generalized version of cubic soft set.

Definition 6 Let V ⊆ U. A cubic soft set (F, A) over U is said to be relative
whole (Γ, ∆)-cubic soft set (with respect to universe set V and parameter set A),
denoted by Σ(V, A), if

F (ε) = X (Γ,∆)
V for all ε ∈ A.

Definition 7 Let (F, A) and (G, B) be two cubic soft sets over U. We say that
(F, A) is an (Γ, ∆)-cubic soft subset of (G,B) and write (F,A) ⊂(Γ,∆) (G,B) if

(i) A ⊆ B.

(ii) For any ε ∈ A, F (ε) ⊆ ∨q(Γ,∆)G(ε).

(F, A) and (G,B) are said to be (Γ, ∆)-cubic soft equal and write (F, A) ³(Γ,∆)

(G,B) if (F, A) ⊂(Γ,∆) (G,B) and (G,B) ³(Γ,∆) (F, A).

The product of two cubic soft sets (F, A) and (G,B) over an AG-groupoid S,
denoted by (F ◦G,C), where C = A ∪B and

(F ◦G)(ε) =





F (ε), if ε ∈ A−B,
G(ε), if ε ∈ B − A,
F (ε) ◦G(ε), if ε ∈ A ∩B,

for all ε ∈ C. This is denoted by (F ◦G,C) = (F, A)¯ (G,B).

5. (∈Γ,∈Γ ∨q∆)-Cubic soft ideals over an AG-groupoid

Here, we will introduce the concepts of (∈Γ,∈Γ ∨q∆)-cubic soft AG-subgroupoids
and (∈Γ,∈Γ ∨q∆)-cubic soft left (resp., right,two-sided) ideals over anAG-groupoid
S and investigate the fundamental properties and relationships of (∈Γ,∈Γ ∨q∆)-
cubic soft sets and (∈Γ,∈Γ ∨q∆)-cubic soft right ideals.
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Definition 8 A cubic soft set (F, A) over an AG-groupoid S is called an (∈Γ,∈Γ

∨q∆)-cubic soft AG-subgroupoid over S if it satisfies:

(F, A)¯ (F, A) ⊂(Γ,∆) (F, A).

Definition 9 A cubic soft set (F, A) over an AG-groupoid S is called an (∈Γ,∈Γ

∨q∆)-cubic soft left (resp., right) ideal over S if it satisfies:

Σ(S, A)¯ (F, A) ⊂(Γ,∆) (F, A)(resp., (F, A)¯ Σ(S, A) ⊂(Γ,∆) (F, A)).

A cubic soft set (F, A) over an AG-groupoid S is called an (∈Γ,∈Γ ∨q∆)-cubic soft
ideal over S if it is both an (∈Γ,∈Γ ∨q∆)-cubic soft left ideal and an (∈Γ,∈Γ ∨q∆)-
cubic soft right ideal over S.

Theorem 1 Let (F, A) be a cubic soft set over an AG-groupoid S with left iden-
tity. Then, (F, A) is an (∈Γ,∈Γ ∨q∆)-cubic soft AG-subgroupoid over S if and
only if

r max
{

Ψ̃F (ε)(xy), γ̃1

}
º r min

{{
Ψ̃F (ε)(x), Ψ̃F (ε)(y)

}
, δ̃1

}

and

min{ηF (ε)(xy), γ2} ≤ max{{ηF (ε)(x), ηF (ε)(y)}, δ2},
for all x, y ∈ S, where ε ∈ A, δ̃1, γ̃1 ∈ D(0, 1] such that γ̃1 ≺ δ̃1, and δ2, γ2 ∈ [0, 1)
such that δ2 < γ2.

Proof. Let (F, A) be a cubic soft set over an AG-groupoid S. Assume that
(F, A) is an (∈Γ,∈Γ ∨q∆)-cubic soft AG-subgroupoid over S. Let x, y ∈ S, ε ∈ A,

t̃1, δ̃1, γ̃1 ∈ D(0, 1], t2, δ2, γ2 ∈ [0, 1) such that

r max
{

Ψ̃F (ε)(xy), γ̃1

}
≺ t̃1 ¹ r min

{{
Ψ̃F (ε)(x), Ψ̃F (ε)(y)

}
, δ̃1

}

and

min{ηF (ε)(xy), γ2} > t2 ≥ max{{ηF (ε)(x), ηF (ε)(y)}, δ2}.
Then,

r max
{

Ψ̃F (ε)(xy), γ̃1

}
≺ t̃1 implies that Ψ̃F (ε)(xy) ≺ t̃1 ≺ γ̃1

and

min{ηF (ε)(xy), γ2} > t2 implies that ηF (ε)(xy) > t2 > γ2.

Thus, (xy)(t̃1,t2)∈Γ ∨q∆F (ε). On the other hand, if

t̃1 ¹ r min
{{

Ψ̃F (ε)(x), Ψ̃F (ε)(y)
}

, δ̃1

}

and

t2 ≥ max{{ηF (ε)(x), ηF (ε)(y)}, δ2}
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we have Ψ̃F (ε)(x) º t̃1 Â γ̃1, Ψ̃F (ε)(y) º t̃1 Â γ̃1 and ηF (ε)(x) ≤ t2 < γ2, ηF (ε)(y) ≤
t2 < γ2, then (x)(t̃1,t2) ∈Γ F (ε) and (y)(t̃1,t2) ∈Γ F (ε) but (xy)(t̃1,t2)∈Γ ∨q∆F (ε).
This is contradiction to the hypothesis. Hence,

r max
{

Ψ̃F (ε)(xy), γ̃1

}
º r min

{{
Ψ̃F (ε)(x), Ψ̃F (ε)(y)

}
, δ̃1

}

and
min{ηF (ε)(xy), γ2} ≤ max{{ηF (ε)(x), ηF (ε)(y)}, δ2},

Conversely, let there exist x ∈ S, ε ∈ A, t̃, t̃1 ∈ D(0, 1], s, s1 ∈ [0, 1) such that

(x)(t̃,s) ∈Γ F (ε), y ∈ S such that (y)(t̃1,s1) ∈Γ F (ε). This shows that, Ψ̃F (ε)(x) º
t̃ Â γ̃1, ηF (ε)(x) ≤ s < γ2 and Ψ̃F (ε)(y) º t̃1 Â γ̃1, ηF (ε)(y) ≤ s1 < γ2. So

r max
{

Ψ̃F (ε)(xy), γ̃1

}
º r min

{{
Ψ̃F (ε)(x), Ψ̃F (ε)(y)

}
, δ̃1

}
º r min{{t̃, t̃1}, δ̃1}

and

min{ηF (ε)(xy), γ2} ≤ max{{ηF (ε)(x), ηF (ε)(y)}, δ2} ≤ max{{s, s1}, δ2}.

Now we discuss the following cases:

(1) If r min{t̃, t̃1} ¹ δ̃1 and max{s, s1} ≥ δ2, then Ψ̃F (ε)(xy) º r min{t̃, t̃1} Â γ̃1

and ηF (ε)(xy) ≤ max{s, s1} < γ2. This shows that
(xy)〈r min{t̃,t̃1},max{{s,s1}〉 ∈Γ F (ε).

(2) If r min{t̃, t̃1} Â δ̃1 and max{s, s1} < δ2, then Ψ̃F (ε)(xy) + r min{t̃, t̃1} Â 2δ̃1

and ηF (ε)(xy) + max{{s, s1} < 2δ2. This shows that
(xy)(r min{t̃,t̃1},max{s,s1})q∆F (ε).

From both cases, we get (xy)(r min{t̃1,t̃2},max{s1,s2}) ∈Γ ∨q∆F (ε). Hence, (F,A) is an
(∈Γ,∈Γ ∨q∆)-cubic soft AG-subgroupoid over S.

Definition 10 A cubic soft set (F, A) over an AG-groupoid S with left identity
is called an (∈Γ,∈Γ ∨q∆)-cubic soft left (resp., right) ideal over S if for all x, y ∈ S,
y(t̃,s) ∈Γ F (ε) implies (xy)(t̃,s) ∈Γ ∨q∆F (ε) (resp., x(t̃,s) ∈Γ F (ε) implies (xy)(t̃,s) ∈Γ

∨q∆F (ε)), where ε ∈ A, δ̃1, γ̃1 ∈ D(0, 1] such that γ̃1 ≺ δ̃1 and δ2, γ2 ∈ [0, 1) such
that δ2 < γ2.

Theorem 2 Let A be a non-empty subset of an AG-groupoid S, then for an
(∈Γ,∈Γ ∨q∆)-cubic soft left (resp., right) ideal the following are equivalent.

(1) Σ(S, A)¯ (F, A) ⊂(Γ,∆) (F, A)

(2) x(α̃, β) ∈Γ F (ε) =⇒ (yx)(α̃, β) ∈Γ F (ε).

(3) r max
{

(Ψ̃F (ε)(yx), γ̃1

}
º r min{Ψ̃F (ε)(x), δ̃1} and

min{ηF (ε)(yx), γ2} ≤ max{ηF (ε)(x), δ2}.
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Proof. (1) =⇒ (2): Let x(α̃, β) ∈(γ̃1,γ2) F (ε), then Ψ̃F (ε)(x) º α̃ º γ̃1 and
ηF (ε)(x) ≤ β < γ2. Then,

r max
{

Ψ̃F (ε)(yx), γ̃1

}
º r min{(Ψ̃X (Γ,∆)

S
◦ Ψ̃F (ε))(yx), }, δ̃1}

= r min{r sup
yx=ab

{r min{Ψ̃X (Γ,∆)
S

(a), Ψ̃F (ε)(b)}}, δ̃1}

= r sup
yx=ab

[r min{Ψ̃X (Γ,∆)
S

(a), Ψ̃F (ε)(b), δ̃1}

º r min{Ψ̃F (ε)(x), δ̃1}
º r min{α̃, δ̃1} º γ̃1 .

Thus, Ψ̃F (ε)(yx) º r min{α̃, δ̃1} º γ̃1 and α̃ ¹ γ̃1 .

Case 1. α̃ ¹ δ̃1, this gives that Ψ̃F (ε)(yx) º α̃ Â γ̃1 .

Case 2. α̃ Â δ̃1, thus Ψ̃F (ε)(yx) + α̃ Â 2δ̃1. Moreover,

min
{
(ηF (ε)(yx), γ2

} ≤ max{(Ψ̃X (Γ,∆)
S

◦ ηF (ε))(yx), }, δ2}
= max{min{max

yx=ab
{Ψ̃X (Γ,∆)

S
(a), ηF (ε)(b)}}, δ2}

= max
yx=ab

[min{ηF (ε)(b), δ2}
≤ max[min{ηF (ε)(x), δ2}]
≤ max{β, δ2} < γ2.

Thus, ηF (ε)(yx) ≤ max{β, δ2}.
Case 3. If β ≤ δ2, then ηF (ε)(yx) ≤ δ2.
Case 4. β > δ2, then ηF (ε)(yx) + β < 2δ2.
Hence (yx)(α̃, β) ∈(γ̃1,γ2) ∨q(δ̃1,δ2)F (ε).

(2) =⇒ (3) : is similar as in [10].
(3) =⇒ (1): Assume that on contrary that Σ(S, A) ¯ (F,A)⊂(Γ,∆)(F, A).

Then there exist ε ∈ A and x(α̃, β) ∈(γ̃1,γ2) (Ψ̃X (Γ,∆)
S

◦ F )(ε) such that

(x)(α̃, β)∈(γ̃1,γ2) ∨q(δ̃1,δ2)F (ε),

where F (ε) = 〈Ψ̃F (ε), ηF (ε)〉. Thus,

(x)(α̃, β)∈(γ̃1,γ2)F (ε) and (x)(α̃, β)q(δ̃1,δ2)F (ε), therefore

Ψ̃F (ε) ¹ α̃ Â γ̃1 & ηF (ε) ≥ β and Ψ̃F (ε) + α̃ ¹ 2δ̃1 & ηF (ε) + β > 2δ1.

Therefore,

Ψ̃F (ε) + α̃ ¹ 2δ̃1 and Ψ̃F (ε) − α̃ ¹ 0̃, also ηF (ε) − β ≥ 1 and ηF (ε) + β > 2δ1

Thus we get,
Ψ̃F (ε) ¹ δ̃1 and ηF (ε) > δ1.
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Therefore,

δ̃1 º r max{Ψ̃F (ε)(x), γ̃1} = r max{r min{Ψ̃F (ε)(ab), γ̃1}, δ̃1}
= r min{r max{Ψ̃F (ε)(ab), γ̃1}, δ̃1}
º r min{r min{Ψ̃F (ε)(b), δ̃1}, δ̃1}
= r min{Ψ̃F (ε)(b), δ̃1}.

Thus, r max{Ψ̃F (ε)(x), γ̃1} º Ψ̃F (ε)(b). Therefore

α̃ ¹ (Ψ̃X (Γ,∆)
S

◦ Ψ̃F (ε))(x) = r max{r min{Ψ̃X (Γ,∆)
S

(a), Ψ̃F (ε)(b)}}
= r max{Ψ̃F (ε)(b)} ¹ r max{Ψ̃F (ε)(b), γ̃1}.

This is a contradiction.
Hence, Σ(S, A)¯ (F,A) ⊂(Γ,∆) (F,A).

Lemma 4 Let ∅ 6= A ⊆ S. Then, A is a left (right) ideal of S if and only if

cubic characteristic function X (Γ,∆)
A =

〈
Ψ̃X (Γ,∆)

A
, ηX (Γ,∆)

A

〉
of A =

〈
Ψ̃A, ηA

〉
is an

(∈Γ,∈Γ ∨q∆)-cubic left (right) ideal of S, where δ̃1, γ̃1 ∈ D(0, 1] such that γ̃1 ≺ δ̃1,
and δ2, γ2 ∈ [0, 1] such that δ2 < γ2.

Proof. It is same as in [10].

Let us now define the ∈Γ ∨q∆-cubic level set for the cubic set Ξ =
(
ψ̃Ξ, ηΞ

)
as

[Ξ](t̃,δ) = {x ∈ S : x(t̃,δ) ∈Γ ∨q∆Ξ}.

Theorem 3 A cubic set Ξ =
(
Ψ̃Ξ, ηΞ

)
is said to be an (∈Γ,∈Γ ∨q∆)-cubic

AG-subgroupoid (left ideal, right ideal) of S if and only if ∅ 6= [Ξ](t̃,δ) is a AG-

subgroupoid (left ideal, right ideal) of S.

Proof. It is same as in [10].

Theorem 4 Let S be an AG-groupoid and P ⊆ S. Then, P is a left (resp., right)
ideal of S if and only if Σ(P,A) is an (∈Γ,∈Γ ∨q∆)-cubic soft left (resp., right)
ideal over S for any P ⊆ E.

Proof. It follows from Theorem 3.

Example 1 Let S= {a, b, c} and the binary operation ” · ” on S be defined as
follows:

· a b c
a a a a
b a a c
c a a a
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Then, S is an AG-groupoid. For A = {e1, e2, e3} ⊆ E, the cubic soft set (F,A) =
{F (e1), F (e2), F (e3)} over S is defined as follows:

F (e1) = {〈a, [0.2, 0.3), 0.1〉, 〈b, [0.3, 0.4), 0.2〉, 〈c, [0.4, 0.5), 0.3〉},
F (e2) = {〈a, [0.15, 0.16), 0.2〉, 〈b, [0.16, 0.18), 0.3〉, 〈c, [0.18, 0.2), 0.3〉},
F (e3) = {〈a, [0.1, 0.12), 0.1〉, 〈b, [0.12, 0.14), 0.2〉, 〈c, [0.14, 0.16), 0.2〉},

such that γ̃1 = [0.1, .18) ≺ δ̃1 = [0.3, 0.4) and δ2 = 0.3 < γ2 = 0.4. Then, it
is easy to see that (F, A) is an (∈([0.1,.18),0.4),∈([0.1,.18),0.4) ∨q([0.3,0.4),0.3))-cubic soft
AG-subgroupoid over S .

Example 2 Let S= {a, b, c} and the binary operation ” · ” on S be defined as
follow:

· a b c
a a a a
b a a c
c a a a

Then, S is an AG-groupoid. For A = {e1, e2, e3} ⊆ E, the cubic soft set (F,A) =
{F (e1), F (e2), F (e3)} over S is defined as follows.

F (e1) = {〈a, [0.3, 0.4), 0.5〉 , 〈b, [0.3, 0.4), 0.5〉 , 〈c, [0.4, 0.5), 0.4〉} ,

F (e2) = {〈a, [0.2, 0.15), 0.4〉, 〈b, [0.15, 0.18), 0.3〉, 〈c, [0.18, 0.2), 0.1〉} ,

F (e3) = {〈a, [0.1, 0.15), 0.3〉, 〈b, [0.15, 0.20), 0.3〉, 〈c, [0.20, 0.25), 0.2〉} ,

such that γ̃1 = [0.1, .18) ≺ δ̃1 = [0.19, 0.2) and δ2 = 0.53 < γ2 = 0.54. Then, it is
easy to see that (F,A) is an (∈([0.1,.18),0.54),∈([0.1,.18),0.54) ∨q([0.19,0.2),0.53))-cubic soft
right ideal over S.

Definition 11 A cubic soft set (F,A) over an AG-groupoid S is called (∈Γ,∈Γ

∨q∆)-cubic soft semiprime over S if for all x ∈ S, ε ∈ A, t̃1 ∈ D(0, 1] and s1 ∈ [0, 1)

we have x2
(t̃1,s1)

∈Γ F (ε) implies that x(t̃1,s1) ∈Γ F (ε), where δ̃1, γ̃1,∈ D(0, 1] such

that γ̃1 ≺ δ̃1, and δ2, γ2 ∈ [0, 1) such that δ2 < γ2.

Theorem 5 A cubic soft set (F,A) over an AG-groupoid S is an (∈Γ,∈Γ ∨q∆)-
cubic soft semiprime if and only if for all a ∈ S

r max
{

Ψ̃F (ε)(a), γ̃1

}
º r min

{
Ψ̃F (ε)(a

2), δ̃1

}

and
min{ηF (ε)(a), γ2} ≤ min{ηF (ε)(a

2), δ2},
where δ̃1, γ̃1,∈ D(0, 1] such that γ̃1 ≺ δ̃1, and δ2, γ2 ∈ [0, 1) such that δ2 < γ2.

Proof. Let (F,A) be an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime. Assume that there

exist a ∈ S,ε ∈ A, t̃1, δ̃1 ∈ D(0, 1], t2, δ2 ∈ [0, 1), such that

r max
{

Ψ̃F (ε)(a), γ̃1

}
≺ t̃1 ¹ r min

{
Ψ̃F (ε)(a

2), δ̃1

}
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and

min{ηF (ε)(a), γ2} > t2 ≥ min{ηF (ε)(a
2), δ2},

Then,

r max
{

Ψ̃F (ε)(a), γ̃1

}
≺ t̃1 implies that Ψ̃F (ε)(a) ≺ t̃1 ≺ γ̃1

and

min{ηF (ε)(a), γ2} > t2 implies that ηF (ε)(a) > t2 > γ2.

Thus, (a)(t̃1,t2)∈Γ ∨q∆F (ε). On the other hand if

t̃1 ¹ r min
{

Ψ̃F (ε)(a
2), δ̃1

}

and

t2 ≥ max{ηF (ε)(a
2), δ2}

we have, Ψ̃F (ε)(a
2) º t̃1 Â γ̃1 and ηF (ε)(a

2) ≤ t2 < γ2 this implies that, (a2)(t̃1,t2) ∈Γ

∨q∆F (ε) but (a)(t̃1,t2)∈Γ ∨q∆F (ε). This is contradiction to the hypothesis. Hence,

r max
{

Ψ̃F (ε)(a), γ̃1

}
º r min

{
Ψ̃F (ε)(a

2), δ̃1

}

and

min{ηF (ε)(a), γ2} ≤ max{{ηF (ε)(a
2), δ2}.

Conversely, let there exist x ∈ S, ε ∈ A, t̃1 ∈ D(0, 1], t2 ∈ [0, 1) such that

(a2)(t̃1,t2) ∈Γ F (ε). This implies that, Ψ̃F (ε)(a
2) º t̃ Â γ̃1and ηF (ε)(a

2) ≤ t2 < γ2. So

r max
{

Ψ̃F (ε)(a), γ̃1

}
º r min

{
Ψ̃F (ε)(a

2), δ̃1

}
º r min{t̃1, δ̃1}

and

min{ηF (ε)(a), γ2} ≤ max{ηF (ε)(a
2), δ2} ≤ max{t2, δ2}.

Now we have the following cases:
(1) If t̃1 ¹ δ̃1 and t2 ≥ δ2, then Ψ̃F (ε)(a) º t̃1 Â γ̃1 and ηF (ε)(a) ≤ t2 < γ2.

This implies that, (a)(t̃1,t2) ∈Γ F (ε).

(2) If t̃1 Â δ̃1 and t2 < δ2, then Ψ̃F (ε)(a) + t̃1 Â 2δ̃1 and ηF (ε)(a) + t2 < 2δ2.
This implies that, (a)

(t̃1,t2)
q∆F (ε).

From both cases we get, (a)(t̃1,t2) ∈Γ ∨q∆F (ε).
Hence, (F,A) is an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime.

Example 3 Let S= {1, 2, 3} and the binary operation ” · ” on S be defined as
follows:

· 1 2 3
1 2 2 2
2 2 2 2
3 1 2 2
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Then, S is an AG-groupoid. For A = {e1, e2} ⊆ E, the cubic soft set (F, A) =
{F (e1), F (e2)} over S is defined as follows:

F (e1) = {〈1, [0.5, 0.8), 0.6〉 , 〈2, [0.1, 0.7), 0.8〉 , 〈3, [0.2, 0.6), 0.9〉} ,

F (e2) = {〈1, [0.2, 0.5), 0.5〉, 〈2, [0.5, 0.6), 0.3〉, 〈3, [0.6, 0.7), 0.1〉} ,

such that γ̃1 = [0.1, .18) ≺ δ̃1 = [0.19, 0.2) and δ2 = 0.53 < γ2 = 0.54. Then, it
is easy to verify that (F,A) is an (∈([0.1,.18),0.54),∈([0.1,.18),0.54) ∨q([0.19,0.2),0.53))-cubic
soft semiprime ideal over S.

Theorem 6 For a right ideal R of an AG-groupoid S with left identity, the fol-
lowing conditions are equivalent:

(i) R is semiprime.

(ii) X (Γ,∆)
R is an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime, where δ̃1, γ̃1,∈ D(0, 1] such

that γ̃1 ≺ δ̃1, and δ2, γ2 ∈ [0, 1) such that δ2 < γ2.

Proof. (i) ⇒ (ii) : Let R be a semiprime ideal of an AG-groupoid S. Let a be

an arbitrary element of S such that a ∈ R. Then a2 ∈ R. Hence, Ψ̃X (Γ,∆)
R

(a) º δ̃1,

ηX (Γ,∆)
R

(a) ≤ δ2 and Ψ̃X (Γ,∆)
R

(a2) º δ̃1, ηX (Γ,∆)
R

(a2) ≤ δ2. This implies that,

r max
{

Ψ̃X (Γ,∆)
R

(a), γ̃1

}
º r min

{
Ψ̃X (Γ,∆)

R
(a2), δ̃1

}

and
min

{
ηX (Γ,∆)

R
(a), γ2

}
≤ max

{
ηX (Γ,∆)

R
(a2), δ2

}
.

Now let a /∈ R. Since R is semiprime we have a2 /∈ R. This implies that,

Ψ̃X (Γ,∆)
R

(a) ¹ γ̃1, Ψ̃X (Γ,∆)
R

(a2) ¹ γ̃1

and
ηX (Γ,∆)

R
(a) ≥ γ2, ηX (Γ,∆)

R
(a2) ≥ γ2.

Hence,

r max
{

Ψ̃X (Γ,∆)
R

(a), γ̃1

}
º r min

{
Ψ̃X (Γ,∆)

R
(a2), δ̃1

}

min
{

ηX (Γ,∆)
R

(a), γ2

}
≤ max

{
ηX (Γ,∆)

R
(a2), δ2

}
,

for all a ∈ S, δ̃1, γ̃1,∈ D(0, 1] such that γ̃1 ≺ δ̃1, and δ2, γ2 ∈ [0, 1) such that
δ2 < γ2.

(ii) ⇒ (i) : Let X (Γ,∆)
R be cubic soft semiprime. If a2 ∈ R, for some a ∈ S,

then Ψ̃X (Γ,∆)
R

(a2) º δ̃1 and ηX (Γ,∆)
R

(a2) ≤ δ2. Since X (Γ,∆)
R is an (∈Γ,∈Γ ∨q∆)-cubic

soft semiprime, we have

r max
{

Ψ̃X (Γ,∆)
R

(a), γ̃1

}
º r min

{
Ψ̃X (Γ,∆)

R
(a2), δ̃1

}

and
min

{
ηX (Γ,∆)

R
(a), γ2

}
≤ max

{
ηX (Γ,∆)

R
(a2), δ2

}
.
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Therefore, r max
{

Ψ̃X (Γ,∆)
R

(a), γ̃1

}
º δ̃1 and min

{
ηX (Γ,∆)

R
(a), γ2

}
≤ δ2. But

γ̃1 ≺ δ̃1 and δ2 < γ2, so Ψ̃X (Γ,∆)
R

(a) º δ̃1 and ηX (Γ,∆)
R

(a) ≤ δ2. Thus a ∈ R. Hence,

R is semiprime.

6. Characterizations of intra-regular AG-groupoids

An element r of an AG-groupoid S is called intra-regular if there exist elements
s, t ∈ S such that r = (sr2)t and S is called intra-regular, if every element of S
is intra-regular.

Theorem 7 Let S be an AG-groupoid with left identity. Then, the following
conditions are equivalent.

(i) S is intra-regular.

(ii) For a right ideal R of an AG-groupoid S, R ⊆ R2 and R is semiprime.

(iii) For an (∈Γ,∈Γ ∨q∆)-cubic soft right ideal (F,A) over S,
(F, A) ⊆ ∨q

(Γ,∆)
(F, A)¯ (F,A) and

(F, A) is an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime.

Proof. (i) ⇒ (iii) : Let (F, A) be an (∈Γ,∈Γ ∨q∆)-cubic soft right ideal of intra-
regular AG-groupoid S with left identity. Since S is intra-regular so for any r ∈ S
there exist s, t ∈ S such that r = (sr2)t. Since S = S2, so for each t in S there
exists t1, t2 in S such that t = t1t2, then

r = (sr2)t = (sr2)(t1t2) = (t2t1)(r
2s) = r2[(t2t1)s] = [r(t2t1)](rs).

If r = bc. Then,

r max
{

(Ψ̃F (ε) ◦ Ψ̃F (ε))(r), γ̃1

}

= r max

[
r sup

r=bc

{
r min

{
Ψ̃F (ε)(b), Ψ̃F (ε)(c)

}}
, γ̃1

]

º r max
[
r min

{
Ψ̃F (ε)(r(t2t1)), Ψ̃F (ε)(rs)

}
, γ̃1

]

= r min
[
r max

{
Ψ̃F (ε)(r(t2t1)), γ̃1

}
, r max

{
Ψ̃F (ε)(rs), γ̃1

}]

º r min
[
r min

{
Ψ̃F (ε)(r), δ̃1

}
, r min

{
Ψ̃F (ε)(r), δ̃1

}]

= r min
{

Ψ̃F (ε)(r), δ̃1

}

and

min
{
(ηF (ε) ◦ ηF (ε))(r), γ2

}
= min

[
r min

r=bc

{
max

{
ηF (ε)(b), ηF (ε)(c)

}}
, γ2

]

≤ min
[
max

{
ηF (ε)(r(t2t1)), ηF (ε)(rs)

}
, γ2

]

= max
[
min

{
ηF (ε)(r(t2t1)), γ2

}
, min

{
ηF (ε)(rs), γ2

}]

≤ max
[
max

{
ηF (ε)(r), δ2

}
, max

{
ηF (ε)(r), δ2

}]

= max
{
ηF (ε)(r), δ2

}
.
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Thus, by Lemma 1, (F, A) ⊆ ∨q(Γ,∆)(F, A)¯ (F, A). Next we show that (F,A) is
an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime. Since

r max
{

Ψ̃F (ε)(r), γ̃1

}
= r max

{
Ψ̃F (ε)(r

2[(t2t1)s]), γ̃1

}

º r min
{

Ψ̃F (ε)(r
2), δ̃1

}
.

and

min{ηF (ε)(r), γ2} = min{ηF (ε)(r
2[(t2t1)s]), γ2}

≤ max{ηF (ε)(r
2), δ2}.

Hence, (F, A) is an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime.
(iii) ⇒ (ii) : Let R be a right ideal of an AG-groupoid S, then by Theorem 4,

Σ(R,E) is an (∈Γ,∈Γ ∨q∆)-cubic soft right ideal over S by (iii) X (Γ,∆)
R is cubic soft

semiprime. Now by using assumption we have Σ(R, E) ⊂(Γ,∆) Σ(R, E)¯Σ(R, E).
Now by using Lemma 3, we have

X (Γ,∆)
R = X (Γ,∆)

R∩R =(Γ,∆) X (Γ,∆)
R ∩ X (Γ,∆)

R ⊆ ∨q
(Γ,∆)

X (Γ,∆)
R ¯X (Γ,∆)

R =(Γ,∆) X (Γ,∆)

R2

Hence, by Lemma 3, R ⊆ R2.
(ii) ⇒ (i) : It is easy.

Theorem 8 Let S be an AG-groupoid with left identity. Then, the following
conditions are equivalent.

(i) S is intra-regular.

(ii) For any right ideal R and for any subset A of an AG-groupoid S, R∩A ⊆ RA
and R is semiprime.

(iii) For any (∈Γ,∈Γ ∨q∆)-cubic soft right ideal (F, A) and for any (∈Γ,∈Γ ∨q∆)-
cubic soft set (G,B) over S, (F, A)∩̃(G,B) ⊆ ∨q

(Γ,∆)
(F,A) ¯ (G,B) and

(F, A) is an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime.

Proof. (i) ⇒ (iii) : Let S be intra-regular, (F, A) be an (∈Γ,∈Γ ∨q∆)-cubic soft
right ideal and (G,B) be an (∈Γ,∈Γ ∨q∆)-cubic soft set over S, respectively. Now
let a be any element of S, ε ∈ A∪B and (F,A)∩̃(G, B) = (H, A∪B). We consider
the following cases.

Case 1: ε ∈ A−B. Then H(ε) = F (ε) = (F ◦G)(ε).
Case 2: ε ∈ B − A. Then H(ε) = G(ε) = (F ◦G)(ε).
Case 3: ε ∈ A ∩ B. Then H(ε) = F (ε) ∩ G(ε) and (F ◦ G)(ε) = F (ε) ◦ G(ε).

Now we show that F (ε) ∩ G(ε) ⊆ ∨q((Γ,∆))F (ε) ◦ G(ε). Since S is intra-regular,
then for any r ∈ S there exist s, t ∈ S such that r = (sr2)t. Then,

r = (sr2)t = [(s(rr))t] = [(r(sr))t] = [(t(sr))]r.
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t(sr) = [t{s((sr2)t)}] = [t{(sr2)(st)}] = [(sr2)(st2)]

= [(t2s)(r2s)] = r2(t2s2).

Thus, r = [r2(t2s2)]r. If r = pq. Then

r max
{

(Ψ̃F (ε) ◦ Ψ̃G(ε))(r), γ̃1

}

= r max

[
r sup

r=pq

{
r min

{
Ψ̃F (ε)(p), Ψ̃G(ε)(q)

}}
, γ̃1

]

º r max
[
r min

{
Ψ̃F (ε)(r

2(t2s2)), Ψ̃G(ε)(r)
}

, γ̃1

]

= r min
[
r max

{
Ψ̃F (ε)(r

2(t2s2)), γ̃1

}
, r max

{
Ψ̃G(ε)(r), γ̃1

}]

º r min
[
r min

{
Ψ̃F (ε)(r), δ̃1

}
, r min

{
Ψ̃G(ε)(r), δ̃1

}]

= r min
{

(Ψ̃F (ε) ∩ Ψ̃G(ε))(r), δ̃1

}

and

min
{
(ηF (ε) ◦ ηG(ε))(r), γ2

}
= min

[
r min

r=pq
{max

{
ηF (ε)(p), ηG(ε)(q)

}}, γ2

]

≤ min
[
max

{
ηF (ε)(r

2(t2s2)), ηG(ε)(r)
}

, γ2

]

= max
[
min

{
ηF (ε)(r

2(t2s2)), γ2

}
, min

{
ηG(ε)(r), γ2

}]

≤ max
[
max

{
ηF (ε)(r), δ2

}
, max

{
ηG(ε)(r), δ2

}]

= max
{
(ηF (ε) ∩ ηG(ε))(r), δ2

}
.

Thus, by Lemma 1, (F, A)∩̃(G,B) ⊆ ∨q
(Γ,∆)

(F, A)¯ (G, B). The rest of the proof
is similar as in Theorem 7.

(iii) ⇒ (ii) : Let R be a right ideal and A be any subset of an AG-groupoid S,
then by Theorem 4, Σ(R, E) and Σ(A,E) is an (∈Γ,∈Γ ∨q∆)-cubic soft right ideal
and (∈Γ,∈Γ ∨q∆)-cubic soft set over S, respectively. Now by using assumption we
have Σ(R,E) ∩ Σ(A,E) ⊂(Γ,∆) Σ(R, E)¯ Σ(A,E). By using Lemma 3, we have

X (Γ,∆)
R∩A = (Γ,∆)X (Γ,∆)

R ∩ X (Γ,∆)
A ⊆ ∨q

(Γ,∆)
X (Γ,∆)

R ¯X (Γ,∆)
A = (Γ,∆)X (Γ,∆)

RA .

By Lemma 3, R ∩ A ⊆ RA.
(ii) ⇒ (i) : It is easy.

Theorem 9 Let S be an AG-groupoid with left identity. Then, the following
conditions are equivalent.

(i) S is intra-regular.

(ii) For any right ideal R and for any subset A of an AG-groupoid S, R∩A ⊆ AR
and R is semiprime.

(iii) For any (∈Γ,∈Γ ∨q∆)-cubic soft right ideal (F, A) and for any (∈Γ,∈Γ ∨q∆)-
cubic soft set (G,B) over S, (F, A)∩̃(G,B) ⊆ ∨q

(Γ,∆)
(G,B) ¯ (F,A) and

(F, A) is an (∈Γ,∈Γ ∨q∆)-cubic soft semiprime.



410 a. ali, y.b. jun, m. khan, f.-g. shi, s. anis

Proof. (i) ⇒ (iii) : Let (F, A) be an (∈Γ,∈Γ ∨q∆)-cubic soft right ideal and (G,B)
be any (∈Γ,∈Γ ∨q∆)-cubic soft set over an intra-regular AG-groupoid S. Now, let
a be any element of S, ε ∈ A ∪ B and (F,A)∩̃(G, B) = (H,A ∪ B). We consider
the following cases.

Case 1: ε ∈ A−B. Then H(ε) = F (ε) = (G ◦ F )(ε).
Case 2: ε ∈ B − A. Then H(ε) = G(ε) = (G ◦ F )(ε).
Case 3: ε ∈ A ∩ B. Then H(ε) = G(ε) ∩ F (ε) and (G ◦ F )(ε) = G(ε) ∩ F (ε).

Now we show that F (ε)∩G(ε) ⊆ ∨q(Γ,∆)
G(ε) ◦F (ε). Since S is intra-regular, then

for any r ∈ S there exist s, t ∈ S such that r = (sr2)t. Now we obtain

r = (sr2)t = (sr2)(t1t2) = (t2t1)(r
2s) = r2[(t2t1)s]

= [s((t2t1)]r
2 = r[{s(t2t1)}r] = r[s{(t2t1)}{(sr2)t}]

= r[(sr2)[{s(t2t1)}t]] = r[[t{s(t2t1)}](r2s)]

= r[r2([t{s(t2t1)}]s] = r[(s[t{s(t2t1)}]r2]

= r[(s[t{s(t2t1)}])(rr)]
= r[r((s[t{s(t2t1)])r)] = r(ru), where u = (s[t{s(t2t1)}])r.

If r = pq, then

r max
{

(Ψ̃G(ε) ◦ Ψ̃F (ε))(r), γ̃1

}

= r max

[
r sup

r=pq

{
r min

{
Ψ̃G(ε)(p), Ψ̃F (ε)(q)

}}
, γ̃1

]

º r max
[
r min

{
Ψ̃G(ε)(r), Ψ̃F (ε)(ru)

}
, γ̃1

]

= r min
[
r max

{
Ψ̃G(ε)(r), γ̃1

}
, r max

{
Ψ̃F (ε)(ru), γ̃1

}]

º r min
[
r min

{
Ψ̃G(ε)(r), δ̃1

}
, r min

{
Ψ̃F (ε)(r), δ̃1

}]

= r min
{

(Ψ̃F (ε) ∩ Ψ̃G(ε))(r), δ̃1

}
,

and

min
{
(ηG(ε) ◦ ηF (ε))(r), γ2

}
= min

[
r min

r=pq
max

{
ηG(ε)(p), ηF (ε)(q)

}}, γ2

]

≤ min
[
max

{
ηG(ε)(r), ηF (ε)(u)

}
, γ2

]

= max
[
min

{
ηG(ε)(r), γ2

}
, min

{
ηF (ε)(ru), γ2

}]

≤ max
[
max

{
ηG(ε)(r), δ2

}
, max

{
ηF (ε)(r), δ2

}]

= max
{
(ηF (ε) ∩ ηG(ε))(r), δ2

}
.

Hence, by Lemma 1, (F, A)∩̃(G,B) ⊆ ∨q
(Γ,∆)

(G,B) ¯ (F, A). For the remaining
proof see Theorem 7.

(iii) ⇒ (ii) : Let R be a right ideal and A be any subset of an AG-groupoid S,
then by Theorem 4, Σ(R, E) and Σ(A,E) is an (∈Γ,∈Γ ∨q∆)-cubic soft right ideal
and (∈Γ,∈Γ ∨q∆)-cubic soft set over S, respectively. Now, by using assumption,
we have Σ(R,E)∩Σ(A,E) ⊂(Γ,∆) Σ(R, E)¯Σ(A,E). By using Lemma 3, we have
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X (Γ,∆)
R∩A = X (Γ,∆)

A∩R =(Γ,∆) X (Γ,∆)
A ∩ X (Γ,∆)

R

⊆ ∨q
(Γ,∆)

X (Γ,∆)
A ¯X (Γ,∆)

R =(Γ,∆) X (Γ,∆)
AR .

By Lemma 3, R ∩ A ⊆ AR. The rest of the proof is similar to Theorem 7.
(ii) ⇒ (i) : Sine Sp2 is a right ideal of S containing p2. By (ii), it is semiprime.

Therefore,

p ∈ Sp2 ∩ Sp ⊆ (Sp)(Sp2) = (p2S)(pS) = [(pp)(SS)](pS)

= [(SS)(pp)](pS) ⊆ (Sp2)S.

Hence, S is intra-regular.

Theorem 10 The following conditions are equivalent for an AG-groupoid S with
left identity:

(i) S is intra-regular.

(ii) For any subsets A,B and any right ideal R of S, A ∩ B ∩ R ⊆ (AB)R and
R is semiprime ideal.

(iii) For any (∈Γ,∈Γ ∨q∆)-cubic soft sets (F, A), (G,B) and for any (∈Γ,∈Γ ∨q∆)
-cubic soft right ideal (H, R) over S, we have (F, A)∩̃(G,B)∩̃(H, R) ⊆
∨q

(Γ,∆)
[(F,A) ¯ (G,B)] ¯ (H,R) and (H,R) is an (∈Γ,∈Γ ∨q∆)-cubic soft

semiprime ideal over S.

Proof. (i) ⇒ (iii) Let a be any element of an intra-regular AG-groupoid S with
left identity, [(F, A)∩̃(G,B)]∩̃(H, R) = (K,A ∪ B ∪ R). For any ε ∈ A ∪ B ∪ R.
We consider the following cases.

Case 1: ε ∈ A\(B ∩R), then F (ε) = [(F ◦G) ◦H](ε).
Case 2: ε ∈ B\(A ∩R), then G(ε) = [(F ◦G) ◦H](ε).
Case 3: ε ∈ R\(A ∩B), then H(ε) = [(F ◦G) ◦H](ε)
Case 4: ε ∈ (A ∩B) ∩R, then [(F ◦G) ◦H](ε) = [F (ε) ◦G(ε)] ◦H(ε).

Since S is intra-regular, then for any r ∈ S there exist s, t ∈ S such that r = (sr2)t.
Then,

r = (sr2)t = (t2t1)(r
2s) = r2[(t2t1)s] = [s(t2t1)]r

2

= r[{s(t2t1)}r] = r(pr), where s(t2t1) = p, and

pr = p[(sr2)t] = (sr2)(pt) = [(tp)(r2s)]

= r2[(tp)s] = [s(tp)](rr) = r[{(tp)}r]
= [r(qr)], where s(tp) = q, and

qr = q[(sr2)t] = (sr2)(qt) = (tq)(r2s)

= r2[(tq)s].
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Thus,

r = r[r(r2c)] = r[r2(rc)] = r2[r(rc)], where (tq)s = c and s(tp) = q and (t2t1) = p

For any r ∈ S there exist x, y ∈ S such that r = xy, then

r max
{

(Ψ̃F (ε) ◦ Ψ̃G(ε)) ◦ Ψ̃H(ε))(r), r̃1

}

= r max

[
r sup

r=xy

{
r min

{(
Ψ̃F (ε) ◦ Ψ̃G(ε)

)
(x), Ψ̃H(ε)(y)

}}
, γ̃1

]

º r max
[
r min

{(
Ψ̃F (ε) ◦ Ψ̃G(ε)

)
(rr), Ψ̃H(ε)(r(rc))

}
, γ̃1

]

= r max

[
r sup

rr=pq

{
r min

{ {
Ψ̃F (ε)(p), Ψ̃G(ε)(q)

}
,

Ψ̃H(ε)(r(rc))

}}
, γ̃1

]

º r max
[
r min

{
Ψ̃F (ε)(r), Ψ̃G(ε)(r), Ψ̃H(ε)(r(rc))

}
, γ̃1

]

= r min


 r max

{
Ψ̃F (ε)(r), γ̃1

}
, r max

{
Ψ̃G(ε)(r), γ̃1

}
,

r max
{

Ψ̃R(ε)(r(rc)), γ̃1

}



º r min


 r min

{
Ψ̃F (ε)(r), δ̃1

}
, r min

{
Ψ̃G(ε)(r), δ̃1

}
,

r min
{

Ψ̃H(ε)(r), δ̃1

}



= r min
[
r min

{
Ψ̃F (ε)(r), Ψ̃G(ε)(r), Ψ̃H(ε)(r)

}
, δ̃1

]

= r min
{(

Ψ̃F (ε) ∩ Ψ̃G(ε)(r) ∩ Ψ̃H(ε)

)
(r), δ̃1

}

and

min
{
(ηF (ε) ◦ ηG(ε)) ◦ ηH(ε))(r), r2

}

= min

[
r min

r=xy
max

{(
ηF (ε) ◦ ηG(ε)

)
(x), ηH(ε)(y)

}}, γ2

]

≤ min
[
max

{(
ηF (ε) ◦ ηG(ε)

)
(rr), ηH(ε)(r(rc))

}
, γ2

]

= min

[
r min

rr=pq

{
max

{{
ηF (ε)(p), ηG(ε)(q)

}
, ηH(ε)(r(rc))

}}
, γ2

]

≤ min
[
max

{
ηF (ε)(r), ηG(ε)(r), ηH(ε)(r(rc))

}
, γ2

]

= max

[
min

{
ηF (ε)(r), γ2

}
, min

{
ηG(ε)(r), γ2

}
,

min
{
ηH(ε)(r(rc)), γ2

}
]

≤ max

[
max

{
ηF (ε)(r), δ2

}
, max

{
ηG(ε)(r), δ2

}
,

max
{
ηH(ε)(r), δ2

}
]

= max
[
max

{
ηF (ε)(r), ηG(ε)(r), ηH(ε)(r)

}
, δ2

]

= max
{(

ηF (ε) ∩ ηG(ε)(r) ∩ ηH(ε)

)
(r), δ2

}

Thus, by Lemma 1,

(F, A)∩̃(G,B)∩̃(H, R) ⊆ ∨q
(Γ,∆)

((F,A)¯ (G,B))¯ (H,R).



generalized cubic soft sets and their applications ... 413

The rest of the proof is similar as in Theorem 7.
(iii) ⇒ (ii) : Let R be a right ideal and A,B are any subset of an AG-groupoid

S, then by Theorem 4, Σ(R, E), Σ(A,E), Σ(B, E) are an (∈Γ,∈Γ ∨q∆)-cubic soft
right ideal and (∈Γ,∈Γ ∨q∆)-cubic soft set over S, respectively. Now by using
assumption we have [Σ(A,E)∩̃Σ(B,E)]∩̃Σ(R,E) ⊂(Γ,∆) [Σ(A,E) ¯ Σ(B, E)] ¯
Σ(R,E). By using Lemma 3, we have

X (Γ,∆)
(A∩B)∩R = (Γ,∆)[X (Γ,∆)

A ∩ X (Γ,∆)
B ] ∩ X (Γ,∆)

R

⊆ ∨q
(Γ,∆)

(
X (Γ,∆)

A ¯X (Γ,∆)
B

)
¯X (Γ,∆)

R

= (Γ,∆)X (Γ,∆)
(AB)R.

By Lemma 3, (A ∩ B) ∩ R ⊆ (AB)R. The rest of the proof is similar as in
Theorem 7.

(ii) ⇒ (i) : Since Sp2 is a right ideal of an AG-groupoid S containing p2, so
by (ii) it is semiprime. Therefore, by (ii) we have

Sp ∩ Sp ∩ Sp ⊆ [(Sp)(Sp)](Sp2) = [(SS)(pp)](Sp2) ⊆ (Sp2)S.

Hence, S is intra-regular.

Conclusion

In this paper, we introduce a new concept of generalized cubic soft sets and then
apply it to the ideals theory of AG-groupoids. We characterized intra-regular
AG-groupoids via cubic soft sets. In our future work we will be focusing on other
generalized cubic soft ideals for characterizations of regular AG-groupoids.
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