MULTIPLICATION COMPONENTS OF GRADED MODULES

Rashid Abu-Dawwas
Department of Mathematics
Yarmouk University
Irbid
Jordan
e-mail: rrashid@yu.edu.jo

Abstract. Let G be a group and $g \in G$. Let R be a commutative G-graded ring and M be a graded R-module. In this paper, we study some cases when R is strongly graded ring and the component M_e of M is multiplication R_e-module. Also, we prove that if R is strongly graded, then the components M_g of M are multiplication R_e-modules if and only if the component M_e is P-torsion or P-cyclic where P is a prime ideal of the component R_e of R.

Keywords: graded multiplication modules, graded modules.

1991 Mathematics Subject Classification: 13A02, 16W50.

1. Introduction

A ring R with unity 1 graded by a group G will means that $R = \bigoplus_{g \in G} R_g$ where R_g is an additive subgroup of R and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. If the inclusion is an equality, then the ring is called strongly graded. Clearly, R_e is a subring of R with 1 \in R_e. An R-module is said to be graded if $M = \bigoplus_{g \in G} M_g$ for a family of subgroups $\{M_g\}_{g \in G}$ of M such that $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. Clearly, M_g is an R_e-module for all $g \in G$. In a similar way, we define a strongly graded module. The ring R is strongly graded if and only if every graded R-module is strongly graded. For more details, we refer the readers to [4], as well as [6], and the references therein.

If M is an R-module and N is an R-submodule of M, then the ideal $\{r \in R : rM \subseteq N\}$ of R will be denoted by $(N : M)$. An R-module M is said to be multiplication module if for every R-submodule N of M, there exists an ideal of R such that $N = IM$. Moreover, if $N = IM$ for some ideal of R, then $N = (N : M)M$. Given a ring R and a multiplicative subset S of R, the ring of fractions $S^{-1}R$ is $\{\frac{r}{s} : r \in R, s \in S\}$. For more details, we refer the readers to [1], [2], [3], as well as [5], and the references therein.

Throughout this paper, unless stated otherwise, R is commutative nontrivially graded ring.

2. Results

In this section, we introduce and prove the main results of the paper.

Theorem 2.1 Let R be a strongly G-graded ring and M be a torsion free graded R-module. If M_e is a multiplication R_e-module and A is a proper ideal of R_e such that $AM_e = M_e$, then $M = \{0\}$.
Let \(n \in G \), \(x \in M_g \). Then \(R_g^{-1}x \) is an \(R_e \)-submodule of \(M_e \). Since \(M_e \) is multiplication \(R_e \)-module, \(R_g^{-1}x = BM_e \) for some ideal \(B \) of \(R_e \) and then \(R_g^{-1}x = BM_e = BAM_e = ABM_e = AR_g^{-1}x = R_g^{-1}Ax \) and so \(R_e x = Ax \). Now, \(x = 1.x \in R_e x = Ax \) and then there exists \(a \in A \) such that \((1-a)x = 0 \). Since \(M \) is torsion free, either \(1 = a \) or \(x = 0 \). If \(1 = a \in A \), then \(A = R_e \) a contradiction. So, \(x = 0 \), i.e., \(M_g = \{0\} \) for all \(g \in G \) and hence \(M = \{0\} \).

Theorem 2.2 Let \(R \) be a strongly \(G \)-graded ring and \(M \) be a graded \(R \)-module. If \(M_e \) is a multiplication \(R_e \)-module and \(S \) is a multiplicative subset of \(R_e \), then \(S^{-1}M_g \) is multiplication as an \(S^{-1}R_e \)-module for all \(g \in G \).

Proof. Let \(g \in G \) and \(X \) be an \(S^{-1}R_e \)-submodule of \(S^{-1}M_g \). Then \(X = S^{-1}N \) for some \(R_e \)-submodule \(N \) of \(M_g \) and then \(R_g^{-1}N \) is an \(R_e \)-submodule of \(M_g \) and it follows that \(R_g^{-1}N = AM_e \) for some ideal \(A \) of \(R_e \). So, \(X = R_e X = R_g R_g^{-1}S^{-1}N = R_g S^{-1}R_g^{-1}N = R_g S^{-1}AM_e = S^{-1}AR_g M_e = S^{-1}AM_g = S^{-1}AS^{-1}M_g \) where \(S^{-1}A \) is an ideal of \(S^{-1}R_e \) and this completes the proof.

Given a prime ideal \(P \) of \(R_e \), we consider the set

\[
T_P(M_e) = \{ m \in M_e : cm = 0 \text{ for some } c \in R_e - P \}.
\]

It is easy to check that \(T_P(M_e) \) is an \(R_e \)-submodule of \(M_e \). If \(T_P(M_e) = M_e \), then we will say that \(M_e \) is \(P \)-torsion. If there exists \(x \in M_e \) and \(c \in R_e - P \) such that \(cM_e \subseteq R_e x \), we will say that \(M_e \) is \(P \)-cyclic. Now, we introduce the main result of our paper:

Theorem 2.3 Let \(R \) be a strongly \(G \)-graded ring, and \(M \) be a graded \(R \)-module. Then for \(g \in G \), \(M_g \) is multiplication \(R_e \)-module if and only if for every prime ideal \(P \) of \(R_e \), either \(M_e \) is \(P \)-torsion or \(P \)-cyclic.

Proof. Let \(g \in G \). Suppose that \(M_g \) is multiplication \(R_e \)-module and \(P \) is a prime ideal of \(R_e \). Firstly, we consider the case in which \(PM_e = M_e \). Let \(m \in M_e \). Then \(R_m \) is an \(R_e \)-submodule of \(M_g \) and then there exists an ideal \(A \) of \(R_e \) such that \(R_g m = AM_g \). So, \(m = 1.m \in R_e m = R_g R_g m = R_g AM_g = AR_g M_g = AM_e = AP_g M_g = PR_g M_g = PR_g R_g m = PR_m = R_e P m = P m \) and then there exists \(p \in P \) such that \((1 - p)m = 0 \) and it follows that \(c = 1 - p \in R_e - P \) such that \(cm = 0 \) and therefore, \(M_e = T_P(M_e) \), i.e., \(M_e \) is \(P \)-torsion. Now, we consider that \(PM_e \neq M_e \). Then there exists \(x \in M_e - PM_e \) and since \(R_g x \) is an \(R_e \)-submodule of \(M_g \), there exists an ideal \(B \) of \(R_e \) such that \(R_g x = BM_g \). If \(B \subseteq P \), then \(x = 1.x \in R_e x = R_g R_g x = R_g BM_g = BM_g \) is a contradiction. Therefore, \(B \nsubseteq P \), then there exists \(c \in B - P \) such that \(cM_e = R_g cM_e \subseteq R_g BM_g = R_g R_g x = R_e x \), i.e., \(M_e \) is \(P \)-cyclic. Conversely, let \(g \in G \) and \(N \) be an \(R_e \)-submodule of \(M_g \). Suppose that \(A = (R_g^{-1}N : M_e) \), \(n \in R_g^{-1}N \) and \(K = (AM_e : R_e n) \). Assume that \(K \neq R_e \). Then there exists a maximal ideal \(P \) of \(R_e \) containing \(K \). If \(M_e \) is \(P \)-torsion, then there exists \(c \in R_e - P \) such that \(cm = 0 \) and it follows that \(c \in K - P \) a contradiction. So, \(M_e \) is \(P \)-cyclic, i.e., there exists \(x \in M_e \) and \(c \in R_e - P \) such that \(cM_e \subseteq R_e x \). Thus, \(R_g^{-1}cN \) is an \(R_e \)-submodule of \(R_e x \), and then \(cN \) is \(R_e \)-submodule of \(R_g x \).
but R_gx is multiplication because it is cyclic, hence there exists $J = (cN : R_gx)$ such that $cN = Jx$. It holds that
\[
cJM_e = JcM_e \subseteq JR_ex = JR_{g^{-1}}R_gx = R_{g^{-1}}JR_gx \subseteq R_{g^{-1}}cN
\]
and hence, $cJ \subseteq A$. Now, the element $c^2n \in c^2N = cJx \subseteq Ax \subseteq AM_e$. As a result, $c^2 \in K \subseteq P$ which is a contradiction. It follows that $K = R_e$ and then $R_e = (AM_e : R_{g^{-1}}N)$ and therefore, $R_{g^{-1}}N \subseteq (R_{g^{-1}}N : M_e)M_e$ and then $N \subseteq (N : M_e)M_g$. Since the other inclusion is always true, the proof ends.

Corollary 2.4 Let R be a strongly G-graded ring, and M be a graded R-module. Then for $g \in G$, M_g is multiplication R_e-module if and only if for every prime ideal P of R_e, either M_e is P-torsion or there exists an R_e-submodule N of M_e and $c \in R_e - P$ such that $cM_e \subseteq N$.

Proof. To prove the sufficiency, let P be a prime ideal of R_e and suppose that M_e is not P-torsion. Then by hypothesis, there exists $c \in R_e - P$ such that $cM_e \subseteq N$ where N is an R_e-submodule of M_e. Since M_e is not P-torsion, N is not P-torsion. By Theorem 2.3, there exists $x \in N$ and $r \in R_e - P$ such that $rN \subseteq R_ex$. Thus, $crM_e = rcm_e \subseteq rN \subseteq R_ex$ and so M_e is P-cyclic and therefore, by Theorem 2.3, M_g is multiplication R_e-module for any $g \in G$. The necessity is obvious by Theorem 2.3.

Corollary 2.5 Let R be a strongly G-graded ring, and M be a graded R-module. If M_e is multiplication R_e-module and $Ann(M_e) = \{0\}$, then for $g \in G$,

1. $\bigcap_{k \in K}(I_kM_g) = \bigcap_{k \in K}I_kM_g$ for every family $I_k(k \in K)$ of ideals of R_e.

2. if N is an R_e-submodule of M_g and A is an ideal of R_e such that $N \subseteq AM_g$, then there exists an ideal B of R_e such that $B \subseteq A$ and $N \subseteq BM_g$.

Proof. 1. Let $I_k(k \in K)$ be a family of ideals of R_e. We call $I = \bigcap_{k \in K}I_k$. Then it is always true that $IM_e \subseteq \bigcap_{k \in K}(I_kM_e)$. Let $x \in \bigcap_{k \in K}(I_kM_e)$ and $H = (IM_e : R_ex)$. Suppose that $H \neq R_e$. Then there exists a prime ideal P of R_e containing H. If $x \in T_P(M_e)$, then we find an element in $H - P$, so $x \notin T_P(M_e)$. By Theorem 2.3, M_e is P-cyclic and then there exists $m \in M_e$ and $c \in R_e - P$ such that $cM_e \subseteq R_em$ and so $cx \in \bigcap_{k \in K}I_km$. It follows that, for every $k \in K$, there exists $a_k \in I_k$ such that $cx = a_km$. Now, choose $k_0 \in K$ such that $cx \in I_{k_0}m$ and then $cx = a_{k_0}m$. Hence $a_{k_0}m = a_km$, i.e., $(a_{k_0} - a_k)m = 0$ for every $k \in K$. We have, $c(a_{k_0} - a_k)M_e = (a_{k_0} - a_k)cM_e \subseteq (a_{k_0} - a_k)R_em = R_e(a_{k_0} - a_k)m = \{0\}$. Since $Ann(M_e) = \{0\}$, $c(a_{k_0} - a_k) = 0$. Hence, $ca_{k_0} = ca_k \in I_k$ for every $k \in K$. As a consequence, $ca_{k_0} \in I$ and then $c^2x = ca_{k_0}m \in IM_e$ and so $c^2 \in H \subseteq P$ a contradiction. So, $H = R_e$ and hence $x \in IM_e$. Now, let $g \in G$. Then $\bigcap_{k \in K}(I_kM_g) = \bigcap_{k \in K}(I_kR_gM_e) = R_g\bigcap_{k \in K}(I_kM_e) = R_g(\bigcap_{k \in K}I_k)M_e = (\bigcap_{k \in K}I_k)R_gM_e = (\bigcap_{k \in K}I_k)M_g$.

2. Let $g \in G$, N be an R_e-submodule of M_g and A be an ideal of R_e such that $N \subseteq AM_g$. Then $R_{g^{-1}}N$ is an R_e-submodule of M_e such that $R_{g^{-1}}N \subseteq AM_e$.
Since M_e is multiplication, $R_{g^{-1}}N = CM_e$ for some ideal C of R_e and then $N = CM_g$. So, $N = AM_g \cap CM_g = (A \cap C)M_g$ by using (1). Hence, choose $B = A \cap C$.

An R-module M is said to be finitely cogenerated if for every non-empty family of R-submodules $N_k (k \in K)$ of M such that $\bigcap_{k \in K} N_k = \{0\}$, there exists a finite subset F of K such that $\bigcap_{k \in F} N_k = \{0\}$. A ring R is said to be finitely cogenerated if it is finitely cogenerated as an R-module. We close the paper with the following result:

Theorem 2.6 Let R be a strongly G-graded ring, and M be a graded R-module. If M_e is multiplication R_e-module and $\text{Ann}(M_e) = \{0\}$, then M_e is finitely cogenerated R_e-module if and only if M_g is finitely cogenerated R_e-module for all $g \in G$.

Proof. Suppose that M_e is finitely cogenerated R_e-module. Firstly, we prove that R_e is finitely cogenerated. Let $I_k (k \in K)$ be a non-empty family of ideals of R_e such that $\bigcap_{k \in K} I_k = \{0\}$. Then by Corollary 2.5, $\bigcap_{k \in K} (I_k M_e) = \{0\}$. Since M_e is finitely cogenerated, there exists a finite subset F of K such that $\bigcap_{k \in F} I_k M_e = \{0\}$ and then by Corollary 2.5, $(\bigcap_{k \in F} I_k) M_e = \{0\}$. Since $\text{Ann}(M_e) = \{0\}$, $\bigcap_{k \in F} I_k = \{0\}$. Therefore, R_e is finitely cogenerated. Now, let $g \in G$ and $N_k (k \in K)$ be a non-empty family of R_e-submodules of M_g such that $\bigcap_{k \in K} N_k = \{0\}$. Then $R_{g^{-1}} N_k (k \in K)$ are R_g-submodules of M_e and then for $k \in K$, there exists an ideal A_k of R_e such that $R_{g^{-1}} N_k = A_k M_e$, it is clear that $(\bigcap_{k \in K} A_k) M_e = \bigcap_{k \in K} (A_k M_e) = \bigcap_{k \in K} R_{g^{-1}} N_k = R_{g^{-1}} \bigcap_{k \in K} N_k = \{0\}$. Since $\text{Ann}(M_e) = \{0\}$, $\bigcap_{k \in K} A_k = \{0\}$ and since R_e is finitely cogenerated, there exists a finite subset F of K such that $\bigcap_{k \in F} A_k = \{0\}$ and then

$$
\bigcap_{k \in F} N_k = R_e (\bigcap_{k \in F} N_k) = R_g R_{g^{-1}} (\bigcap_{k \in F} N_k)
$$

$$
= R_g (\bigcap_{k \in F} R_{g^{-1}} N_k) = R_g (\bigcap_{k \in F} A_k M_e) = R_g (\bigcap_{k \in F} A_k) M_e = \{0\}.
$$

Hence, M_g is finitely cogenerated. The converse is obvious.

References

Accepted: 13.06.2015