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Abstract. In this paper, we study a class of sequence spaces defined by using the
type of an entire function represented by vector valued Dirichlet series of two complex
variables. The main results concern with obtaining the nature of the dual spaces of this
sequence space and coefficient multipliers for some classes of vector valued Dirichlet
series.
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1. Introduction

Let

(1.1) f(s1, s2) =
∞∑

m,n=1

am,n exp(λms1 + µns2), (sj = σj + itj , j = 1, 2)

be a Dirichlet series of two complex variables s1, s2; am,n
′s belong to a commutative

complex Banach algebra (E, ||.||) with the unit element ω and

(1.2) 0 < λ1 < ... < λm →∞ as m →∞ ; 0 < µ1 < ... < µn →∞ as n →∞.

Further, let

(1.3) lim sup
m,n→∞

ln(m + n)

λm + µn

= D < +∞ ,

and

(1.4) lim sup
m,n→∞

ln(||am,n||)
λm + µn

= −∞ .
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Then f(s1, s2) represented by the vector valued Dirichlet series (VVDS) in (1.1)
is an entire function (see [2]). We define the maximum modulus of f(s1, s2) as

M(σ1, σ2) = lub ||f(σ1 + it1, σ2 + it2)||;−∞ < tj < ∞ (j = 1, 2).

The entire function f(s1, s2) is said to be of order ρ where ρ is defined as

(1.5) ρ = lim sup
σ1,σ2→∞

ln ln M(σ1, σ2)

ln(eσ1 + eσ2)
, (0 6 ρ 6 ∞) .

When 0 < ρ < ∞,in order to further classify the growth, we define the type T
of f(s1, s2) as

(1.6) T = lim sup
σ1,σ2→∞

ln M(σ1, σ2)

eρσ1 + eρσ2
, (0 6 T 6 ∞) .

The coefficient characterizations of order and type of generalized vector valued
Dirichlet series were obtained by Srivastava and Sharma [2]. Thus, if f(s1, s2) is
an entire function of order ρ, then

(1.7) ρ = lim sup
m,n→∞

ln
(
λλm

m µµn
n

)

ln ||am,n||−1

and, if f(s1, s2) is entire function of order ρ (0 < ρ < ∞), then it is of type T if
and only if

(1.8) eρT = lim sup
m,n→∞

[
λm

λmµn
µn||am,n||ρ

]1/(λm+µn)
.

Let ET denote the space of all entire functions f(s1, s2) defined by VVDS (1.1)
and satisfying

(1.9) lim sup
m,n→∞

[
λm

λmµn
µn ||am,n||ρ

]1/(λm+µn) 6 eρT

Further, the sequences {λm} and {µn} satisfy the stronger condition

(1.10) lim sup
m,n→∞

ln(m + n)

λm + µn

= 0

From equation (1.9), for a given ε > 0 there exists a positive integer n0 such that
for m,n > n0, [

λm
λmµn

µn ||am,n||ρ
]1/(λm+µn)

< eρ(T + ε) .

In this paper, we have obtained various properties of the space ET . In analogy
with Khoi [1], we give some definitions regarding dual spaces in reference to double
sequences.

A sequence (um,n) is said to be multiplier from a sequence space A into a
sequence space B if (um,nam,n) ∈ B whenever (am,n) ∈ A. The space of multipliers
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from a sequence space A into a sequence space B is denoted by (A, B). If D is
a fixed sequence space then the D-dual of a sequence space A is defined to be
(A,D), the multipliers from A to D and denoted by AD. Some duals are defined
with some conditions such as Kothe dual, Abel dual. The Kothe dual is obtained
when D = l1,and will be denoted by Aα (it is also denoted by AK).

In what follows, we shall always consider E to be a complex Banach algebra
and the sequences {λm} and{µn} satisfy the condition (1.10). We denote by ET

the sequence space

ET = {(am,n) ∈ E; (am,n) satisfies (1.9)} .

The Kothe dual of the space ET is defined as

Eα
T =

{
(um,n);

∞∑
m,n=1

||um,nam,n || converges ∀ (am,n) ∈ ET

}
.

Now, we introduce another sequence space Eβ
T defined as

Eβ
T =

{
(um,n);

∞∑
m,n=1

um,nam,n converges ∀ (am,n) ∈ ET

}
.

2. Main Results

We first study properties of some dual spaces of the space ET . Later, we charac-
terize the multipliers on ET . It can be easily verified that, for the spaces defined
above, Eα

T ⊆ Eβ
T . Now, we find the criteria for the reverse inclusion relation to be

true.
We prove

Theorem 1. For every T, 0 < T < ∞, we have Eα
T = Eβ

T . Moreover, (um,n) ∈ Eβ
T ,

if and only if

(2.1) lim inf
m,n→∞

[
λm

λmµn
µn||um,n||−ρ

]1/(λm+µn)
> eρT.

Proof. Let us assume that (um,n) ∈ Eβ
T , but (2.1) is not satisfied, i.e.,

lim inf
m,n→∞

[
λm

λmµn
µn ||um,n||−ρ

]1/(λm+µn) 6 eρT.

For a given ε > 0, there exist increasing sequences (mk) and (nl) of positive
integers such that

[
λm

λmµn
µn||um,n||−ρ

]1/(λm+µn) 6 eρ(T + ε), ∀m = mk, n = nl, k, l = 1, 2, ....
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Let (am,n) be a sequence defined as

am,n =

{
ω/||um,n||, if m = mk and n = nl; k, l = 1, 2, ...,

0, for other values of m and n.

Then, we have

lim sup
m,n→∞

[
λm

λmµn
µn||am,n||ρ

]1/(λm+µn)
= lim

k,l→∞

[
λmk

λmk µnl

µnl ||amk,nl
||ρ]1/(λmk

+µnl
)

= lim
k,l→∞

[
λmk

λmk µnl

µnl ||umk,nl
||−ρ

]1/(λmk
+µnl

)

6 eρT.

It follows that (am,n) ∈ ET . But ||amk,nl
umk,nl

|| = 1, (k, l = 1, 2, ...), that is,

lim
m,n→∞

||am,num,n|| 6= 0. So, the series
∞∑

m,n=1

um,nam,n does not converge, therefore

our assumption is not valid. Hence, if (um,n) ∈ Eβ
T , then (2.1) will always be

satisfied.
Conversely, suppose that (2.1) holds, i.e.,

lim inf
m,n→∞

[
λm

λmµn
µn ||um,n||−ρ

]1/λm+µn

ρe
= M > T.

Then, for a given δ > 0, there exist positive integers M1 and N1 and such that,
∀m ≥ M1 and ∀n ≥ N1, we have

[
λm

λmµn
µn||um,n||−ρ

]1/(λm+µn)
> eρ(M − ε),

or

||um,n||ρ <
λm

λmµn
µn

[ρe(M − ε)](λm+µn)
.

Also, for every sequence (am,n) ∈ ET , there exist M2 and N2 such that, ∀m ≥ M2,
n ≥ N2,

||am,n||ρ <
[ρe(T + ε)](λm+µn)

λm
λmµn

µn
.

Therefore, for all m ≥ max {M1,M2} and n ≥ max {N1, N2} ,

||am,num,n|| <
(

T + ε

M − ε

)(λm+µn)/ρ

.

Since M > T , we can choose ε > 0 such that M − ε > T + ε. Then, from the

above inequality, we can see that the series
∞∑

m,n=1

||um,nam,n || converges. Hence

(um,n) ∈ Eα
T and, therefore, Eβ

T ⊆ Eα
T . This completes the proof of Theorem 1.

Next, we prove
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Theorem 2. The space ET is perfect, i.e., Eαα
T = ET .

Proof. Let the sequence (am,n) /∈ ET . Then we have

lim sup
m,n→∞

[
λm

λmµn
µn ||am,n||ρ

]1/(λm+µn) > eρT.

We denote by eρT ∗ the left hand side limit if it is finite, and a number > eρT if the
limit is infinite. Then, for arbitrary small δ > 0, there exist infinitely increasing
sequences (mk) and (nl) of positive integers such that

||am,n||ρ > [ρe(T ∗ − δ)](λm+µn)

λλm
m µµn

n
, m = mk, n = nl.

Let us define a sequence

um,n =

{
ω /||amk,nl

|| if m = mk, n = nl, where k, l = 1, 2, ...

0 for other values of m and n.

Then, we have

lim inf
m,n→∞

[
λλm

m µµn
n ||um,n||−ρ

]1/(λm+µn)
= lim

k,l→∞

[
λ

λmk
mk µ

µnl
nl ||umk,nl

||−ρ
]1/(λmk

+µnl
)

= lim
k,l→∞

[
λ

λmk
mk µ

µnl
nl ||amknl

||ρ
]1/(λmk

+µnl
)

> eρT ∗ > eρT.

Hence, from Theorem 1, (um,n) ∈ Eα
T . But ||am,num,n|| = 1, ∀m = mk, n = nl,

i.e.,
∑

am,num,n does not converge. Therefore, (am,n) /∈ Eαα
T . Hence Eαα

T ⊆ ET .
The reverse inclusion relation Eαα

T ⊇ ET always holds. Hence the space ET is
perfect.

Theorem 3. For the sequence space ET defined as above, we have

(ET , lp) = Eα
T , ∀ 0 < p ≤ ∞.

Proof. Suppose that a sequence(um,n) /∈ Eα
T . Then, from Theorem 1, we have

lim inf
m,n→∞

[
λλm

m µµn
n ||um,n||−ρ

]1/(λm+µn) 6 eρT.

Then, for an arbitrarily small ε > 0, there exist monotonically increasing se-
quences (mk) and (nl) of positive integers such that

[
λλm

m µµn
n ||um,n||−ρ

]1/(λm+µn)
< eρ(T + ε), m = mk, n = nl.

Let 0 < p < ∞. We consider the sequence

am,n =

{
ω /||umk,nl

|| if m = mk, n = nl and k, l = 1, 2, ...

0 for other values of m and n.
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Then we have

lim sup
m,n→∞

[
λλm

m µµn
n ||am,n||ρ

]1/(λm+µn)
= lim

k,l→∞

[
λ

λmk
mk µ

µnl
nl ||amk,nl

||ρ
]1/(λmk

+µnl
)

= lim
k,l→∞

[
λ

λmk
mk µ

µnl
nl ||umk,nl

||−ρ
]1/(λmk

+µnl
)

6 eρT.

Hence we get (am,n) ∈ ET . By the definition of (ET , lp) ,
∞∑

m,n=1

||am,num,n||p should

be convergent . But ||amk,nl
umk,nl

|| = 1; k, l = 1, 2.... This implies (am,num,n) /∈ lp.
For the case p = ∞, we consider a sequence

am,n =

{
ω(m + n)1/ρ||um,n||−1 if m = mk, n = nl and k, l = 1, 2, ....,

0 for other values of m and n.

Then we have

lim sup
m,n→∞

[
λλm

m µµn
n ||am,n||ρ

]1/(λm+µn)
= lim

k,l→∞

[
λ

λmk
mk µ

µnl
nl ||amk,nl

||ρ
]1/(λmk

+µnl
)

= lim
k,l→∞

[
λ

λmk
mk µ

µnl
nl ||mknl||ρ||umk,nl

||−ρ
]1/(λmk

+µnl
)

6eρT

using (1.10) and the inequality above. This shows that (am,n) ∈ Eρ. Since
lim

k,l→∞
||amk,nl

umk,nl
|| = +∞, this implies that (am,n, um,n) /∈ l∞. Hence we con-

clude that, for 0 < p ≤ ∞, (um,n) /∈ Eα
T ⇒ (um,n) /∈ (ET , lp). Thus (ET , lp) ⊆ Eα

T ,
0 < p ≤ ∞.

Conversely, assume that (um,n) ∈ Eα
T . Then for a given M > T, there exist

integers M1 andN1 such that ∀m ≥ M1, n ≥ N1,

||um,n|| ≤ λm
λm/ρµn

µn/ρ

[ρeM ](λm+µn)/ρ
.

Suppose that (am,n) ∈ ET , then for δ ∈ (0, (M − T )) there exist positive integers
M2 andN2 such that∀m ≥ M2, n ≥ N2,

||am,n|| ≤ [ρe(T + δ)](λm+µn)/ρ

λm
λm/ρµn

µn/ρ
.

Consequently, for all m ≥ m0 = max {M1,M2} , n ≥ n0 = max {N1, N2} we have

||am,num,n|| ≤ ||am,n|| ||um,n|| < ((T + δ)/(M))(λm+µn)/ρ.

If 0 < p < ∞, then we have

∞∑
m=M,n=N

||am,num,n||p ≤
∞∑

m=M,n=N

((T + δ)/M)p(λm+µn)/ρ < ∞ ;
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as (T + δ)/M < 1, which implies that(am,num,n) ∈ lp.
Now, let us take p = ∞. Then we have

||am,num,n|| ≤ ((T + δ)/M)(λm+µn)/ρ < 1, ∀m ≥ m0, n ≥ n0,

which shows that (am,num,n) ∈ l∞. Thus, in both the cases (um,n) ∈ (ET , lp) and
consequently Eα

T ⊂ (ET , lp) , 0 < p ≤ ∞. This completes the proof of Theorem 3.

In the next theorem, we obtain the sequence space of multipliers from lp to
ET . We prove

Theorem 4. For the sequence space ET defined as above, we have

(lp, ET ) = ET , 0 < p ≤ ∞.

Proof. First, we prove that (lp, ET ) ⊆ ET . Hence, for 0 < p < ∞, let (am,n) ∈ lp.

Then
∞∑

m,n=1

|am,n|p < ∞ and, therefore,

(2.2) lim
m,n→∞

|am,n|p = 0

Let (um,n) ∈ (lp, ET ) . Then, (am,n um,n) ∈ ET and, using (1.9), we have

(2.3) lim sup
m,n→∞

[
λm

λmµn
µn||am,n um,n||ρ

]1/(λm+µn) 6 eρT.

Hence from (2.2) and (2.3), we get

lim sup
m,n→∞

[
λm

λmµn
µn||um,n||ρ

]1/(λm+µn) 6 eρT

and hence (um,n) ∈ ET . If p = ∞, then (am,n) is a bounded sequence and from
(2.3) we have the above inequality and (um,n) ∈ ET . Hence we get (lp, ET ) ⊆ ET ,
0 < p 6 ∞.

To prove the converse, assume that (um,n) ∈ ET . Then we have

lim sup
m,n→∞

[
λλm

m µµn
n ||um,n||ρ

]1/(λm+µn) 6 eρT.

Let (dm,n) be an arbitrary sequence such that (dm,n) ∈ lp, 0 < p ≤ ∞. In both
cases, i,e., 0 < p < ∞ or p = ∞, there exists a constant P such that |dm,n| ≤ P,
∀m,n ≥ 1. Hence we have

lim sup
m,n→∞

[
λλm

m µµn
n ||dm,num,n||ρ

]1/(λm+µn)
= lim sup

m,n→∞

[
λλm

m µµn
n |dm,n|ρ||um,n||ρ

]1/(λm+µn)

6 lim sup
m,n→∞

[
λλm

m µµn
n P ρ||um,n||ρ

]1/(λm+µn)

6 eρT,
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which shows that (dm,num,n) ∈ ET . Thus, (um,n) ∈ (lp, ET ) and, consequently,
ET ⊆ (lp, ET ) , ∀ 0 < p ≤ ∞. Hence the result follows.
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