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Abstract. In VLSI design, One of the most important detailed routings is the channel
routing. Channel routing in the 2-layer Manhattan model is one of the most investi-
gated problem in VLSI design. In this paper, we consider the channel with horizontal
constraint graph is a star. An efficient graph theoretic algorithm is presented, com-
pared with the latest results, our algorithm yields a better bound on the width of the
channel.
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1. Introduction

In VLSI design the problem of completing the necessary interconnections among
different modules is known as the routing problem. Typically, the routing problem
can be divided into two steps due to the problem complexity: global routing and
detailed routing. One of the most important detailed routing is channel routing
[9,10,12]. The channel routing problem (CRP) is the problem of interconnecting
all the nets in a channel using minimum possible routing area.

We use the expression of graph theory to describe the channel routing pro-
blem, a channel is defined by a rectangular grid G of size (w + 2)× n consisting
of horizontal tracks (numbered from 0 to w + 1) and vertical columns (numbered
from 1 to n), where w is the width and n is the length of the channel. Top and
bottom sides points of G are called terminals.

A channel routing problem is a set N = {N1, . . . , Nt} of pairwise disjoint
nets. A channel routing problem is called bipartite if each net contains exactly
two terminals, one on the top, and one on the bottom side. A channel routing
problem is dense if each terminal on the top and bottom sides belongs to some
net. A net is called trivial if it consists of two terminals which are situated in
the same column. In this paper we always assume that each net contains at least
two terminals.
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There are two constraints for the net in a channel: horizontal constraint and
vertical constraint.

The constraint that two nets cannot overlap on the horizontal layer is called
the horizontal constraint. Let li be the leftmost and ri be the rightmost column
of net i. A net i is said to span the c-th column if li ≤ c ≤ ri. The set of columns
[li, ri] is called the span of net i.

There is a horizontal constraint between net i and net j if and only if their
spans overlap. The horizontal constraints are often represented by an undirected
graph, the horizontal constraint graph (HCG) (see Figure. 1), where vertices
represent the nets and edges represent the horizontal constraints.
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Figure 1.

Let Zi be the set of nets that span the i−th column, dmax = max{|Zi| : i is
a column} is called the density of the CRP. Clearly, dmax is a lower bound on S∗

because nets spanning the same column cannot be assigned to the same track.
The constraint that two nets cannot overlap on the vertical layer is called the

vertical constraint. Note that if net i connects to the c-th column in the top row
and net j connects to the c-th column in the bottom row, i 6= j, then net i must be
assigned to a track higher than net j. In this case, we say that net i must precede
net j and there is a vertical constraint from i to j . The vertical constraints define
a partial ordering between nets. The vertical constraints are often represented
by a directed graph, the vertical constraint graph (VCG) (see Figure.1), where
vertices represent the nets and arcs represent the vertical constraints.

A solution of a channel routing problem is said to belong to the Manhat-
tan model if consecutive layers contain wire segments of different directions only.
That is, layers with horizontal(east-west) and vertical (north-south) wire seg-
ments alternate. In this paper we restrict that the length of the channel cannot
be extended by introducing extra columns.
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2-layer Manhattan routing has always been one of the most popular and
most investigated problems in VLSI routing. The first classic result in the topic
of VLSI routing is probably Gallai’s linear time algorithm that solves the single
row routing problem – a special case of channel routing – with optimal width in
the 2-layer Manhattan model.

Theorem 1.1. (T. Gallai [2]) The minimum width of a solution of a single row
routing problem in the 2-layer Manhattan model is equal to the density of the
problem. Moreover, such a minimum width routing can be found in linear time.

The proof makes use of the fact that interval graphs are perfect. A horizon-
tal interval is associated with every net, stretching from its leftmost terminal to
its rightmost terminal. The density is equal to the clique number of the corre-
sponding interval graph. A coloring with an equal number of colors can easily be
transformed into an optimal width routing.

In light of the above theorem it might be surprising that channel routing
turns out to be much more complicated than single row routing.

Theorem 1.2. (T.G. Szymanski, 1985 [10]) It is NP-complete to decide whether
a channel routing problem is solvable in the 2-layer Manhattan model with width
at most k (where k is part of the input).

In [9], the authors restrict the problem of 2-layer Manhattan channel routing,
they do not allow extra empty columns to be added to the grid. They give a
complete characterization of all specifications that are solvable if the width can be
arbitrarily large, but the length of the channel cannot be extended by introducing
extra columns. Furthermore, the author present a linear time algorithm to solve
these specifications with a width at most constant times the length of the problem.

Theorem 1.3. (Dávid Szeszlér [8]) A channel routing problem is not solvable in
the 2-layer Manhattan model (with an arbitrary width) if and only if it is bipartite,
dense and has at least one non-trivial net. Moreover, if a specification is solvable
then it can be solved with width at most 3

2
n in the bipartite, and 7

4
n in the general

case (where n is the length of the channel).

2. Main results

Recall that a channel routing problem is called bipartite if each net contains
exactly two terminals, one on the top, and one on the bottom side. Now we
consider horizontal constraint graph of the net in this problem is a star.

Theorem 2.1. If a channel with horizontal constraint graph be a star, then the
vertical constraint graph has directed path with length at most 1.

Proof. Let the horizontal constraint graph G has k vertices, denoted by v1, v2, ..., vk.
Without loss of generality, we let the vertex vk has degree k− 1. Since the graph
G is a star, each vertex of vertices v1, v2, ..., vk−1 has an edge joined with vertex
vk. Then is to say, each net of v1, v2, ..., vk−1 has horizontal constraint with net
vk and each two nets belong to v1, v2, ..., vk−1 have not horizontal constraint.
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Now, we proof by contradiction. If these is an direct path belongs to the
vertical constraint graph has length s(s ≥ 2), denoted by u1, u2, ..., us. Recall
that if two nets have vertical constraint, then they also have horizontal constraint.
Then the net ui and ui+1(1 ≤ i ≤ s− 1) have horizontal constraint, the vertex ui

and ui+1(1 ≤ i ≤ s−1) have edge in horizontal constraint graph, a contradiction.
So if a channel with horizontal constraint graph v1, v2, . . . , vk be a star, then

the vertical constraint graph has directed path with length at most 1, and if the
vertical constraint graph has directed path with length 1, one of the vertex belong
to this path has the largest degree. Since we consider channel routing problem is
bipartite, that is all the net has two terminals, the directed path with length 1
of vertical constraint graph have at most two.

2.1. Our Algorithm

An algorithm for 2-layer Manhattan routing problem with horizontal constraint
graph be a star, based on the notions of horizontal constraint graph and vertical
constraint graph, is presented in this section. The algorithm proceeds in three
cases outlined below.

Route all trivial nets straight down in the obvious fashion. Henceforth we
do not include these columns and nets below.

2.1.1. Algorithm

Case 1. Vertical constraint graph of the net have no directed path, that is to say,
vertical constraint graph have not edge, each two nets have no vertical constraint.

In this case, we only consider horizontal constraint. Since horizontal con-
straint graph is a star, we only need to consider the corresponding net with
maximum degree in the horizontal constraint graph. We assign the first track on
the bottom layer to this net, then the rest nets can not use this track. The rest
nets can route in the second track since each two nets belong to the rest nets
have not horizontal constraint and vertical constraint. Then we route them in
the most straightforward way: in the corresponding track of the bottom layer we
introduce a horizontal wire segment connecting the columns of the two terminals,
we switch to the top layer at both ends of this segment and connect to the two
terminals.

Case 1. Vertical constraint graph of the net have no directed path, that is to say,
vertical constraint graph have not edge, each two nets have no vertical constraint.

In this case, we only consider horizontal constraint. Since horizontal con-
straint graph is a star, we only need to consider the corresponding net with
maximum degree in the horizontal constraint graph. We assign the first track on
the bottom layer to this net, then the rest nets can not use this track. The rest
nets can route in the second track since each two nets belong to the rest nets
have not horizontal constraint and vertical constraint. Then we route them in
the most straightforward way: in the corresponding track of the bottom layer we
introduce a horizontal wire segment connecting the columns of the two terminals,
we switch to the top layer at both ends of this segment and connect to the two
terminals.
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Case 2. Vertical constraint graph of the net have a directed path with length 1.

By Theorem 2.1, one of the vertex of this directed path is the center of star.
If this vertex is the starting point, denoted by vk, and the terminal vertex of
this directed path denoted by vk+1. By vertical constraint, the track assigned to
the net corresponding to vertex vk is above to the net corresponding to vertex
vk+1. In this case, we assign the first track on the bottom layer to the net
corresponding to vertex vk and assign the second track on the bottom layer to
the net corresponding to vertex vk+1. The rest nets can route in the second track
since each nets belong to the rest nets have horizontal constraint with vk but
have not horizontal constraint with vk+1. Then using the same method in Case 1,
we can assign a track to each of these nets and route these nets in the above
straightforward way.

If this vertex is the terminal point, denoted by vk, and the starting vertex
of this directed path denoted by vk−1. By vertical constraint, the track assigned
to the net corresponding to vertex vk is below to the net corresponding to vertex
vk−1. In this case, We assign the first track on the bottom layer to the net
corresponding to vertex vk−1 and assign the second track on the bottom layer to
the net corresponding to vertex vk. The rest nets must route in the third track
since each nets belong to the rest nets have horizontal constraint with vk. Then
using the same method in case 1, we can assign a track to each of these nets and
route these nets in the above straightforward way.

Case 3. Vertical constraint graph of the net have two directed paths with
length 1.

We denote the center of star by vk. By Theorem 2.1, one of the vertex of
directed path is the center of star. Since vertical constraint graph of the net
have two directed paths with length 1, then vk is terminal point of one directed
path and is starting point of another directed path. When vk is the terminal
point of directed path, then the starting vertex of this directed path denoted by
vk−1. When vertex vk is the starting point of directed path, the terminal vertex
of this directed path denoted by vk+1. By vertical constraint, the track assigned
to the net corresponding to vertex vk is below to the net corresponding to vertex
vk−1, the track assigned to the net corresponding to vertex vk is above to the
net corresponding to vertex vk+1. In this case, we assign the first track on the
bottom layer to the net corresponding to vertex vk−1, assign the second track on
the bottom layer to the net corresponding to vertex vk, and assign the third track
on the bottom layer to the net corresponding to vertex vk+1. The rest nets can
route in the third track since each nets belong to the rest nets have not horizontal
constraint with vk+1. Then using the same method in Case 1, we can assign a
track to each of these nets and route these nets in the above straightforward way.

2.1.2. Running time analysis

When we choose the directed path in algorithm, we need constant time to route
the nets of this path. When we route the second directed path in step 2, we need
2 compares. Since every compare need constant time, So we give a constant time
algorithm to solve this routing problems.



310 x. geng, x. fang, d. li, j. chu

2.1.3. The upper bound

In the above algorithm, we give a solution for this particular routing problem.
Now, we analyze the upper bound of our algorithm and compare to others algo-
rithms. In [9], the author route this problem with n tracks, he assign a separate
track on the bottom layer to each net. In our algorithm, we consider the horizon-
tal constraint of the nets, we can route this problem with no more than 3 tracks.
So we give a better polynomial time algorithm to solve the 2-layer Manhattan
channel routing problem.
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Annales Univ. Sci. Budapest. Eötvös Sect. Math., 1 (1958), 115–123.

[3] Gao, S., Kaufmann, M., Channel routing of multiterminal nets, J. Assoc.
Comput. Mach., 41 (4) (1994), 791–818.

[4] Geng, X.Y., A polynomial time Algorithm for 2-layer Manhattan Channel,
International Journal of Applied Mathematics and Statistics, 29 (5) (2012),
76–83.

[5] Johnson, D.S., The NP-completeness column: An ongoing guide, J. Algo-
rithms, 5 (1984), 147–160.

[6] Marek-Sadowska, M., Kuh, E., General channel-routing algorithm,
Proc. IEE (GB), 130 (1983), 83–88.

[7] Recski, A., Strzyzewski, F., Vertex-disjoint channel routing on two
layers, Integer programming and combinatorial optimization (Ravi Kannan
and W.R. Pulleyblank, ed.), University of Waterloo Press (1990), 397–405.

[8] Recski A., Some polynomially solvable subcases of the detailed routing pro-
blem in VLSI design, Discrete Appl. Math., 115 (1-3) (2001), 199–208.

[9] Szeszlér D., A New Algorithm for 2-layer Manhattan Channel Routing,
Proc. 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its
Applications, (2003), 179–185.

[10] Szkaliczki T., Optimal routing on narrow channels, Period. Polytech. Ser.
El. Engrg., 38 (1994), 191–196.

[11] Szymanski, T.G., Dogleg channel routing is NP-complete, IEEE Trans.
Computer-Aided Design of Integrated Circ. Syst., CAD-4 (1985), 31–41.

[12] Yoeli, U., A robust channel router, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 10 (2) (1991), 212–219.

[13] Yoshimura, T., Kuh, E.S., Efficient Algorithms for Channel Routing,
IEEE Trans. on CAD of Integrated Circuits and Systems, 1 (1982), 25–35.

Accepted: 25.04.2015


